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Introduction

The penetration of parallel and distributed computer 
(PDC) technology into the daily lives of users via their wireless 
networks, smartphones, social networking sites and more, 
has made it imperative to impart a broad-based skill set in 
PDC technology at various levels in the educational fabric. 
However, the rapid advances in computing technology and 
services challenges educators’ abilities to know what to teach 
in any given semester. Other stakeholders in the push to cope 
with fast-changing PDC technology, including employers, face 
similar challenges in identifying basic expertise.

The curricular guidelines developed by the working group2  
seek to address this challenge in a manner that is flexible and 
broad, with allowance for variations in emphasis in response 
different institutions and different curricular cultures. The field 
of PDC is changing too rapidly for any inflexible proposal to 
remain valuable to the community for any length of time.  We 
strive, instead, to identify basic concepts and learning goals that 

are likely to retain their relevance for the foreseeable future.

The Preliminary Curriculum

Our initial work on a Parallel and Distributed Computing 
(PDC) curriculum occurred during a planning workshop 
sponsored by NSF and IEEE/TCPP in Feb., 2010. Building 
on the outcomes of that workshop, a working group has 
taken up the challenge of developing (and justifying) PDC 
curricular guidelines for Computer Science (CS) and Computer 
Engineering (CE) undergraduates, with particular emphasis 
on developing a core curriculum that identifies what every 
graduate should know about PDC. Throughout 2010, the 
working group deliberated upon various topics and subtopics, 
specifying both the expected minimum level of coverage and the 
desired learning outcomes; we employed the well-known Bloom 
classification as the medium for specifying the desired level of 
expertise on a topic. The group also developed suggestions 
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on how to teach each topic and guidance on where each topic 
could potentially be incorporated into a core CS/CE course. 
Recognizing the differing needs of institutions of various types 
(liberal arts colleges vs. technical colleges, regional universities 
vs. large research universities, etc.), sizes, laboratory facilities, 
local needs and constraints, cultural and geographical settings, 
etc., the group committed itself not to be prescriptive in its 
recommendations, but rather to provide alternatives with 
rationales for each. A preliminary version of the core curriculum 
was released in Dec, 2010.3

The Early Adopter Competitions 

A major mechanism for evaluating snapshots of our 
guidelines at different times are the Early Adopter competitions 
that we have thus far run three times: in Spring 2011 using 
funds from the original grants from NSF and Intel; and in Fall 
2011 and Spring 2012, funded by subsequent grants from the 
same sources and supplemented by GPU card donations from 
NVIDIA. Aspiring Early Adopters submit a proposal that is 
evaluated by a committee from the working group. Selected 
proposals are awarded a small stipend to use as seed money 
in implementing a PDC curriculum. We selected 16, 18, and 
21 institutions, respectively, in the Spring 2011, Fall 2011, and 
Spring 2012 competitions4 awarding an average of $1.5K/
institution.  The faculty associated with the selected proposals 
are employing our initial curriculum guidelines in one or more 
courses at their respective institutions. Each institution is 
implementing a PDC curriculum in a way that is personalized to 
its culture and environment.

The EduPar Workshop and Current Activities

In order to allow the Early Adopters, the public, and the 
working group to benefit from everyone’s experiences and 
evaluations, we organized the first EduPar Workshop, collocated 
with IPDPS in Anchorage, Alaska in May 2011, to bring together 
the Early Adopters and others interested in PDC education - 
primarily to receive the feedback from the Adopters, but also to 
stimulate discussion of curricular and other educational issues. 
The inaugural EduPar workshop - the first workshop devoted 
exclusively to educational matters at IPDPS - was a great 
success, with attendance in the range of 40-80 throughout the 
single day of the event.

