
EA: Research-infused teaching of parallel
programming concepts for undergraduate

Software Engineering students
Nasser Giacaman and Oliver Sinnen

Department of Electrical and Computer Engineering
The University of Auckland

Auckland, New Zealand
n.giacaman@auckland.ac.nz o.sinnen@auckland.ac.nz

Abstract—This paper presents experience using a research-
infused teaching approach towards an undergraduate parallel
programming course. The research-teaching nexus is applied
at various levels, first by using research-led teaching of core
parallel programming concepts, as well as teaching the latest
developments from the affiliated research group. The bulk of the
course, however, focuses more on the student-driven research-
based and research-tutored teaching approaches, where students
actively participate in groups on research projects; students are
fully immersed in the learning activity of their respective project,
while at the same time participating in discussions of wider
parallel programming topics across other groups. This intimate
affiliation between the undergraduate course and the research
group results in a wide range of benefits for all those involved.

I. INTRODUCTION

Much like Computer Science, the Software Engineering
degree teaches students the core elements of hardware and
software, while at the same time developing their problem
solving skills. However, the Software Engineering degree
places a much higher emphasis on the application of that
knowledge and takes students through the complete software
development process; this includes working in teams to gather
requirements, designing, building, testing and deploying the
final software product. The objective of Software Engineering
is to prepare students for meeting industry needs, by taking
responsibility of managing and delivering software projects.

A recent trend in industry has come in the form of ubiq-
uitous multi-core everyday consumer devices, namely lap-
tops, netbooks, tablets and smartphones. Much like traditional
parallel computing devices, programmers need to explicitly
incorporate multi-threading within their software applications
to utilise the underlying hardware. Herein lies a major com-
plication, namely the necessary skill-set required depends on
the particular parallel hardware (e.g. shared memory multi-
processor versus distributed memory systems). While some
undergraduate courses do teach essential parallel programming
concepts, it is usually in the form of a module within a non-
dedicated course (for example, an operating systems course).
The concepts taught typically include students as recipients
of well grounded foundational knowledge, rarely directly
involving students in the latest parallel programming research.

With an ever-changing technical world, students are con-
stantly expected to be ever so more flexible in their acquisition

Figure 1. The research-teaching nexus and how it integrates with curriculum
design based on content emphasis and student participation in the research
(based on Healey [6]).

and analysis of the changing skill-sets; in this regard, de-
veloping a research-skilled undergraduate student is essential
for their career, and not merely just to quench their desire
for intellectual insight [7]. The level of research integration
within the teaching can vary significantly [5]; in research-
led teaching, students are mere recipients of research (e.g.
the instructor’s research is referred to within lectures or
supplementary reading), while in research-based teaching the
students take on the active role of advanced learning alongside
the instructors by participating in inquiry-based learning. For
completeness (but of less interest to us here), research-oriented
teaching focuses on research ethos (as opposed focusing on
the actual research content) [5]. Figure 1 shows this research-
teaching nexus model, extended to include research-tutored
teaching [6], where students work in groups writing and
discussing papers.

Contributions: An important way to effectively develop
the link between research and teaching is to share discipline-
specific case studies [7]; here, we share our experience with
SoftEng 751 and discuss our experiences in linking research
and teaching specifically for parallel programming tailored in
a Software Engineering undergraduate degree. As instructors,
we were pleased with the outcomes of this approach; based on
student evaluations, we believe students were also satisfied.

We present our approach, which we term as research-
infused teaching as it incorporates most of the research-
teaching nexus categories of Figure 1. The course allows



students to develop core parallel programming skills, while
also providing a genuine research experience within a research
group. We present our experiences with the course structure
and administration that both benefits the undergraduate stu-
dents as well as postgraduate research students in the research
group. Sample projects undertaken are also discussed, to help
motivate instructors regarding defining suitably-scoped project
topics.

