
Limited Time and Experience: Parallelism in CS1

Steven A. Bogaerts
Department of Computer Science

DePauw University
Greencastle, IN, U.S.A.

stevenbogaerts@depauw.edu

Abstract—With the growing recognition of the importance of
parallel and distributed computing (PDC) in computer science,
it is crucial to offer students early experience – even in CS1. At
the same time, PDC material must be handled very carefully
when presented to students with so little background, in order
to avoid confusion and a reduction in interest. This paper
considers two sections of CS1 that used distinct approaches
in introducing the same core set of PDC concepts. A number
of specific strategies are presented, as well as a detailed analysis
of pre- and post-test results.

Keywords-parallelism; CS1; CS education; curriculum

I. INTRODUCTION

The computer science education community widely agrees
that parallel and distributed computing (PDC) is an in-
creasingly vital subject area. It is no longer sufficient to
consider PDC only in a high-level elective course. Rather,
all computer science majors should be exposed to key PDC
concepts before graduation, as recommended in the ACM
CS2013 curriculum guidelines [1].

The primary discussion now is how these concepts should
be integrated into existing curricula. Options include adding
a new PDC course to the core major requirements, or
integrating the concepts into multiple other courses. While
it is now more common to find PDC topics included in
courses as early as CS2, including PDC in CS1 poses a
particular challenge. The benefit of such early integration is
that students will see PDC as a natural and common part
of programming, instead of an advanced and rarely-used
concept. The challenge, of course, is that PDC brings unique
cognitive and technical problems to programming that can
be particularly difficult to tackle early in a curriculum.

This paper will begin by considering related work in
integrating PDC concepts into CS1. It will then examine two
sections of a CS1 course offered fall 2013, sharing detailed
strategies used in exploring parallelism. A pre- and post-test
will be described, followed by results and a comparative
analysis between the two sections. The analysis will con-
clude with recommendations for the successful integration of
parallelism into CS1 based on these contrasting experiences.

II. CONNECTIONS TO OTHER WORK

Educators are increasingly working to integrate PDC
throughout the CS curriculum. Again, the ACM CS2013 cur-

riculum guidelines [1] are an authoritative statement of rec-
ommended PDC topics for all computer science programs.
Another important work in curriculum recommendations is
the NSF/IEEE-TCPP Curriculum Initiative on Parallel and
Distributed Computing [2], which outlines many topics and
recommended coverage based on Bloom’s taxonomy [3].

Much work has been done in the consideration of general
strategies for PDC integration into the curriculum. For exam-
ple, parallelism can be used as a medium for the exploration
of traditional course topics, in order to facilitate integration
into courses that are already full of material [4], [5]. Others
describe in detail a ”spiral approach” for deepening explo-
ration of PDC throughout a curriculum [6]. As described
below, elements of both of these strategies are present in the
work of this paper and how it fits in long term department
plans.

In considering what PDC topics can be explored in
CS1, both technical and non-technical approaches have
been taken. Technical approaches typically choose a single
technology to use, perhaps in a simplified way, as a hands-
on context for exploration. For example, successful efforts
have included C and OpenMP [7], core Java concurrency
facilities [8], and Hadoop [9]. The work described in this
paper includes some elements of this approach, using core
Java concurrency facilities in a simplified way to give some
hands-on experience with the course topics.

Some ”non-technical” approaches place greater emphasis
on broader concepts than on their actual implementation
with specific technologies. For example, PDC concepts can
be considered with everyday analogies like solving a jigsaw
puzzle or making long-distance phone calls [10]. Students
can also learn important concepts by playing games in which
they play the role of processors acting in parallel [11], [12].
Some have argued that these kinds of approaches develop
crucial ”parallel thinking” skills while avoiding the peculiar
complexities of specific tools [13]. The work described in
this paper includes elements of this approach as well, with
many concepts explored in a non-technical way through
exercises and analogies.

It is interesting to note that some work has also been
done in considering concepts of parallelism even before CS1.
For example, [14] describes the use of Scratch to explore
parallelism in CS0, and [15] describes the use of C and

Table I
TOPICS COVERED FOR THE TWO SECTIONS OF THE COURSE.

