
Parallel and Distributed Computing Across the
Computer Science Curriculum

David J. John
Department of Computer Science

Wake Forest University
Winston-Salem, NC 27109

Email: djj@wfu.edu

Stan J. Thomas
Department of Computer Science

Wake Forest University
Winston-Salem, NC 27109

Email: sjt@wfu.edu

Abstract—Two recent curriculum studies, the ACM/IEEE
Curricula 2013 Report and the NSF/IEEE-TCPP Curriculum
Initiative on Parallel and Distributed Computing, argue that every
undergraduate computer science program should include topics
in parallel and distributed computing (PDC). Although not within
the scope of these reports, there is also a need for students in
computing related general education courses to be aware of the
role that parallel and distributed computing technologies play
in the computing landscape. One approach to integrating these
topics into existing curricula is to spread them across several
courses. However, this approach requires development of multiple
instructional modules targeted to introduce PDC concepts at
specific points in the curriculum. Such modules need to mesh with
the goals of the courses for which they are designed in such a way
that minimal material has to be removed from existing topics.
At the same time the modules should provide students with an
understanding of and experience employing fundamental PDC
concepts. In this paper we report on our experience developing
and deploying such modules.

Keywords—parallel computing; distributed computing; com-
puter science education

I. INTRODUCTION

Both the ACM/IEEE Curricula 2013 Report [1] and the
NSF/IEEE-TCPP [15] report address the urgent need for
all computer science majors to meet basic proficiencies in
parallel and distributed computing. The ACM/IEEE Curricula
report specifically recommends that all undergraduate majors
complete five Tier 1 and ten Tier 2 hours in parallel and
distributed computing. These specific hours, shown in Table I,
are spread among five topics: Fundamentals, Decomposition,
Algorithms and Analysis and Programming, and Architecture.

One approach to satisfying the recommendations of the
reports is to create a new core computer science course.
For many computer science programs this is an expensive
suggestion, both in terms of faculty and student workloads.
An alternative plan of action spreads these recommended hours
throughout existing core courses, which is the subject of this
paper. Of course, elective parallel and distributed computing
courses are encouraged when feasible and consistent with a
program’s objectives. At Wake Forest, two elective parallel
and distributed computing upper level undergraduate courses,
CSC346–Parallel Computation and CSC391–Special Topics:
CUDA Programming, are offered regularly.

In order to successfully incorporate 15 hours of parallel and
distributed computing into existing core courses, two factors

must be considered. First, the incorporated material must fit
appropriately into existing courses. The addition of parallel
and distributed computing hours into any course must be
consistent with the students’ abilities and backgrounds and
must not be orthogonal to achieving the existing goals of the
course. Second, each department must agree upon modification
of the course goals. This modification is never easy. In fact,
the ACM/IEEE Curricula 2013 Report [1] recommends the
inclusion of additional hours in other knowledge areas as well,
which further complicates modification of the goals of core
courses.

Most computer science departments offer undergraduate
courses for non-majors, sometimes referred to as CS0, that
provide an overview of computer science. These students,
most of whom will not take additional computer science
courses, also need to understand the need for, the relevancy
of, and the importance of parallel and distributed computing.
Developing instructional modules on PDC for this type of
course is very challenging. These students will be future
beneficiaries of parallel and distributed computing, and some
will become policymakers. In Table I, three hours of Tier 0
instructional material on parallel and distributed computing
are recommended for computer sciences courses that satisfy
undergraduate general education requirements. Note that the
Tier 0 moniker is used here to refer to material associated with
general education, non-major, courses in a computer science
curriculum. It is not used in ACM/IEEE Curricula 2013.

