
1

Integrating PDC Topics in Multiple Levels of CS
Courses at WSU Vancouver

Xinghui Zhao, David Chiu, and Scott Wallace
School of Engineering and Computer Science

Washington State University
Vancouver, WA 98686

WSU Vancouver is a small (∼3000 students) regional
campus and part of the greater Washington State University
system. Our computer science department consists of seven full
time faculty and offers ABET-accredited BS and MS degree
programs. Starting from Fall 2013, we have been gradually in-
tegrating parallel and distributed computing (PDC) topicsinto
multiple courses, at multiple levels in the curriculum. Among
them three were offered in Fall 2013 (CS 320 Fundamentals
of Software Engineering, CS 447 Computer Game Design,
CS 580 Concurrent Programming), two are currently being
offered in Spring 2014 (CS 122 Data Structures, CS 580 High
Performance Computing), and in addition we also propose to
integrate PDC topics in a course that is going to be offered in
Spring 2015 (CS 453 Web Data Management).

I. COURSESTAUGHT IN FALL 2013

A. CS 320: Software Engineering

Software Engineering is one of the core CS courses. In this
course, students are required to develop user-interactivesoft-
ware in teams. We encourage students to choose to implement
software which has distributed components, such as client-
server type of software, and software with a remote database.
This enables us to naturally integrate PDC topics along with
the progress of the projects. In addition, the students will
have more incentives to learn these topics, because they find
the knowledge useful for their projects. Specifically, whenre-
quirements engineering is taught, we introduce non-functional
requirements which are related to distributed systems, such as
scalability, reliability, and security. Then we explain why these
requirements are important for a software that is distributed
on multiple computers. In architecture design, we discuss
architectural patterns for distributed systems, client-server and
peer-to-peer communication, and software-as-a-service (cloud
computing). When students are working on implementation,
we introduce basic concepts of multi-threaded programming,
which most of the students find useful not only for their
projects, but in general. In the software testing/debugging
phase, we discuss key issues and hard-to-debug errors in
concurrent programming, such as race condition, deadlock,
livelock etc. We believe naturally integrating PDC topics
into every phase of their software development process helps
students to learn these topics through practice. In this way,
students are better motivated and also more interested in
learning these topics.

B. CS 447: Computer Game Design

In Computer Game Design, we incorporated multi threading
and synchronization as well as a discussion of parallel path
planning. The discussion on multi threading takes place in
the context of building a simple infrastructure to support
networked games. We discuss the Java memory model and
the guarantees of the synchronized and volatile keywords.
In addition, students are introduced to the happens-before
relationship and are asked to demonstrate an understanding
about how synchronization and use of volatile affect potential
instruction orderings. The discussion of parallel path planning
comes at the end of classical (sequential) path planning ala
Dijkstra’s algorithm and A*. The discussion hinges mainly on
potential methods for parallelizing path planning algorithms as
discussed in the literature as well as potential issues (bottle-
necks) with these implementations. In the latest offering,we
discussed a parallel version of Dijkstra’s algorithm alongwith
“Probabilistic Roadmaps” which are trivially parallelizable.

C. CS 580: Concurrent Programming
Concurrent Programming is a graduate level course, which

specifically focuses on multi-threaded, parallel, and distributed
programming. This course covers many PDC topics, such as
parallel programming for multicores (shared memory), and
distributed programming (message passing). It also covers
some advanced topics, such as theory of concurrency, power
consumption of multicores, and cloud/grid computing. The
course begins with an introduction to multicore architectures.
We discuss Moore’s law, as well as its impacts on archi-
tecture design. The fact that computer architects are shifting
their design to multicores implicitly requires programmers to
write concurrent programs. We found introducing concurrent
programming in such a context better motivates students to
learn this technique. Then we continue to discuss program-
ming on multicores, and introduce key concepts in shared-
memory programming, such as critical sections, atomic ac-
tions, and synchronization techniques, such as locks, barriers,
semaphores, and monitors. We then encourage students to
picture a system in a larger scale, which is a distributed
system. We discuss message passing, RPC, Rendezvous, and
introduced programming tools like MPI. We also cover some
theoretical topics in concurrency, such as Actor model, and
CSP.

Students are asked to work on several programming-
intensive assignments, including programming with Actorsand



2

message passing, programming with MPI and C, developing
critical section solutions using locks and barriers, and writing
a simulated multiprocessor kernel.