Section
Topic A B
Architecture - Multi-core K K
Programming - Shared Memory C K
Programming - Distributed Memory C K
Programming - Task/Thread Spawning A K
Programming - Tasks and Threads C K
Programming - Synchronization C K
Programming - Concurrency Defects C K
Programming - Performance Metrics K K
Cross Cutting - Why and What Is PDC C C
Cross Cutting - Non-Determinism K K
Cross Cutting - Power Consumption K K

Explicit Multi-Threading (XMT) in a high school course.

III. OVERVIEW OF TWO CS1 COURSES

This section will provide an overview of how concepts
of parallelism were integrated into two sections of CS1
in the fall of 2013. This CS1 course is an introductory
programming course with no prerequisites and no assumed
prior experience. It is taken by both majors and non-majors;
in fact, a sizable number of students take the course to fulfill
a general education requirement. Section A was taught by
the author, and had 28 students. Section B was taught by
another faculty member, with 26 students.

Students in both sections took the same pre-test and post-
test, as described in Section V. The instructors worked from
the same basic outline of material, independently develop-
ing lecture materials and exercises from that outline. Both
instructors covered the parallelism material around week 12
of a 14 week semester. Section A ended up spending more
contact time on the material: just over four hours in total.
Section B, in contrast, spent about 90 minutes of contact
time, with the professor choosing instead to spend additional
time on other, non-parallel topics not covered in section A.

The topics covered in the two sections are summarized in
Table I. The topic names are from the NSF/IEEE-TCPP Cur-
riculum Initiative on Parallel and Distributed Computing [2].
The coverage level is based on Bloom’s taxonomy [3], from
the lowest level, K (”Know the term”), to C (”Comprehend
so as to paraphrase/illustrate”) to highest level, A (”Apply
it in some way”). Note that the two sections covered the
same topics, only sometimes at different levels. As expected,
section A, which spent more time on the material in general,
covered certain topics at a higher level.

The differences in time spent on the material result from
the way in which the material was examined in class. Section
B was primarily a lecture-oriented format, interspersed with
brief questions and a few exercises. This format was chosen
so that the basic material could be covered sufficiently

while still allowing time for a few additional non-parallel
topics. Section A, in contrast, sacrificed these few non-
parallel topics in order to include a higher number of
parallelism exercises and activities, as well as an exploration
of implementation in Java (though note that the pre/post test
includes no Java implementation questions).

IV. SEVERAL ANALOGIES AND EXERCISES

This section will share some illustrations of the presen-
tation of the material as done in section A, suitable for
adoption into other instructors’ CS1 courses. The approach
in section A was characterized by many exercises and
analogies offset by short periods of lecture.

A. Parallelism in Real Life

The first set of analogies were about parallelism in ”real
life”:

1) If I can shovel my driveway in 1 hour, how long would
you expect it to take if someone equally capable were
helping me?

2) If one person can dig a hole with a shovel in 100
seconds, how long would it take for 10 people to dig
that hole?

3) If I can run a company all by myself by working 100
hours per week, how much time do I need if I hire an
assistant?

The driveway-shoveling analogy is a task that is easy
to split up and requires very little communication, and so
parallelism is easy to apply and highly effective. The hole-
digging analogy is a task that is not easy to split up, so
parallelism is less effective. The company analogy describes
a task that is very challenging to parallelize, yet crucial
nonetheless, due to the size of the task. It can be helpful
to explain to students that in a corporate hierarchy, the
principle job of those in the higher levels is to parallelize the
complex task of running a business – to make sure that their
subordinates collaborate effectively to achieve the goals of
the company.

These analogies together illustrate that to apply paral-
lelism, the task must be split into pieces, and communication
must be organized. After these first analogies, many more
can be readily considered by the students, such as multiple
check-out lanes at a grocery store, assembly-line manufac-
turing, the interaction of various physical phenomena to
create the weather, and even the interaction of cells in the
human body. Further examples of parallel computation can
then be briefly considered, such as digital signal processing,
DNA sequencing, and operations research.

B. Clock Speed

Another early topic of consideration is the notion of clock
speed as a measure of processor speed. A student might
reasonably ask ”Why not just increase the clock speed?”
This can be answered with another analogy: Suppose you

tell someone to make one peanut butter and jelly sandwich
every hour. This would be very easy to accomplish. Every
minute? Perhaps with a little practice, this would not be a
problem either. Every second? This would be impossible.
A person can’t just be told to ”speed up” beyond a certain
point. Rather, some improvement in sandwich-making must
be devised, such as a machine in which the operator must
simply load the ingredients. Similarly, a processor can’t just
speed up without some improvement in processor technol-
ogy. One key improvement that has brought speedup for
decades has been the use of smaller and smaller transistors.
This of course leads to a discussion of Moore’s Law, the
physical barriers of tremendous heat generation, and the
eventual turning to multi-core processor designs.