The rest of this paper is organised as follows: section II
presents some background on the context of the course, while
section III discusses the overview of the course philosophy.
Section IV more specifically addresses the integration of
the course projects within a research group, while section
V presents an evaluation from students and instructors. We
conclude in section VI.

II. BACKGROUND

This paper presents experience teaching a parallel comput-
ing course, SoftEng 751 High Performance Computing, in
the Department of Electrical and Computer Engineering at
the University of Auckland. As it is part of the Software
Engineering degree (available for final year students), the
emphasis in this course is on developing larger scale projects
in teams. Since this course is also taken by a number of
Masters-taught students, it also needs to incorporate a research
component in the form of an independent and challenging
hands-on project.

There is no earlier course in the Software Engineering
undergraduate degree that introduces parallel programming
concepts. However, since SoftEng 751 is dedicated to parallel
programming, students are taught the essential core concepts
while also allowing sufficient time to endeavour on an larger
independent research team project. The selection of these
core concepts supports those programming topics proposed
by the NSF/IEEE-TCPP Curriculum Initiative on Parallel &
Distributed Computing [2] as being most vital.

This has been put forward as part of the Fall 2012 Early
Adopter program [9]. In line with the Curriculum Initiative’s
goal, SoftEng 751 aims to motivate students by embracing
parallel and distributed computing as an integral component
of their professional career; this is especially important in
an Engineering discipline such as Software Engineering. The
focus of the course is on applying parallel programming skills
to an everyday software engineering domain that most directly
affects people in society; in this regards, the focus is on
applications for multi-core desktop and mobile devices, as
opposed to distributed parallel programming.

The Parallel and Reconfigurable Computing (PARC) lab
was founded in order to support parallel computing research at
the University of Auckland. The lab primarily focuses on the
shared memory aspects of parallel computing, with facilities
such as 64-core, 16-core, 8-core systems and numerous multi-
core Android mobile devices (smartphones and tablets). The
lab focus is on the development of desktop and mobile
applications, targeting the current and future wave of multi-
core systems. SoftEng 751 largely includes research projects
closely linked to the latest development from the PARC lab,
as will be discussed in this paper.

Figure 2. SoftEng 751 course structure. The second column represents how
the respective week was used, either instructor-led teaching (IT), assessment
(A), “free-time” for project work (P) or student-led teaching (ST) in the form
of group presentations.

III. THE RESEARCH-TEACHING NEXUS OF SOFTENG 751

An important goal of SoftEng 751 is to develop practical
parallel programming experience while also infusing the latest
research from the PARC lab. To achieve these goals, it is
important to first provide students with the necessary back-
ground knowledge regarding the project topics. Once students
have a firm grounding in these concepts, they commence their
research project.

A. Course structure and content

SoftEng 751 is a semester-long course that includes 6
weeks of teaching, followed by a 2-week study break, then
concluding with another 6 weeks of teaching (the standard
at the University of Auckland). Students were taught the
essentials of shared-memory parallel programming (as per the
Early Adopter proposal [3]) within the first 5 weeks (see figure
2). The 6th week of teaching was dedicated to testing the
material covered in the first 5 weeks, as well as discussions
on the proposed project topics (discussed more in section
III-D). The remainder of the teaching weeks (i.e. after the
study break), involved students presenting their selected topic
to the rest of the class; the contents of these presentations
were all examinable, with a final test in the following week
concluding the presentations.

B. Parallel systems available

To assist students in their projects, a number of shared
memory parallel systems were made accessible to them. In
addition to students having their own multi-core laptops, the
following systems were also available:

• 64-core server (4x 16-core AMD Opteron 6272 proces-
sors @ 2.1 GHz)

• 16-core workstation (4x quad-core Intel Xeon E7340
processors @ 2.4 GHz)



• 8-core workstation (2x quad-core Intel Xeon E5320 pro-
cessors @ 1.86GHz)

• Various departmental lab workstations (mostly quad-core)
• Various Android tablets and smartphones (quad-core)

C. Assessment

Group work is a vital component of Software Engineering,
so a large component of the SoftEng 751 grade reflected
this. To also emphasis the importance of research, a large
proportion of the final grade was directed towards the projects
themselves. In fact, only 25% of the grade targeted individual
understanding of the lecture-style material covered in the first
few weeks:

• Test 1 (25%): A test in week 6 concluded the first section
of the course, by assessing students on their understand-
ing of the core parallel programming concepts taught in
weeks 1-5. Having the test immediately before students
select and commence their projects also encouraged them
to review these vital concepts.