II. COURSESBEING TAUGHT IN SPRING 2014

A. CS 122: Data Structures

Data Structures is required course for freshman, and it
is the first course in our curriculum that is integrated with
PDC topics. We believe that introducing these topics at an
early stage helps students understand the concepts better.
In this course we include additional treatment on floating
point numbers including range, precision and the IEEE 754
representation. This includes new lecture materials and in-
class demonstrations. In addition, we also include a treatment
of parallel computation as related to divide and conquer
algorithms and recursion. These topics are introduced in the
context of sorting, and if time permits, selection.

B. CS 580: High Performance Computing

High-Performance Computing (HPC) is a graduate level
course, but excellent undergrads were allowed to take this
course.

The course begins with a very high-level overview of
instruction level parallelism (ILP) including pipelining, out-
of-order execution, superscalar execution. The goal of this
overview is to raise awareness of these lower-level CPU issues,
since our curriculum lacks an advanced architecture course,
where these topics would be taught in detail. The overview
also helps students understand the challenges of the memory
wall and power wall, and how these motivate the multi-core
architecture and next-generation systems. From ILP, the course
moves on to a much deeper treatment of cache architec-
tures, loop optimizations, loop dependence analysis, coherence
protocols, and false sharing. Next, parallel architectures are
introduced, which includes both tighly-coupled (multi-core,
GPUs) and loosely-coupled (clusters), including the appropri-
ate networks (torus, hypercube, omega, etc.) on which they
are supported. Finally, we move towards programming these
systems using OpenMP for shared-memory processing, and
MPI and Hadoop for distributed memory processing.

Students are evaluated over three major components: home-
work assignments, term project, and a teaching plan. The
assignments are mostly problem solving and programming
over two of our cluster environments (an HPC cluster supports
MPI over infiniband, and a high-memory Hadoop cluster). For
the term projects, students must pitch an approved project idea,
which uses HPC concepts. Students must generate and present
results at a research poster session. Finally, students areasked
to teach a 50 minute course on an HPC topic of their choice.
Their teaching plan must be coherent, and their teaching will
undergo peer-evaluation.

III. C OURSES TO BEOFFERED INSPRING 2015

A. CS 453: Web Data Management

In Web Data Management, the focus of the course is to
walk through the phases in creating a search engine for the

web. The distinct PDC topics are taught and practiced include
(1) Synchronization (producer-consumer) Problem, and (2)
cloud/grid computing with Map-Reduce.

For synchronization, the topic was motivated by the appli-
cation of a web crawler. We discuss the performance of a
single-threaded web crawler, and the benefits and challenges
of having the task-parallelism of a multi-threaded version. A
global queue of URLs is stored, and threads are dispatched to
download the web page. The PDC issue involves the synchro-
nizing the classic producer-consumer problem. Students taking
this course have not yet been exposed to the Operating Systems
course, where they are introduced to synchronization problems.
Students’ implementations varied from C++ and Java, using
semaphores and synchronized classes, respectively. Students
are asked to generate performance plots (throughput, speedup)
over an increasing number of threads.

Students are then asked to create inverted indices and
page rank scores for the crawled data collection. We discuss
the problem with Big Data, which causes single-threaded
algorithms to thrash virtual memory. The distributed fork-join
processing framework is next introduced, with an emphasis on
Map-Reduce. Students upload their code on to the Amazon
EC2 cloud, and write Map-Reduce algorithms (using Python)
to create the required data structures. The students are not
asked to analyze the performance for this assignment. Stu-
dents are also evaluated heavily on producing Map-Reduce
algorithms on exams.

IV. EVALUATION

To maintain our programs ABET accreditation, we have
installed a nuanced assessment plan for each of our courses.
This assessment plan are leveraged to integrate an evaluation
plan for PDC topics in the relevant courses.

Particularly, at the end of each term, the instructor must
produce a Faculty Course Assessment Report (FCAR). In the
FCAR, the faculty member associates each Measured Course
Outcome listed on the syllabus with the method(s) of evalu-
ation (e.g., a particular set of homework questions, specific
exam questions, project requirements, etc.). For instance, a
Measured Course Outcome in Web Data Management is to
Analyze or solve problems related to centralized and dis-
tributed indexing data structures and using suitable algorithms.
This particular outcome is assessed by a course project, and
questions on the homework and final exam. Based on the
students performance on the evaluation medium, the instructor
can reflect on her/his teaching and also, offer an overall
assessment of the specific course outcome.

The feedback from students in Fall 2013 was positive, which
was encouraging. We will continue to work on the integration
in the next academic year.

ACKNOWLEDGEMENT

The work presented here is supported by the NSF/TCPP
Curriculum Early Adopter Award.