C. Interprocess Communication

Another illustration is helpful in considering different
kinds of interprocess communication. Suppose a friend and
I want to count how many people are in a building. Consider
each of three things I might say to my friend:

• ”I’ve counted 27 people in the basement. Please go
count the other floors and determine the total.”

• ”I’ll count the basement, you count the other floors.
Whenever you finish a floor, send me a text message
with that result. I’ll merge your results with mine.”

• ”I’ll count the basement, you count the other floors.
Whenever you finish a floor, open up our shared Google
Doc. Add what you just counted to the total already in
the doc, and erase the old total. I’ll do the same as I
go.”

These communication plans correspond to passing data
at process creation, message-passing, and shared memory.
With these analogies, these communication strategies are
considered in a very intuitive way.

Another useful way to explore interprocess communica-
tion is with a physical exercise in sorting playing cards.
Some volunteers are divided into three groups A, B, and C,
containing 1 person, 3 people, and 2 people, respectively.
The person in group A plays the role of a single-core
processor sorting the cards. That processor has a single
sheet of paper serving as the boundary of the workspace
– the RAM. Group B plays the role of two processors (2
students on opposite sides of the room) each with their
own separate RAM (1 sheet of paper each), communicating
via ”message passing” (the third student, relaying messages
and cards back and forth). Group C plays the role of two
processors (2 students next to each other) sharing RAM (a
sheet of paper) and communicating via ”shared memory.”
The remaining students in the class are asked to observe
and draw conclusions as the three groups work to sort the
cards. Typical observations include that group A had no
overhead, but had to work alone. Group B got to work
together, but was slowed down some by passing messages
back and forth. Group C also got to work together, but

A B
Get the value of x

Get the value of x
Compute x+1

Compute x+1
Store the result in x

Store the result in x

Figure 1. An interleaving example in which the two processes conflict.

A B
Get the value of x
Compute x+1
Store the result in x

Get the value of x
Compute x+1
Store the result in x

Figure 2. An interleaving example in which the two processes both
complete their operations successfully.

there was the potential to ”mess up” each others’ work –
a foreshadowing of race conditions.

D. Race Conditions

After that first sighting of potential race conditions in
shared memory situations, the students are ready to consider
a number of examples of parallel code with problematic
interleaving in time. In order to focus on the key concepts
rather than technical details, a single increment x = x +
1; is considered. For the purposes of the course, this is
considered as a three-step process:

1) Get the value of x
2) Compute x+1
3) Store the result in x

If two processes A and B are executing this increment
code simultaneously, there are many possibilities for the
interleaving of the code in time, such as those shown in
Figures 1 and 2.

E. Locks

One solution to this kind of problem is to make the x
= x + 1; an atomic critical section through the use of
a lock. Surprisingly, an effective illustration of a lock can
be found in the novel Lord of the Flies by William Golding
(or the movie adaptations). In the novel, a group of boys are
shipwrecked on an island with no adult survivors. With little
hope of rescue, they are forced to develop whatever kind of
society they can manage as they struggle to stay alive. The
boys have occasional meetings in which they discuss matters
of mutual interest. As one might imagine, the meetings are
not inherently orderly. And so, the boys devise a rule: the
only person allowed to talk at the meeting is the one holding
a specially designated conch shell. When that boy finishes
speaking, he releases the shell, at which time any other boy

A B
Acquire lock L1
Get the value of x

Acquire lock L1 – BLOCK
Compute x+1
Store the result in x
Release lock L1

UNBLOCK
Acquire lock L1
Get the value of x
Compute x+1
Store the result in x
Release lock L1

Figure 3. An example interleaving in which one process blocks waiting
to acquire a lock.

A B
Acquire lock L1 Acquire lock L2
Acquire lock L2 Acquire lock L1
print ”A!” print ”B!”
Release lock L2 Release lock L1
Release lock L1 Release lock L2

Figure 4. An example in which deadlock could potentially occur.

can attempt to pick it up and thus gain the right to speak.
In this way (at least, ideally), no two boys attempt to speak
at the same time.