• Group seminar (20%): From weeks 7 to 10, groups
presented their projects to the remainder of the class
during standard lecture times. Each lecture slot allowed
for two presentations, each 20 minutes (+5 minutes for
questions). A first-in first-served doodle poll was used for
students to self–schedule a time slot. All members were
expected to contribute equally in the seminar, and were
assessed individually. Of course, groups presenting earlier
would not have progressed as much as those presenting
later in the course; for this reason, they were not assessed
on their progress but rather on identifying and conveying
the important aspects relevant to their topic. Following
their presentation, groups were required to upload their
slides to the university’s learning management system for
the remainder of the students to review.

• Test 2 (10%): To conclude the group presentations, a
test was held in week 11. The purpose of this test was
to encourage student participation and interest across all
the project topics, and essentially increasing awareness
of research in general.

• Project implementation (25%) and report (20%):
The remainder of the course was dedicated for students
to focus on their project, which included their final
implementation and group report. For implementation,
subversion logs were assessed to gauge individual mem-
ber contributions. Students were also required to submit
peer evaluations discussing the contributions made by
each member; in most cases, students within a team were
awarded equal marks. Both the report and implementation
were due in the final week.

D. Determining and assigning project topics

As would any research group, the PARC group has a
number of ongoing project interests being undertaken. The
most stable of those projects are available online1 for students
and the public alike to download and use freely. The PARC lab

1www.parallelit.org

maintains a wish-list of “todo” items that have been identified
as suitable nugget-sized projects that would be perfect for an
undergraduate student to investigate or implement as part of
the SoftEng 751 course.

In determining the suitability of these projects, an important
factor to consider is the time-frame; SoftEng 751 constitutes
one-quarter of a full-time student’s workload, while students
will have 8 weeks of development time dedicated for the
project. Another vital factor to take into consideration relates
to groupwork, particularly the group sizes and how well is a
project equally divisible amongst group members (necessary
for assessment purposes). Finally, a project is especially likely
to be on the list when it is considered to be an “independent
nugget” that is complimentary to the PARC lab’s work, but
allows students to start development early on without too much
time need to delve into the lab’s larger projects.

For a class enrolment of almost 60 students in the last
semester and a size of 3 students per group, the project list was
narrowed down to the 10 most suitable and interesting projects
from the PARC lab’s perspective. This meant each of the 10
topics was undertaken by two groups; this in particular worked
well as different groups on the same topic still produced
considerably different (but excellent) results. Abstract-style
descriptions were released to students regarding the topics via
email, and then the topics were discussed in a lecture allowing
students to ask further questions.

Some project topics had higher preference than others. To
make the allocation of project topics fair, a doodle poll was
released for groups to select which of the 10 topics they
wanted. The doodle poll was set up to allow only two groups
per topic, and each group could only make one selection.
This worked extremely well, by minimising administration
involvement from the instructor side; at the same time, the
fair first-in first-served nature of the process was appreciated
by students.

Before releasing the doodle poll, it was ensured that all
students were allocated to a group. This ensured that not only
were students given the chance to discuss with their group their
prioritised list of topics, but that no student was disadvantaged
when the doodle poll was released. In fact, students were even
informed a priori as to the exact time the doodle poll would
be released.