EduPar’12 was  held at Shanghai in May as a regular IPDPS’12 
satellite workshop, with 5 regular and 8 short papers, a poster 
session, and a keynote session, with similar attendance.   The 
accepted papers will appear in the proceedings of the IPDPS 
workshops and will be uploaded into IEEE XPlore.   EduPar’13 
will be held in Boston. 5

We are currently revising the preliminary version of the 
curriculum.  We have worked through Fall 2011 and Spring 2012 
on a bi-weekly basis.  Feedback and evaluations from Early 

Adopters are being collected and will be employed for finalizing 
the revisions in the curriculum and for releasing an initial formal 
version for the curriculum.  We anticipate frequent updates and 
revisions as we learn more from the experiences of the Early 
Adopters.  

The twin activities of Early Adopter competitions and 
EduPar workshops will enable the working group to periodically 
update the curriculum.   This will form a series of annual 
activities for the next few years to solidify the effort and root it 
within the broader CS/CE community. We are beginning to put 
together a website for educational resources from academia 
and industry, and envision a book/tutorial series based on the 
curriculum. 

Upcoming CEDR Center - A Roadmap

CEDR or Center for Parallel and Distributed Computing 
Curriculum Development and Educational Resources is being 
established with the help of a NSF grant at Georgia State 
University. The center aims to carry out four synergistic areas 
of activities.

 � Develop PDC core curricula flexible enough for a broad 
range of programs and institutions; collaborate with all 
stakeholders (educators, students, researchers, authors, 
industry, governments, funding agencies, professional 
societies and task forces) to maintain currency and 
facilitate adoption. 

 � Develop, collect, and synthesize pedagogical and 
instructional materials for teaching PDC curriculum topics– 
including slides, modules, tutorials, lectures, books, testing 
and evaluation tools.

 � Facilitate access to state-of-the-art hardware and software 
resources for PDC instruction and training by instructors 
and students worldwide in following areas:  Hardware 
architectures - multicores, manycores, shared and 
distributed memories, high-end machines (in collaboration 
with NSF-funded national infrastructures, industry, and 
labs); Program development environments, compilers, 
debuggers, and performance monitoring and enhancement 
tools; Sample programs and “industrial-strength” PDC 
software. 

 � Organize and administer competitions for early adopters 
of PDC curricula (winners receiving stipends, equipment, 
etc.), organize workshops, special sessions, tutorials, and 
training sessions to foster awareness and adoption of PDC 
curricula. 

Interface to the Broader Community

The CS2013 ACM/IEEE Computer Science Curriculum 
Joint Task Force has recognized PDC (along with security) as 
a main thrust area.  We are closely interacting with the Task 
Force, providing expert feedback on the PDC portion of their 

3 See the curriculum in Appendix C.
4 See the Early Adopter institutions in Appendix B.
5 The proceedings of the EduPar’11 workshop is at http://www.cs.gsu.edu/~tcpp/curriculum/?q=node/16950; video coverage of all presentations is 

available, courtesy of Intel, at http://techtalks.tv/events/53/.  Proceedings of EduPar-12 is posted at  
http://cs.gsu.edu/~tcpp/curriculum/?q=advanced-technical-program.
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initial draft on PDC in Oct, 2011. We will continue to engage 
with this and other education-oriented task forces in the hope of 
having significant impact on the CS/CE academic community.

APPENDIX A:  NSF/IEEE-TCPP Curriculum Working 
Group
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9. La Salle, Anita (NSF), 
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11. Lumsdaine, Andrew (Indiana University), 
12. Padua, David (University of Illinois at Urbana-Champaign), 
13. Parashar, Manish (Rutgers), 
14. Prasad, Sushil (Georgia State University), 
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20. Sussman, Alan (University of Maryland), 
21. Weems, Chip (University of Massachusetts), and 
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APPENDIX B : List of Early Adopters

Spring 2012 Competition
1. North Carolina State University, USA
2. Moravian College, USA
3. Western Oregon University, USA
4. Ohio University, School of EECS, USA
5. University of Cincinnati, USA
6. Purdue University, USA
7. University of Illinois at Urbana Champagne, USA
8. University of Massachusetts Amherst, USA
9. Prairie View A&M University, USA
10. Radford University, USA
11. University of Utah, USA
12. University of Colorado Boulder, USA
13. University of Houston-Downtown, USA
14. Institut Teknologi Bandung, Indonesia
15. Universidade Federal de Campina Grande, Brazil
16. Middlexsex College University of Western Ontario, Canada
17. Universidad Nacional de Córdoba - FaMAF, Argentina
18. University of Victoria, Canada
19. Jadavpur University, Kolkata, India
20. Departamento de Electrónica, Universidad Tecnológica 