Table I shows the recommendation for 3 Tier 0 hours of
parallel and distributed computing in CS0. Specifically, these
three hours should focus on Parallelism Fundamentals (What
is meant by parallel computing? What is the goal of parallel
computing?), Parallel Decomposition (How do a number of
processors contribute to the solution of a problem?), and
Parallel Architecture (What parallel and distributed computing
architectures are available today?). The CS0 student must also
have a laboratory experience that makes these ideas tangible.
Since most CS0 students have virtually no programming
background, this parallel and distributed computing laboratory
must appeal to the students’ visual or auditory senses. As
with core computer science courses, departments will need to
modify the goals of CS0 to include these important topics.

II. INSTRUCTIONAL MODULES

The development of a library of instructional modules is a
case based approach that can aid the instructor of either a core



TABLE I. RECOMMENDED HOURS OF INSTRUCTION ON PARALLEL
AND DISTRIBUTED TOPICS BY KNOWLEDGE AREA

Tier 0 Tier 1 Tier 2
hours hours hours

Parallelism Fundamentals 1 2
Parallel Decomposition 1 1 3
Communication & Coordination 1 3
Parallel Algorithms, Analysis & 3

Programming
Parallel Architecture 1 1 1

computer science course or CS0 to appropriately incorporate
parallel and distributed computing. Each instructional module
should consist of four components: written materials, pro-
gram examples with appropriate software tools, instructor led
classroom discussions, and student assignments. All together
these components provide a hands-on opportunity to execute
and analyze parallel and distributed programs, and a better
understanding of both the impact of parallel architectures and
parallel and distributed computing.

How can a program spread 15 hours of new instructional
material across its core courses? If the task is spread across 5
courses, one week of each core course will need to be devoted
to parallel and distributed computing. For the instructor, a
typical reaction is "how can I carve out one week". For the
student, the danger is that these 5 one week modules are
sparsely distributed across their computer science core courses
and appear to lack overall cohesion. In order to help the
students, the written materials provided to the them must be
written in a similar style using a common layout. Following
a recommendation made at the LittleFe Buildout at Super
Computing 2012, our written materials have all been developed
in reStructedText [10] and reformatted to web content using
Sphinx [3]. Encouraging all faculty to develop a module is
an important goal; however, it is also important that there be
an instructional module editor-in-chief to ensure consistency
across the various instructional modules. The programming
language and parallel and distributed paradigm used for a
particular module should be the decision of the instructor of the
course. This means there may be multiple versions of similar
modules.

The addition of 3 parallel and distributed computing hours
to CS0 is less problematic, since many of these courses consist
of a number of relatively independent units. However, even
though only a few of these students will take a core computer
science course, it is important that the CS0 instructional
modules have the same "look and feel" as the core course
modules.

The designation of instructional modules as either In-
troductory or Intermediate indicates correlation primarily to
ACM/IEEE recommended Tier 1 or Tier 2 hours, respectively.
The designation of Elementary corresponds to the Tier 0 par-
allel recommendation shown in Table I. A module designation
of Advanced implies the students have completed their Tier
1 and Tier 2 required topics and are working to develop,
analyze and implement parallel programs, likely in an upper
level undergraduate course.

Discussions of three instructional modules we have de-
veloped are presented in sections II-A - II-C. Students have
available to them a number of computers that support par-

100 800 1,600 3,200 6,400

0

100

200

Number of subdivisions (103)

Ti
m

e
(m

ill
is

ec
on

ds
) Sequential

Two processors
Twelve processors

(a) Trapezoidal rule performances on Dell PowerEdge C6145

100 800 1,600 3,200 6,400

0

200

400

600

800

Number of subdivisions (103)

Ti
m

e
(m

ill
is

ec
on

ds
) Sequential

Two processors
Twelve processors

(b) Trapezoidal rule performances on LittleFe

Fig. 1. For the Introductory CS2 module: plots of execution time of the
trapezoidal rule versus the number of subintervals for 1, 2 and 12 computing
elements on two different architectures.