The conch in this story is a lock. It’s a single shared
resource that only one boy (process / thread) may hold at a
time. When the speaking boy releases the conch, all waiting
boys attempt to acquire it. One actually succeeds, and is
able to proceed with his desired comments. He then releases
the conch and another can take a turn. In the same way, a
lock can enable only one process to increment x (or more
generally, enter a critical section) at a time. Other processes
must wait until they can acquire the lock themselves to be
able to continue.

This illustration from Lord of the Flies takes a potentially
confusing concept and puts it in a more comprehensible
context. Students are then ready to consider an example like
that in Figure 3. Furthermore, a first illustration of potential
deadlock can be explored, as in Figure 4.

F. Join

Students sometimes have trouble with the join opera-
tion. In particular, if thread A calls B.join(), then it is
thread A that will block until thread B completes, not the
other way around. A particular short story can serve as a
helpful reminder to students of how this works. Suppose an
adult is taking a walk in the park with a young child on
a pleasant spring day. The child decides to go pick some
wild flowers beside the path. For a short time, the adult
can continue walking forward on the path, but there comes

1 p u b l i c a b s t r a c t c l a s s CS1Thread implements
Runnable {

2 p r i v a t e Thread t ;
3
4 p u b l i c vo id s t a r t () {
5 t = new Thread (t h i s) ;
6 t . s t a r t () ;
7 }
8
9 p u b l i c vo id run () {

10 System . e r r . p r i n t l n (”You f o r g o t t o d e f i n e
a p u b l i c vo id run () method i n
your t h r e a d c l a s s − t h e c l a s s t h a t
e x t e n d s CS1Thread . ”) ;

11 }
12
13 p u b l i c vo id j o i n () {
14 t r y { t . j o i n () ; }
15 catch (N u l l P o i n t e r E x c e p t i o n e) {
16 System . e r r . p r i n t l n (” Must s t a r t a

t h r e a d b e f o r e c a l l i n g j o i n . ”) ;
17 }
18 catch (I n t e r r u p t e d E x c e p t i o n e) {
19 System . e r r . p r i n t l n (” j o i n

i n t e r r u p t e d . ”) ;
20 }
21 }
22
23 p u b l i c vo id s l e e p (i n t ms) {
24 t r y { Thread . s l e e p (ms) ; }
25 catch (I n t e r r u p t e d E x c e p t i o n e) {
26 System . e r r . p r i n t l n (” s l e e p

i n t e r r u p t e d . ”) ;
27 }
28 }
29 }

Figure 5. The CS1Thread class

a point where the adult must wait for the child to finish
picking flowers and catch up. So the adult says ”Come
now, please join me up here.” The adult waits until the
child finishes picking flowers and joins the adult on the path
again. This is analogous, of course, to thread A (the adult)
calling B.join() (on the child). Thread A blocks until B
is finished. Only then can A continue with its work.

G. Java Implementation

The final material considered was a preview of the imple-
mentation of these concepts in Java. In the time spent, only
a preview with a couple brief exercises was possible; more
time would be necessary to develop a deeper understanding.
In order to free students from some of the complexities
of multi-threading in Java, a helper class was created,
called CS1Thread. This small class contains some important
simplifications for the students, and so it is provided in
Figure 5 in its entirety.

Given this class, it is a relatively simple matter to create
child thread and parent thread classes. A child thread class
must extend CS1Thread and implement the run method.
A parent thread class must instantiate the child thread
objects, call start on each, and handle any results. In

this framework, a child thread can pass results back to
the parent by calling some kind of a receiveMessage
method defined in the parent class, and ensuring that each
child has access to the parent object.

Note a few features of the CS1Thread class. Students
need not be explicitly aware of Java’s Thread class and
Runnable interface, nor of interfaces and inheritance in
general. The default implementation of run helpfully re-
minds students that they must implement this method in a
child thread class. join and sleep wrappers are defined to
shield students from exception handling. These hidden topics
are all worthwhile, of course, but they are not essential in
order to use the CS1Thread class to gain some hands-on
practice in parallelism in Java. As a result, the instructor is
free to choose whether or not class time is best spent on
these topics or on something else.

There are many opportunities for using the CS1Thread
class, limited only by the amount of time available in CS1.
In section A of CS1, the class was used to examine several
iterations of an embarrassingly parallel strategy for adding
a large array of numbers. The series of examples started
with two child threads on a small array, then added timing
information and a large array, then using n threads instead
of just two, and finally using the synchronized keyword
to prevent a race condition in updating the parent thread’s
total sum variable.