Nacional, Facutad Regional, Argentina 

21. Central South University, Changsha, China

Fall 2012 Competition
1. St. Olaf College, USA

2. Kent State University, USA

3. Georgia State University, USA

4. NC A & T State University, USA

5. Ursinus College, USA

6. Southwest Baptist Unversity, USA

7. University of Central Arkansas, USA

8. Florida State University, USA

9. Texas A&M University - Corpus Christi, USA

10. Texas Tech University, USA

11. SPSU, USA

12. University of Puerto Rico, USA

13. University of Murcia, Spain 

14. Universidad Nacional de La Plata, Argentina 

15. Universidad Tecnológica Nacional, Facultad Regional Bahía 
Blanca, Argentina 

16. Universidad Nacional de San Luis, Argentina 

17. Universidad de Buenos Aires, Argentina 

18. Universidad Tecnológica Nacional – Facultad Regional 
Mendoza, Argentina 

Spring 2011 Competition
1. Columbia University, USA

2. Hampton University, USA

3. Georgia Institute of Technology, USA

4. Washington and Lee University, USA

5. University of Central Florida, USA

6. Loyola University Chicago, USA

7. Wittenberg University and Clemson University, USA

8. University of Georgia, USA

9. Calvin College, USA

10. Arizona State University, USA

11. Universidad Nacional de Río Cuarto, Argentina

12. University of Pannonia, Hungary

13. Kassel University, Germany

14. Knox College, USA

15. International Institute of Information Technology, 
Hyderabad, India

16. Universidad Nacional del Sur, Argentina

APPENDIX C:  NSF/IEEE-TCPP Proposed Curriculum

Notation

Absolutely every individual CS/CE undergraduate must be 
at this level as a result of his or her required coursework

K = Know the term     

C = Comprehend so as to paraphrase/illustrate 

A = Apply it in some way   
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N = Not in Core, but can be in an elective course

Core Courses: 

CS1 - Introduction to Computer Programming (First 
Course) 

CS2 - Second Programming Course in the 
Introductory Sequence 

Systems - Intro Systems/Architecture Core Course
DS/A - Data Structures and Algorithms

DM - Discrete Structures/Math

ADVANCED/ELECTIVE COURSES:

Arch 2 - Advanced Elective Course on Architecture
Algo 2 - Elective/Advanced Algorithm Design and 

Analysis 
Lang - Programming Language/Principles (after 

introductory sequence)
SwEngg - Software Engineering
ParAlgo - Parallel Algorithms
ParProg - Parallel Programming

Compilers - Compiler Design
Networking - Communication Networks
Dist Systems - Distributed Systems

Note: The numbers of hours suggested in the following 
tables must be interpreted carefully.  Within all tables except for 
Algorithms, the number suggested for a given topic represents 
a cumulative total across a number of higher-level topics.  
For example, the number of hours required for achieving the 
desired “A” level competence in shared memory programming 
is the total of all hours allocated for “shared memory” across 
all higher-level topics — in addition to the hours allocated 
to related topics such as “SPMD,” “tasks and threads,” and 
“synchronization.”  In contrast, the hours allocated to Algorithms 
topics represent our estimates of the effort required to achieve 
the desired level of competence solely within the context of 
Algorithms instruction.  This decision reflects our recognition 
that many Algorithms topics develop concepts and tools that 
will pervade the coverage of many disparate non-Algorithms 
topics — the specific list of topics varying from institution to 
institution.  The cumulative number of hours to master a topic 
is, therefore, impossible to estimate in isolation.