allel and distributed computing. Multicore laptops and smart
phones, both with GPUs, are routinely integrated into their
activities, but often students are not aware of the awsome
computing potential in their hands. For PDC instruction we
use a number of different devices which support parallel and
distributed computing. In Sections II-A and II-B the students
use a Dell PowerEdge C6145 (four 16 core computing ele-
ments connected via a 40 Gb interconnection network running
Ubuntu). Often, the instructor demonstrates, in the classroom,
parallel and distributed computing using a LittleFe [12] (six
cards with dual computing elements connected via a 1 Gb
Ethernet running BCCD [2]). The classroom use of the LittleFe
provides the opportunity for students to observe and to touch
a working cluster computer. Too often the only student access
to a shared highly parallel computer is exclusively through a
computer screen.

A. Introductory module for CS2

Students enrolled in CS2 (CSC112–Fundamentals of Com-
puter Science) are generally good beginning programmers, but
only with sequential programs. Most have participated in an
Elementary or Introductory module in a previous course. An
Introductory module designed for CS2 students must build
on their backgrounds in an appropriate way. The Introduc-
tory module presented here focuses on numerical quadrature



because (1) all the students have seen this idea already in a
calculus course, either in high school or college, and (2) the
programming prerequisites for numerical quadrature have been
mastered through their previous and current studies in CS1 and
CS2, respectively.

Three hours of instruction are designated for this particular
module which satisfies 3 of the ACM/IEEE recommended
hours. Each student is provided access to a Dell PowerEdge
C6145 with four 16 core computing elements running Ubuntu.
All the supplied implementation codes (sequential and par-
allel) are stored in subdirectories within their accounts. It is
important to make early experiences of compiling, running and
analyzing a distributed program as successful as possible.

The implementation of this module uses c++ with MPI.
The required programming language for our CS2 is c++.
However, as mentioned previously in Section I, the instructor
can decide on any parallel paradigm for the module. Hence,
another version of this module is available where the imple-
mentation is c++ with CUDA.

Before the first module class day, students are provided a
link to the instructional module written material, along with a
reading assignment which covers the mathematical background
and a version of the sequential algorithm. During the first class,
the instructor quickly reviews the mathematics, and covers
more thoroughly the sequential algorithm. The c++ code is
presented which implements the sequential algorithm; students
have every opportunity to ask questions. Towards the end of
the first module lecture the question is raised "If our goal is to
decrease the overall execution time for this task, how should
we design a new parallel algorithm?" With some guidance,
the students are led to the intuitive idea of partitioning the
subintervals of integration, assigning a separate computing
element to integrate across each partition, and then summing
all the individual integrals. The homework assigned at the
end of this first day is to execute the sequential program and
analyze its execution time. Specifically, the students plot the
execution time as a function of the number of subintervals used
in the numerical integration. It is worth noting that there will
be students who have difficulties with this first assignment.

At the beginning of the second class, the students are
encouraged to share observations from their homework. Most
discovered that the execution time is a linear function of the
number of subintervals, as shown by the blue line in Fig. 1(a).
Next, the discussion leads to the development of a parallel
algorithm, based on the ideas from the previous class. Then,
with instructor assistance, the class develops a completed par-
allel implementation, based on c++ with MPI. Sufficient class
time is required to introduce the distributed computing model,
and to give an overview of how the MPI functions necessary
for this parallel program (Init(), Get_size(), Get_rank(), Bcast,
Reduce() and Wtime()) work and interact. The next assignment
is to compile, link and execute this parallel program varying
the number of computing elements. Examining four executions
with 2, 4, 16 and 32 computing elements, the students are
to plot the execution times as a function of the number of
subintervals, similar to Fig. 1(a). This assignment is started in
class and completed as homework.

As an interesting complement to this module, the instructor
can use the LittleFe as a classroom aid. A plot for sequential

Fig. 2. For the Intermediate Algorithms module: data flow diagram of PSRS
algorithm applied to a list of size n = 1000 with p = 4 processors.

and parallel execution times with the LittleFE is presented in
Fig. 1(b). This plot raises significantly interesting questions
which leads into a discussion of architectural differences and
and network latency.