E. Research-infused teaching

Section I discussed the benefits of integrating research
within undergraduate studies; even if students do not wish
to pursue an academic career, being exposed to research
allows them to better adapt to the ever-changing technical
world that they will face in industry. Since the focus of
Software Engineering is meeting industry needs, and with
parallel programming increasingly becoming important in the
software industry, it only makes sense to infuse research into
parallel programming courses. There needs to be a focus on
doing or building something.

For SoftEng 751, various categories of the research-teaching
nexus (Figure 1) were taken into account. It was believed that
a research-led approach alone was insufficient in developing



the student’s research skills. From the students point of view,
this form of teaching equates to a passive learning approach;
information is transmitted one way with students expected to
absorb the information [1]. To improve student learning and
motivation [8], [1], the focus within these lectures includes a
component of students doing something; in most cases, this
entails a programming exercise.

Although the in-class exercises helped develop student
enthusiasm, a deeper student participation was vital in order
to better engage them in the research; this was the purpose
of the group projects. The project allows students to fully
engage in the course material, providing for a deep approach
to learning [1]. The project itself is an example of research-
based teaching, where students fully engage in the learning
activity. At the same time, the group presentations (and
resulting discussions) allow for research-tutored teaching, as
does the report assessment; here, students lead the discussion
on existing solutions and potential risks.

Based on the model of Figure 1, the one thing really missing
in SoftEng 751 is some explicit emphasis on the research
methodology (i.e. research-oriented teaching). However, we
believe this is of less concern here since:

1) this contains no direct relevance to parallel programming
content and distracts from the focus of the SoftEng 751
course,

2) students attain this knowledge anyway in other Engi-
neering professional development courses, and

3) as shown in the model, this involves little student
involvement as a lot of it places students as audience.

With that said, students were still indirectly exposed to the
ethos of the research group, in particular to the group’s
software development etiquette (more in section IV-A).

An interesting point to note regarding the effectiveness of
the group presentations and class discussions (i.e. research-
tutored teaching), is that students need to know that the
purpose of the discussions is to collaboratively discuss the
material (rather than test their understanding), otherwise they
will take on a surface approach to learning [7].

Since the selected project topics were directly extracted
from the PARC research lab, it meant that students were
not only being taught the latest research, but they were also
directly engaged and contributing to its continued develop-
ment. To support this, many of the groups were put in direct
contact with postgraduate students (i.e. Masters and PhD) that
acted as representatives to the PARC group. This worked
extremely well, allowing both the undergraduate students to
get more guidance while at the same time providing the
postgraduate students with supervision experience. In some
cases, the postgraduate students also directly benefit by having
outcomes from the undergraduate student projects integrated
with their own research projects.

IV. INTEGRATION WITH RESEARCH GROUP

There are a few considerations in engaging the SoftEng 751
students in the research group’s activities. The aim was to
welcome students into the group, to make them all feel like
they are making a real contribution to the research group rather
than just be working on a project towards their course.

A. Welcoming students with PARC protocols

The first way that students were made to feel a true part of
PARC was to require they use the same software development
tools as the research group. A major component of this was
providing students with access to some version control (in
this case subversion). Groups would create a new project
directory for their group; the idea here was that students
receive the message that they are part of the community of the
research group, and therefore follow practices of the group.
Using this approach, the instructors were able to view the
development history for each group. This was powerful not
only for assessment of the group as a whole, but also in regards
to individual student contributions. Direct write access was not
granted to the main PARC repository, however this approach
built confidence for subsequent future projects where students
continued on their research project and required integration
into the main PARC repository.

Now that a larger number of projects were being undertaken
by a now larger PARC community, it was vital that certain
protocols were being followed. This was especially important
regarding code etiquette when using the group’s subversion;
the students were provided with documentation regarding
good hygiene in the directory structure for their project. This
included information such as separating their source code
from tests and benchmarks, what files to exclude from the
subversion server, and so on. Also part of this protocol was that
projects were all expected to work on Linux, since all PARC
systems run on Linux. While students were free to develop on
other operating systems, it was their responsibility to ensure
all committed code worked on the PARC systems. This not
only included script files, but also taking minor differences
such as file separators and new lines into consideration.