V. THE PRE/POST TEST

Both sections of CS1 under consideration here used the
same pre- and post-test to measure student opinions and
understanding about parallelism. The pre-test was given at
the beginning of the semester, before any course material at
all had been considered. The post-test was given in the last
week of the semester, some time after all planned material
on parallelism had been considered. The tests began with
four ”opinion” prompts, hereafter referred to as Opinion 1
through Opinion 4. Each was answered on a 5-point scale:
1: Strongly Disagree, 2: Disagree, 3: Neutral, 4: Agree, and
5: Strongly Agree. The prompts are as follows:

1) I think the idea of parallel computation is interesting.
2) If a friend asked me what parallel computation is, I

could give a 2-3 sentence explanation.
3) I’d like to learn more about parallel computation.
4) I intend to take the computer science course that

follows this one, called ”Data Structures”.
Note that the last opinion prompt is not specifically about

parallelism. Rather, it is used as a more general measure
of overall student interest and motivation for the course
material.

Following the four opinion prompts are eight factual
questions, hereafter referred to as Fact 5 through Fact 12.
Each question has five possible answers provided, labeled
(a) through (e), with only one being correct. The purpose
of these factual questions is to focus on key concepts

of parallelism while not requiring knowledge of specific
technologies. The questions follow, with answer choices
omitted for brevity:

5) Suppose a program can accomplish some task by
making effective use of either one processor or two.
Which of the following should typically be expected?
(Choices are about comparing execution speed be-
tween the 1- and 2-processor versions.)

6) Let the variable x be set to 5. Suppose the following
two statements are then executed in parallel:
set x to (x times 2)
set x to (x plus 2)
What is the resulting value of x?

7) Suppose two processes X and Y are executing in
parallel. They run the code seen below, in which they
attempt to acquire two unique locks A and B, do some
kind of calculation, and then release the locks.

X Y
acquire lock A acquire lock B
acquire lock B acquire lock A
calculation... calculation...

release lock B release lock A
release lock A release lock B

Which of the following could NOT happen? (Choices
are about execution order.)

8) What does Moore’s Law state?
9) What is the main reason that multi-core processors are

more mainstream now than in the twentieth century?
10) Suppose two processes share a variable x, which

currently has a value 5. They then both execute the
following statement at the same time: Increase x
by 1. What is the resulting value of x?

11) In programming, a join means that...
12) Which of the following is NOT a standard way for

processes to provide data to each other?

Most students in the course had no prior programming
experience, let alone experience in parallelism. Therefore it
was expected that scores on the pre-test factual questions
would be quite low.

VI. TEST RESULTS

The results for the opinion questions are shown in Fig-
ures 6 through 9. A single vertical bar is divided into the
number of Strongly Agree (SA) responses on top, followed
by Agree (A), Neutral (N), Disagree (D), and Strongly
Disagree (SD) on the bottom. Results are shown for the
pre-test for sections A and B, and post-test for sections
A and B. Recall that section A spent over four hours of
contact time on parallelism, including many active exercises
and some implementation in Java. Section B spent about 90
minutes of contact time with fewer active exercises and no
Java implementation.

Figure 6. Opinion 1: Parallel computation is interesting. Figure 7. Opinion 2: Could give 2-3 sentence explanation.

Figure 8. Opinion 3: Would like to learn more. Figure 9. Opinion 4: Intend to take data structures.

Opinion 1 stated ”I think the idea of parallel computation
is interesting.” Pre-test results for both sections are very
comparable, with most students having a neutral opinion.
Post-test results for section A show a strong increase in
interest for the entire class. Post-test results for section B
show a more moderate increase in interest for most students,
and apparently a decrease in interest for a few.

Opinion 2 stated ”If a friend asked me what parallel
computation is, I could give a 2-3 sentence explanation.”
As expected, pre-test results show most students disagree-
ing with this statement. Post test results show widespread
agreement for section A. Section B has majority agreement
as well, but also with a much larger number of neutral
responses.

Opinion 3 stated ”I’d like to learn more about parallel
computation.” In the pre-test, students in both sections
agreed, with slightly stronger agreement in section B. In
the post-test, most students in section A were still interested
in further study, many strongly. Section B students were also
interested in further study overall, though not as strongly.