Our classroom experience with this module has been quite
successful. The students completed the assignments, and re-
ceived a very hands-on experience in determining speed up. In
terms of ACM/IEEE recommended topics, Table I, the students
spent 3 hours on parallel and distributed computing: 1 hour on
Tier 1 Fundamentals, 1 hour on Tier 2 Communications and
Coordination, and 1 hour on Tier 2 Algorithms, Analysis and
Programming.

B. Intermediate module for Algorithms

Students enrolled in the Algorithms (CSC222–Data Struc-
tures and Algorithms II) course should have some prior ex-
periences with several parallel and distributed computing in-
structional modules. The instructional modules for Algorithms
must take into account these previous experiences as well
as the students’ data structures knowledge. This instructional
module highlights the Parallel Sorting with Regular Selection
(PSRS) algorithm published by Li, Lu, Schaeffer, Schillington,
Wong and Shi [11]. The reasons that this sorting algorithm
is presented include that it is a balanced sorting algorithm,
reasonable to analyze, requires exchanges of information of
various different lengths, and depends upon different parallel



tasks during the distinct execution phases. This algorithm
requires that the students review the QuickSort, Partition, and
Merge algorithms. A sequential utility function, Multimerge,
is introduced that is based on a priority queue.

As already mentioned, the students will use the Dell
PowerEdge C6145 for their assignments, and the instructor
will use it and also the LittleFe. This module is designed for
three hours of classroom lecture and discussion, and several
days of independent laboratory exercises leading to satisfaction
of 3 Tier 2 hours. It is assumed that the students can modify
an existing program, but are not yet ready to write a complete
parallel program.

Prior to the first class meeting, the students are provided
access to the written text of the instructional module. A
c++ with MPI implementation of the algorithm, along with
a Makefile, is stored in a subdirectory of the student’s home
directory. Their initial assignment is to read through the entire
module and to be prepared for an in class discussion on the
first two pages of the module, focusing on the prerequisite
algorithms of Quicksort, Partition and Merge, and on the data
flow of the PSRS algorithm and the algorithmic description,
Figs. 2 and 3, respectively. Included in the algorithmic descrip-
tion is both space and time complexity relevant information.
The data flow diagram is tightly tied to MPI functions and
underlying supporting data structures. The students’ assigned
homework after this first lecture and discussion is to determine
the run time and space complexities of each of the phases, and
assuming no communication costs, to approximate the speedup
of PSRS over QuickSort. The students are also assigned to
read again through the c++ with MPI implementation of the
algorithm and to be prepared for an inclass discussion.

The c++ with MPI implementation is the focus of the
second class meeting. The instructor’s presentation includes the
algorithm’s implementation details, highlighting MPI functions
used as well as specific MPI features such as MPI_IN_PLACE,
and the mechanism to exchange lists of variable sizes. The
instructor must ensure that the students grasp the connection
between the data flow and the algorithm phases, Figs. 2 and 3,
and the implementation organization. The assigned homework
is to plot, for various numbers of processors, the execution
times of PSRS as a function of the size of the list to sort.
Depending upon the instructor, the provided code may be
incomplete, which then gives the students the opportunity to
develop and implement the final code fragments.

The last class meeting is used primarily to discuss the
students’ findings. On the Dell PowerEdge, the execution plots
will strongly suggest that doubling the number of processors
will correspondingly halve the execution time, yielding a
speedup equal to the number of computing elements. The
instructor will demonstrate a somewhat different conclusion
with a machine with a different architecture, the LittleFe.
When the number of processors allocated on the LittleFe is
quite small the performance plots for the LittleFe suggest
the same speedup as on the Dell computer. However, a very
different result is suggested when using a larger number of
processors on the LittleFe. These performance plots similarities
and differences leads into an important discussion about the
influence of multicore communication and communication
complexity on the speedup on an algorithm.