Students were especially made to feel part of the research
group by being put in direct contact of a more senior and
existing research student from the PARC group. This allowed
the SoftEng 751 students to gain more support, especially
in a technical manner when they come across subtle issues.
The Masters or PhD student would also typically help clar-
ify the project, or provide background information where
needed. This not only provided supervision experience for
the postgraduate student, but it also directly helped their own
research project in the case where SoftEng 751 students were
investigating nugget projects for the Masters/PhD student.

Finally, possibly one of the most important aspects of the
projects, was to ensure that all groups felt a strong sense of
independence and ownership towards their project. Students
were constantly reminded they have high flexibility in the di-
rection of the project, and are able to pursue whatever direction
interested them. This worked very well, with many groups
developing projects that exceeded the instructor expectations.
The additional advantage of regularly promoting ownership
and independence meant that groups with the same topic
developed different solutions and felt less pressured as they
saw they ultimately had a different project; this also helped
emphasise the research nature of the project, as there was no
predetermined or known result.



B. Current PARC projects

To put some of the example projects that students undertake
in SoftEng 751 into context, this section will provide some
background for the relevant PARC projects. Students are first
directed to the research website where all relevant documen-
tations and downloads are made available. The bigger of the
projects include Parallel Task [4] and Pyjama [10]. Both of
these tools were developed to assist object-oriented program-
mers in developing parallel applications, in way of extended
compilers and supporting runtime libraries. In the case of
Parallel Task, Java is extended to introduce task parallelism
and task dependences by introducing a few keywords. In the
case of Pyjama, the OpenMP philosophy is introduced into an
object-oriented paradigm to allow incremental parallelism on
existing Java applications.

In both cases, Parallel Task and Pyjama shine by providing
essential support necessary for graphical user interface (GUI)
applications. It is for this reason that Java is used as the target
language, since most graphical toolkits are object-oriented.
Java also has the advantage that it is cross platform, as well as
being the language used in developing Android applications.
In this regards, due to the interactive nature of these target
applications, responsiveness and user-perceived performance
is of high importance. The PARC research distinguishes this
as concurrency (for user-perceived performance), which dif-
fers from parallelism (used to explicitly improve wall-clock
performance by utilising the multiple processing cores).

C. Sample SoftEng 751 projects

This section discusses some of the projects that were made
available to students from the 2013 SoftEng 751 undertaking.
Where noted, some projects had the option of being undertaken
on the Android platform; in this case, it was required that
the group members were already familiar with Android devel-
opment, as they were mainly assessed on the parallelisation
aspects rather than the actual app development (also, because
Android development was not taught in SoftEng 751).

Since the course is offered once a year, it allows adequate
time for a suitable collection of topics to be generated during
the year. These topics are maintained as a shared document by
the instructors, and are reviewed at the start of the course to
determine the top-ten. Some of the project ideas are proposed
by the instructors and graduate students, while others are
recycled from previous years. The reuse of some project topics
is possible, due to their research nature.

As shown below, most of these projects focus on shared
memory parallel systems, particularly for desktop or mobile
systems. It is worthwhile noting that, at face value, some of
the topics do not appear to be of a research nature; however,
it is the integration of those topics with the research tools that
form the research component.

1) Thumbnails of images in a folder: (also available for
Android) Using Parallel Task, this involved writing a
small GUI application in which the user could open
a folder of images with thumbnails being displayed
for each image. The students could use existing func-
tions/libraries to scale the images to a certain size (which

should be adjustable). The main goal for this project was
that the resizing of the images be done in parallel and
that the GUI remains fully responsive; for example, the
user could scroll up or down while the thumbnails were
being rendered. One of the groups developed a desktop
version, comparing the performance across a number
of Java parallelisation strategies (using Parallel Task,
Java threads, SwingWorker), while also investigating
different ways to schedule the workload, and using
different image input sizes. The second group with this
topic investigated on Android, comparing Parallel Task
to Android’s AsyncTask and handlers/loopers.