Opinion 4 stated ”I intend to take the computer science

course that follows this one, called ’Data Structures.’” For
the pre-test, among ”agree” and ”strongly agree” responses,
sections A and B had the same total, though section A
had a bit more ”strongly agree” responses. Section A had
more neutral responses and fewer disagree responses than
section B. For the post-test, section A interest increased
significantly, though a few additional students moved to
a ”disagree” response as well. Section B interest also
increased, though not as strongly, with fairly comparable
”disagree” response counts.

The results of the factual questions are shown in Fig-
ure 10, for questions fact 5 through fact 12. Within the
graph area for one question, bars are shown for section A’s
pre-test performance, then section B’s pre-test performance,
then section A’s post-test, and finally section B’s post-
test. As expected, pre-test performance is quite low for
both sections. In section A, post-test performance is very
good overall, with typically strong majorities of the students
answering a given question correctly. The one exception to
this is question 6, which intentionally asked an extension
question, considerably more challenging than any that had

Figure 10. Results for factual questions. *The pre-test had an error on fact 6 such that there was no correct answer.

been considered in class. (Please also note that the pre-test
version of question 6 had an error, such that there was no
correct answer choice.) Section B performance did improve
from pre-test to post-test as well, though not as strongly,
usually performing well below section A.

VII. ANALYSIS

The test results suggest conclusions both in terms of depth
of learning and interest. Students in both sections appear
to have learned about parallelism to some extent, as seen
in Opinion 2 and the factual questions. Students in the
two sections performed similarly on some of the factual
questions. Specifically, questions 6, 9, and 10 show fairly
comparable results, reflecting some similarities in coverage
between the two sections. However, section A’s learning
results are much stronger overall. This is in some sense
not surprising, because significantly more contact time was
spent on the material (over four hours vs. 90 minutes). It is
interesting to note, however, that while time spent varied, the
general collection of material covered was the same. That is,
both sections covered all the material on the test, except for
some aspects of question 6. The difference was that while
section B considered these concepts primarily in a lecture
format (choosing to use the time saved on other, non-parallel
topics), section A spent more time exploring the concepts
with analogies and hands-on activities. The results suggest
that the approach of section A, while more time-intensive,
is necessary to enable students to learn these concepts more
effectively as introductory students. To put it another way,
if sufficient time is not available to cover deeply a given set
of parallel concepts, it may be preferable to reduce the size
of the set, rather than cover the entire set at a more shallow
level.

The student interest questions (Opinion 1, 3, and 4) can
give further insight into the experiences of the students. The
two sections appear fairly comparable by these measures
on the pre-test. It is also important to note that student

course evaluations and student grades were similar in the two
sections. That is, differences in opinion results are unlikely
to be attributable to differences in overall course grades or
student perceptions of the instructors.

This does then draw further attention to the difference
in post-test opinion questions. On the post-test, interest
in parallel computation, as measured in Opinion 1 and
3, is significantly higher in section A than section B. It
is interesting to note that for section B, while interest
did increase according to Opinion 1, desire to learn more
decreased in Opinion 3. In section A, however, Opinion 1
interest increased more significantly, and Opinion 3 desire
held steady. This suggests that a careful, deep examination
of these topics increases student interest more than a quicker
overview. Similar to the conclusions in the factual questions
discussion above, this suggests that deep consideration of a
few topics is preferable to a more shallow consideration of
many topics, when faced with limited time.

VIII. CONCLUSION

At the introductory level, the use of analogies and hands-
on activities enables students to learn about parallelism
very effectively, while also stimulating greater interest in
the subject. In contrast, a less time-intensive and more
lecture-oriented approach, while having some success, did
not produce as much learning or interest. As more educators
work to integrate concepts of parallelism into introductory
courses, care must be taken to explore any chosen topics
with sufficient depth and practice such that students can
master the material. If students fail to master a given topic,
then not only will their understanding be less, but they may
actually suffer from reduced interest in learning more. So in
the limited time available in CS1, covering a few parallelism
topics deeply appears to be preferable to covering more
topics in less time.

ACKNOWLEDGMENT

I offer a sincere thank you to Dr. Gloria Childress
Townsend for her invaluable assistance throughout the
semester on all aspects of CS1.