Phase I: Initialization
Initialize p processors. The root processor (0) gets the list
of size n.

Phase II: Scatter list, quicksort, collect regular sam-
ples
Scatter the list to the p processors. Each processor quick-
sorts its local list, roughly of size n

p . Each processor
regularly chooses p sample points from its sorted list.

Phase III: Gather and multimerge sample points,
choose and broadcast p−1 pivots
The root processor gathers the p sets of p sample points
which are then sorted using multimerge. From the p2

sorted points, p−1 pivot values are regularly chosen and
broadcast to the other p−1 processors.

Phase IV: Local lists are partitioned
Using the p−1 pivots, each of the p processors partitions
its locally sorted list, roughly of size n

p , into p classes.
Phase V: All ith classes are gathered and multi-

merged
Processor i gathers the ith classes from the other p−1
processors. These are sorted using multimerge.

Phase VI: Root processor assembles the sorted list
The root processor gathers all the data from the p
processors and assembles the sorted list of size n.

Fig. 3. For the Intermediate Algorithms module: a phase oriented descrip-
tion of the PSRS algorithm. This description specifies the communication
paradigms using MPI function names. The algorithms of multimerge, partition,
and quicksort are used.

This instructional module provides 3 Tier 2 hours of
parallel and distributed computing, 1 hour in each of Decom-
position, Communication and Coordination, and Algorithms,
Analysis and Programming. As well, the students have used
their (sequential) algorithm analysis skills in the first home-
work, likely learned about a new application of a priority
queue with MultiMerge, and extended their understanding of
distributed computing by learning about exchanging variable
length information in MPI.

C. Elementary module for CS0

In our curriculum, students in the CS0 (CSC101–Overview
of Computer Science) course are expected to develop a con-
ceptual understanding of programming concepts and computer
organization but are not expected to develop programming
skills. Thus a PDC module at this level can be a demonstration
module with limited opportunity for modification by students
rather than an implementation module. The module described
here is based on the calculation and display of the familiar
two-dimensional Mandelbrot set [7]. It is designed to visually
convey to students an understanding of how multiple comput-
ing cores can be utilized to speed up computations, even in a
commodity laptop or mobile device.

Students at this level of study may be familiar with images
of the Mandelbrot set but not with the underlying iterative
computation. Although Mandelbrot set images are created by
sampling complex numbers and determining whether or not
the value of an iterated function converges or diverges at each
point, students do not need to understand complex numbers to
learn from this module. The real and imaginary parts of each
complex number can simply be treated as image coordinates



and the pixels colored according to how rapidly the sequence
diverges, if at all.

This module is implemented in Python, for several reasons.
The source code for Python tends to be more concise and
more easily understood by non-programmer’s than c++ code.
The use of Python’s multiprocessing module makes it easy to
understand, at least conceptually, how a pool of processors in a
multi-core system can be utilized. Students should understand
that software for parallel computing can be developed in many
modern programming languages. And, finally, Python is used
so that this module can easily be repurposed and extended by
students in CS1 (CSC111–Introduction to Computer Science)
learning Python as a first programming language.

The module itself consists of a serial computation of the
Mandelbrot set, a parallel computation of the Mandelbrot set,
and accompanying lecture materials. The serial implementation
is straightforward, although it does employ the Python numpy
module for manipulating rows of pixels. The Python animation
class from the matplotlib module is used to display a row at
a time of the computed image, providing a visual display of
the speed of the computation. Although the graphical display
slows down the overall computation, the purpose of the module
is not to compute the Mandelbrot set quickly and efficiently.
The parallel version of the code uses the identical function as
the serial version for computing a single row of pixel values.
However, in the parallel version, a pool of processes, one per
core by default, is used to distribute the computation of pixel
row values across cores. Once again, the animation class is
used to display the computed pixel values a row at a time. The
visual impact is straightforward yet effective. It demonstrates
in a visual way that a moderately intensive computational
problem can be solved more quickly by distributing it across
multiple cores.