2) Parallel quicksort: This involved developing parallel
implementations of the classical quicksort algorithm, to
sort a large array of numbers. Although theoretically a
relatively simple recursive algorithm, the students had to
implement three versions using object-oriented language
support (using Parallel Task, Pyjama and standard Java
threads and concurrency classes). The research compo-
nent of this typically-parallelised algorithm is the use of
the research tools in a way that was never done before;
here, using the object-oriented approach of Parallel Task
and Pyjama.

3) Parallelisation of simple computational kernels: Using
Pyjama, this involved implementing basic algorithms
(usually in the form of some nested loops) in parallel
using Java and Pyjama. The implementations of the
algorithms in C were provided to the students. Examples
of the computations that were performed by these algo-
rithms include FFT, molecular dynamics, graph process-
ing and linear algebra. The groups compared Pyjama to
parallelisation using standard Java concurrency libraries.
Again, the research aspect of this project involved
merging OpenMP concepts (developed for imperative
languages) using an object-oriented approach.

4) Search for a string in text files of a folder: (also available
for Android) Using Parallel Task, this involved writing a
small GUI application in which the user would specify
a search string (or even a regular expression), which is
then searched in the text files of a folder and its sub-
folders. The goal was to do the search in parallel without
blocking the user interface. Students were then expected
to taking user interactivity into consideration also, where
encountered strings were also displayed as file and line
number pairs while the search was still in progress.

5) Reductions in Pyjama: The concept of a reduction is
an important aspect of parallel programming since it
allows for an efficient solution to sharing variables. The
OpenMP API specifies a number of reductions that may
be applied on a limited set of data types. In the case
of an object-oriented language, such as Java, there are a
larger wealth of reductions that one may wish to perform
on a larger amount of data types (for example merging
collections). Using Pyjama as the case study, this project
involved the development of a number of reductions in
an object-oriented language.

6) Task-aware libraries for Parallel Task: In a tasking
model, as opposed to a threading model, programmers



need to think in terms of tasks rather than threads. Java
provides various thread-safe classes in its concurrency
package; but in a tasking model, such as Parallel Task,
using a "thread-safe" class in this environment does not
necessarily equate to a correct solution. The aim of
this project was to get students thinking about possible
implications this may have, getting students to imple-
ment various Parallel Task task-safe classes; these can
be thought of as counterparts to the thread-safe classes
provided in Java.

7) PDF searching: (also available for Android) Using Par-
allel Task, this project involved implementing an appli-
cation that searches a number of PDF files (stored locally
on a tablet or laptop/desktop) for a given query. The
project involved investigating various granularity and
parameters to the parallelisation process (for example,
searching per page, per file, number of threads, etc).
The project also aimed to demonstrate aspects of Parallel
Task, such as intermittent updates as results are found,
a responsive GUI, as well as having good (parallel)
performance.

8) Understanding and coping with the Java memory model
for multi-threaded programs: This project involved un-
derstanding the Java memory model and how it affects
multi-threaded programs. This project served more as an
educational purpose, in hope that the outcomes could
be useful for future teaching purposes. The students
developed a number of code snippets that demonstrate
how typical parallelisation problems can occur (for
example, forcing a race condition). This topic also
involved writing how such problems can be avoided,
outlining what options are available and discussing what
their respective pros/cons are (for example, simplicity,
performance cost, etc).

9) Parallel use of collections: When more than one thread
accesses a collection in parallel, synchronisation mech-
anisms are necessary to guarantee correct behaviour.
The Java SDK provides special thread-safe collections
in java.util.concurrent. This project involved
analysing their advantage over standard Java collections
which are used with locks and other forms of syn-
chronisation. The students implemented test programs
to read/write in parallel to/from a collection, compar-
ing the performance of the different approaches. This
included the consideration of different locking mech-
anisms, such as synchronized, atomic variables,
locks (fair/unfair) and different types of collections
(LinkedLists, DeQueues, Sets, etc).