REFERENCES

[1] ACM/IEEE-CS Joint Task Force on Computing Curricula,
“Computer science curricula 2013,” ACM Press and IEEE
Computer Society Press, Tech. Rep., December 2013.
[Online]. Available: http://dx.doi.org/10.1145/2534860

[2] S. K. Prasad, A. Y. Chtchelkanova, S. K. Das, F. Dehne, M. G.
Gouda, A. Gupta, J. Jaja, K. Kant, A. La Salle, R. LeBlanc
et al., “NSF/IEEE-TCPP curriculum initiative on parallel and
distributed computing: core topics for undergraduates.” in
SIGCSE, vol. 11, 2011, pp. 617–618.

[3] B. S. Bloom, M. Engelhart, E. J. Furst, W. H. Hill, and D. R.
Krathwohl, “Taxonomy of educational objectives: Handbook
i: Cognitive domain,” New York: David McKay, vol. 19, p. 56,
1956.

[4] S. Bogaerts, K. Burke, B. Shelburne, and E. Stahlberg,
“Concurrency and parallelism as a medium for computer
science concepts,” in Curricula for Concurrency and Paral-
lelism workshop at Systems, Programming, Languages, and
Applications: Software for Humanity (SPLASH), Reno, NV,
USA, October 2010.

[5] S. Bogaerts, K. Burke, and E. Stahlberg, “Integrating parallel
and distributed computing into undergraduate courses at all
levels,” in First NSF/TCPP Workshop on Parallel and Dis-
tributed Computing Education (EduPar-11), Anchorage, AK,
2011.

[6] R. Brown, E. Shoop, J. Adams, C. Clifton, M. Gardner,
M. Haupt, and P. Hinsbeeck, “Strategies for preparing
computer science students for the multicore world,”
in Proceedings of the 2010 ITiCSE Working Group
Reports, ser. ITiCSE-WGR ’10. New York, NY,
USA: ACM, 2010, pp. 97–115. [Online]. Available:
http://doi.acm.org/10.1145/1971681.1971689

[7] T. J. McGuire, “Introducing multi-core programming
into the lower-level curriculum: An incremen-
tal approach,” J. Comput. Sci. Coll., vol. 25,
no. 3, pp. 118–119, Jan. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1629116.1629137

[8] K. B. Bruce, A. Danyluk, and T. Murtagh,
“Introducing concurrency in cs 1,” in Proceedings
of the 41st ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’10. New York, NY,
USA: ACM, 2010, pp. 224–228. [Online]. Available:
http://doi.acm.org/10.1145/1734263.1734341

[9] R. A. Brown, “Hadoop at home: Large-scale computing
at a small college,” SIGCSE Bull., vol. 41,
no. 1, pp. 106–110, Mar. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1539024.1508904

[10] H. Neeman, L. Lee, J. Mullen, and G. New-
man, “Analogies for teaching parallel computing to
inexperienced programmers,” SIGCSE Bull., vol. 38,
no. 4, pp. 64–67, Jun. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1189136.1189172

[11] A. T. Kitchen, N. C. Schaller, and P. T.
Tymann, “Game playing as a technique for teaching
parallel computing concepts,” SIGCSE Bull., vol. 24,
no. 3, pp. 35–38, Sep. 1992. [Online]. Available:
http://doi.acm.org/10.1145/142040.142064

[12] B. R. Maxim, G. Bachelis, D. James, and Q. Stout, “Intro-
ducing parallel algorithms in undergraduate computer science
courses (tutorial session),” in ACM SIGCSE Bulletin, vol. 22,
no. 1. ACM, 1990, p. 255.

[13] B. Rague, “Teaching parallel thinking to the next generation
of programmers,” Journal of Education, Informatics and
Cybernetics, vol. 1, no. 1, pp. 43–48, 2009.

[14] S. Bogaerts, “Hands-on exploration of parallelism for absolute
beginners with scratch,” in IPDPSW ’13: Proceedings of the
2013 IEEE 27th International Symposium on Parallel and
Distributed Processing Workshops and PhD Forum. Wash-
ington, DC, USA: IEEE Computer Society, 2013, pp. 1263–
1268.

[15] S. Torbert, U. Vishkin, R. Tzur, and D. J. Ellison,
“Is teaching parallel algorithmic thinking to high school
students possible?: One teacher’s experience,” in Proceedings
of the 41st ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’10. New York, NY,
USA: ACM, 2010, pp. 290–294. [Online]. Available:
http://doi.acm.org/10.1145/1734263.1734363