The lecture material for the CS0 introduction to PDC
concepts begins with a description of multicore processors and
how they differ from earlier generations of CPUs. Some basic
issues such as shared memory contention can be discussed
at this level whereas more advanced topics, such as cache
coherency, are not appropriate. Altogether this presentation
and the follow up described below constitute at least one
hour of Tier 0 material on Parallelism Fundamentals and one
hour of Tier 0 material on Parallel Architecture. Following
the discussion of this introductory material on shared memory
architectures, the Mandelbrot serial and parallel code examples
can be employed to motivate an intuitive understanding of how
programs can utilize multicore processors. This discussion in-
cludes at least one hour of material on Parallel Decomposition
of problem spaces. In some situations the instructor may want
to have students experiment with different starting values for
the Mandelbrot set calculation for the experience of generating
visually interesting patterns. Although this hands on experience
may not add greatly to student understanding of PDC concepts,
it may entice them to further explore computer programming.

As a follow up to the topic of shared memory parallel
computing, this module also introduces basic concepts of
message passing parallelism. In this segment the instructor
often uses a LittleFe unit to explain the organization and
function of computing clusters. Simple demonstrations such
as an n-body computation or an artificial life simulation
with graphical output can be displayed while the instructor

talks about important issues such as communication costs
and concurrency. Students can be encouraged to consider and
discuss the problems that arise when a collection of compute
nodes is scaled from a single rack to a server room to the
globe. This may be the first time that many students have
thought about the implications of distributed computing at the
cloud level.

III. CONCLUSION

For several years there have been, and will continue to be,
many efforts to give parallel and distributed computing a more
prominent role in undergraduate computer science education
[4], [5], [8], [9], [13]. The current proliferation of parallel and
distributed devices, along with the ACM/IEEE Curricula 2013
Report recommendations, will, in all likelihood, be the catalyst
to finally make this a reality.

As articulated in the ACM/IEEE Curricula 2013 Report
[1] and the NSF/IEEE-TCPP [15] report it is imperative
that all computer science majors learn about parallel and
distributed computing. It is equally important for students in
computer science courses meeting undergraduate general ed-
ucation requirements to learn about the importance, potential,
and relevancy of parallel and distributed computing. As seen
in Table I, the Tier 0 recommendation provides the framework
for PDC topics in CS0.

One approach to meeting the ACM/IEEE Curriculum 2013
Recommendations is to create a single new core course which
satisfies the 15 hours of recommended curriculum and then
expands upon that base significantly. However, the recommen-
dation here is that the 15 recommended hours be integrated
throughout the core courses (for many departments that would
amount to 3 hours of PDC instruction per core course). This
distributed approach can satisfy the ACM/IEEE Curriculum
2013 recommendation both in terms of hours and specific
content. As well, quite a number of student majoring in other
subjects, for example mathematics and physics, take one or two
core computer science courses to complement their majors;
they will significantly benefit from their, albeit limited, parallel
and distributed computing experiences. For the students, seeing
parallel and distributed computing in each core course can only
underscore its importance to them in their future careers. Every
faculty member has the opportunity to create a module for their
favorite topic in a core course. They are not limited by either
programming language or architecture. For the department, the
ACM/IEEE Curricula 2013 recommendation for parallel and
distributed computing can be incorporated into the goals of
their undergraduate major without the expense of an additional
core course.

Well designed and concise instructional modules can be
the vehicle to successful integration of parallel and distributed
computing across core courses and general education courses.
For these to be successful, it is important that there be a
common style and format for the modules. This facilitates
the students’ comprehension of the comprehensive PDC in-
structional goal. For this commonality to occur, there must
be a departmental module editor-in-chief. Another necessary
factor for success is the involvement of many faculty in the
development and updating instructional modules. The most
difficult module to develop is that first one; however, once



a collection of modules is developed they will be used as a
template by others.