10) Fast web access through concurrent connections: (also
available for Android) Due to the latency of network
connections, it is sometimes meaningful to open several
connections at the same time, rather than accessing one
after the other. Parallel Task can be a perfect fit for this
asynchronous communication approach; however, the
question arises how many connections should be opened
at the same time. In this project, students implemented
a simple program that needs to access a large number
of web-pages and used Parallel Task to download these

pages as quickly as possible.

V. EVALUATION

In evaluating the experience teaching parallel programming
in a teaching-infused approach, we discuss in terms of student
evaluations and reflections from the instructors perspective.

A. Student evaluations

Based on the end of course summative evaluation, students
consistently showed satisfaction with the course and teaching
approach. The evaluation consisted of a set of questions
using the Likert scale (Strong Agree, Agree, Neutral, Dis-
agree, Strongly Disagree), followed by an open comments
section. Taking into consideration the non-traditional teaching
approach, it was especially interesting to see if students felt
comfortable with this style; fortunately, 95% of the students
either agreed or strongly agreed that “The objectives of the
lectures were clearly explained” and “The lecturer stimulated
my engagement in the learning process”.

In regards to the class discussions, 92% of the students ei-
ther agreed or strongly agreed that “The class discussions were
effective in helping me learn”. In the open comments section,
when asked “What was most helpful for your learning?”, one
student commended the presentations:

The presentations were good practice and watching
them was informative

while another commended the resulting group discussions:
Keep up the interaction with all of the groups

Other students showed their gratitude to the project itself:
The project that was part of the course was very
helpful

while another student comments:
This course was full of project work. It helped me
to learn and explore the concepts in Java. It also
helped me to develop my presentation skills.

It was encouraging to see that some students also acknowl-
edged the research aspect of the course, and in fact desired
more emphasis on this when asked “What improvement would
you like to see?”:

Individual meeting time can be extended so that
more research oriented discussion can be done. I
personally feel this course is very good to perform
research hence more time should be devoted by the
lecturer during individual meeting.

B. Outcomes

There were many positive outcomes in the research-infused
approach of SoftEng 751. From the students point of view, they
were fully immersed within an existing research community.
While undertaking independent projects, they got support
from senior postgraduate students. At the same time, the
undergraduate students were contributing back to the research
group. To make this effective, students were expected to follow
the research group’s etiquette especially in regards to version
control; even the final submission involved submission on



the subversion repository. This not only contributed to the
research immersion, but it also allowed the instructors to better
administer progress and view project history logs.

The community essence of the research group was espe-
cially effective in the Masters-taught arena; most Masters-
taught students decide to undertake a project course (as an
optional component of the Masters-taught programme), and
many of those completing SoftEng 751 decide to complete
such a project with PARC the following semester. They
contribute even more to the research group and have an
even closer involvement. Such students are now regarded as
experienced members of the research group, purely based on
their experience in SoftEng 751; they provide support and
mentoring for the newer students. This overlap of experienced
and new Masters-taught project students provides a constant
stream of mentoring amongst the group. In effect, this also
increased the awareness of the research group and its projects
due to recommendations from previous students.

It was also the research postgraduate students (Masters
and PhD) that also benefited from the SoftEng 751 projects.
Involving the undergraduate students directly with the post-
graduate team meant faster progress on the respective projects.
This was attributed to the increased user base of the latest
research tools, meaning more bugs were identified and re-
solved, while also providing more valuable feedback. This is of
course a double-edged sword using the latest research tools; in
some cases, certain bugs delayed progress on the SoftEng 751
projects. However, the undergraduate students were aware of
the volatile nature of research and exercised patience while the
identified issues were being solved. In some cases, potential
misunderstandings were identified (e.g. how to use a particular
tool), so this resulted in necessary fine-tuning of the underlying
concepts.