The establishment of a departmental library of instructional
modules is beneficial to the faculty teaching core and general
education computer science courses. The computer science
community needs to become successful at sharing instructional
materials such as these modules. Currently, Shodor [14] and
CSinParallel [6] have established mechanisms to facilitate the
sharing of PDC instructional materials. These instructional
modules described herein are publicly available on the web.

Two outstanding concerns remain as major challenges.
Effective assessment instruments for each module must be
developed based on the specific module goals. These must
include both pre-module and post-module assessment. The
Instructional module for CS2 (II-A) has been presented sev-
eral times, and currently we are developing assessment tools
specific for it. Table I shows not only the recommended
number of hours (columns), but also the recommended topic
coverage (rows). Our efforts thus far have focused directly
on satisfying the recommended hours. The more difficult task
using a collection of modules is satisfying the recommended
hours in each topic. Few computer science undergraduate
programs want to develop accounting protocols to monitor
this for each undergraduate major. Certainly, as more work
is invested into the development of modules, it is important
for module creators to tackle these two challenges.

REFERENCES

[1] ACM/IEEE-CS Joint Task Force on Computing Curricula. Com-
puter science Curricula 2013: Curriculum Guidelines for Under-
graduate Programs in Computer Science. Available online at
http://dx.doi.org/10.1145/2534860. ACM and IEEE Computer Society,
December 20, 2013.

[2] BCCD group. Bootable Cluster CD. http://bccd.net
[3] George Brandl. Sphinx: Python Document Generator, 2013.

http://sphinx-doc.org.
[4] R. Brown and E. Shoop, “Modules in community: injecting more par-

allelism into computer science curricula,” in SIGCSE ’11: Proceedings
of the 42nd ACM technical symposium on Computer science education.
New York, NY, USA: ACM, 2011, pp. 447–452.

[5] R. Brown and E. Shoop, “CsInParallel and synergy for rapid incremental
addition of PDC into CS curricula,” 2013 IEEE International Symposium
on Parallel & Distributed Processing, Workshops and Phd Forum, vol. 0,
pp. 1329–1334, 2012.

[6] CsInParallel: Parallel Computing in the Computer Science Curriculum.
http://serc.carleton.edu/csinparallel.

[7] A. K. Dewdney, Computer Recreations: A computer microscope zooms
in for a look at the most complex object in mathematics, Scientific
American, 253(2):16-24, 1985.

[8] David J. John. Integration of parallel computing into introductory
computer science. SIGCSE Bulletin, 24(1):281–285, 1992.

[9] David J. John. NSF supported projects: Parallel computation as an
integrated component in the undergraduate curriculum in computer
science. SIGCSE Bulletin, 26(1):357–361, 1994.

[10] Richard Jones. A ReStructured Text Primer, 2013.
http://docutils.sourceforge.net/docs/user/rst.

[11] Xiaobo Li, Paul Lu, Jonathan Schaeffer, John Schillington, Pok Sze
Wong, and Hanmao Shi. On the versatility of parallel sorting by regular
sampling. Parallel Computing, 19(10):1079–1103, October 1993.

[12] LittleFe group. LittleFe: Parallel and Cluster Education on the Move.
http://littlefe.net/home.

[13] Chris Nevison, Daniel Hyde, Michael Schneider, and Paul Tymann,
editors. Laboratories for Parallel Computing. Jones and Bartlett
Publishers, 1994.

[14] Shodor: A national resource for computational science education.
http://www.shodor.org.

[15] TCPP Curriculum Working Group. NSF/IEEE-TCPP curriculum initia-
tive on parallel and distributed computing – core topics for undergradu-
ates. Technical report, NSF/IEEE-TCPP, December 2012.