To complete the picture of mutual benefit towards the re-
search, and not just teaching, a number of specific and positive
outcomes have resulted for the research group. For example,
Pyjama is based on concepts from OpenMP, which specif-
ically targets C (and by extension, C++) and Fortran (both
from the imperative programming paradigm). Having stu-
dents apply OpenMP concepts in an object-oriented paradigm
(Java) allowed the identification and consequent adaption of
the OpenMP semantics in an object-oriented language; for
example, it was decided that the OpenMP private data
clause was a source of confusion for Java developers, and
it in fact diverged from good programming practices (e.g.
not initialising variables at declaration and reducing variable
scope).

Other contributions to the research ideas included the
conception of parallel programming patterns using Parallel
Task; in one project, students took advantage of fundamen-
tal inheritance and encapsulation features of object-oriented
languages, allowing the programmer to elegantly alternate
between parallel and sequential functionality. Another benefit
to the research worth noting was the performance observations
of the research tools under various applications. Finally, there
were pedagogical contributions in the form of interactive
webpages that helped explain typical race conditions and other
parallel programming pitfalls.

VI. CONCLUSIONS

Affiliating an undergraduate course with a research project
has resulted in many positive outcomes, in this case specifi-
cally for a parallel programming Software Engineering course.
By infusing research into the course, undergraduate students
are immersed in a larger research community and develop
a better understanding of what research entails. More im-
portantly, students are actively contributing back to the re-
search group rather than only being recipients of the latest
research. The interaction between undergraduate and postgrad-
uate students provides additional supervision support, while at
the same time assisting postgraduate students in accomplish
specific nuggets towards their own research. The evaluations
from students highlight an appreciation towards the research
infusion, with many students electing to continue their studies
with the affiliated research group.

ACKNOWLEDGEMENT

We would like to thank the NSF/TCPP CDER Center Early
Adopter Awards, for their support and feedback regarding the
SoftEng 751 curriculum. Their financial contribution has also
funded the purchase of a multi-core Android smartphone and
tablet for students to use in the course.

REFERENCES

[1] John Biggs and Catherine Tang. Teaching for quality learning at
university. Open university press, 3rd edition, 2007.

[2] Georgia State University. NSF/IEEE-TCPP curriculum initiative
on parallel and distributed computing. http://www.cs.gsu.edu/~tcpp/
curriculum, 2010.

[3] Georgia State University. List of Fall 2012 Early Adopters. http://www.
cs.gsu.edu/~tcpp/curriculum/?q=list-of-early-adopters-fall-2012.html,
2012.

[4] Nasser Giacaman and Oliver Sinnen. Parallel Task for parallelizing
object-oriented desktop applications. International Journal of Parallel
Programming, 41(5):621–681, 2013.

[5] Ron Griffiths. Knowledge production and the research–teaching nexus:
The case of the built environment disciplines. Studies in Higher
education, 29(6):709–726, 2004.

[6] Mick Healey. Linking research and teaching exploring disciplinary
spaces and the role of inquiry-based learning. Reshaping the university:
new relationships between research, scholarship and teaching, pages
67–78, 2005.

[7] Alan Jenkins, Mick Healey, and Roger Zetter. Linking teaching and
research in disciplines and departments. Higher Education Academy
York, 2007.

[8] Tony Jenkins. Teaching programming – a journey from teacher to
motivator. In The 2nd Annual Conference of the LSTN Center for
Information and Computer Science, 2001.

[9] NSF/IEEE-TCPP Curriculum Initiative. List of fall 2012
early adopters. http://www.cs.gsu.edu/~tcpp/curriculum/?q=
list-of-early-adopters-fall-2012.html.

[10] Vikas, Nasser Giacaman, and Oliver Sinnen. Multiprocessing with GUI-
awareness using OpenMP-like directives in Java. Parallel Computing,
(accepted for publication), 2013.