Architecture Topics

Topics B
L
O
O
M
#

H
O
U
R
S

Where 
Covered

Learning Outcome

Classes

Taxonomy C 0.5 Systems Flynn’s taxonomy, data vs. control parallelism, shared/distributed 
memory 

Data vs. control parallelism

Superscalar (ILP) K 0.25 to 
1, based 
on level

Systems Describe opportunities for multiple instruction issue and execution 
(different instructions on different data)

SIMD/Vector 
(e.g., SSE, Cray)

K 0.1 to 
0.5

Systems Describe uses of SIMD/Vector (same operation on multiple data 
items), e.g., accelerating graphics for games.

Pipelines

 � Single vs. multicycle K 1 to 2 Systems Describe basic pipelining process (multiple instructions can 
execute at the same time), describe stages of instruction execution

 � Data and control hazards N Compilers (A), 
Arch 2 (C)

Understand how one pipe stage can depend on a result from 
another, or delayed branch resolution can start the wrong 
instructions in a pipe, requiring forwarding, stalling, or restarting

 � OoO execution N Arch 2 (K) Understand how independent instructions can be rescheduled for 
better pipeline utilization, and that various tables are needed to 
ensure RAW, WAR, and WAW hazards are avoided.

Streams (e.g., GPU) K 0.1 to 
0.5

Systems Know that stream-based architecture exists in GPUs for graphics

Dataflow N Arch 2 (K) Be aware of this alternative execution paradigm
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MIMD K 0.1 to 
0.5

Systems Identify MIMD instances in practice (multicore, cluster, e.g.), and 
know the difference between execution of tasks and threads

Simultaneous Multi-
Threading

K 0.2 to 
0.5

Systems Distinguish SMT from multicore (based on which resources are 
shared)

Highly Multithreaded (e.g., 
MTA)

N Arch 2 (K) Have an awareness of the potential and limitations of thread level 
parallelism in different kinds of applications

Multicore C 0.5 to 1 Systems Describe how cores share resources (cache, memory) and resolve 
conflicts

Heterogeneous (e.g., Cell, on-
chip GPU)

K 0.1 to 
0.5

Systems Recognize that multicore may not all be the same kind of core.

Shared vs. distributed memory

SMP N Arch 2 (C) Understand concept of uniform access shared memory architecture

 � Buses C 0.5 
to 1

Systems Single resource, limited bandwidth and latency, snooping, 
scalability issues

NUMA(Shared Memory) N

 � CC-NUMA N Arch 2 (K) Be aware that caches in the context of shared memory depend on 
coherence protocols

 � Directory-based  
CC-NUMA

N Arch 2 (K) Be aware that bus-based sharing doesn’t scale, and directories 
offer an alternative

Message passing (no 
shared memory)

N Arch 2 (K) Shared memory architecture breaks down when scaled due to 
physical limitations (latency, bandwidth) and results in message 
passing architectures

 � Topologies N Algo 2 (C) Various graph topologies - linear, ring, mesh/torus, tree, 
hypercube, clique, crossbar 

 � Diameter N Algo 2 (C) Appreciate differences in diameters of various graph topologies 

 � Latency K 0.2 to 
0.5

Systems Know the concept, implications for scaling, impact on work/
communication ratio to achieve speedup

 � Bandwidth K 0.1 to 
0.5

Systems Know the concept, how it limits sharing, and considerations of 
data movement cost

 � Circuit switching N Arch 2 (C) or 
Networking 
(A)

Know that interprocessor communication can be managed using 
switches in networks of wires to establish different point-to-point 
connections, that the topology of the network affects efficiency, 
and that some connections may block others

 � Packet switching N Arch 2 (C) or 
Networking 
(A)

Know that interprocessor communications can be broken into 
packets that are redirected at switch nodes in a network, based 
on header info

 � Routing N Arch 2 (C) or 
N e t w o r k i n g 
(A)

Know that messages in a network must follow an algorithm 
that ensures progress toward their destinations, and be 
familiar with common techniques such as store-and-
forward, or wormhole routing

Memory Hierarchy

 � Cache organization C 0.2 to 1 Systems Know the cache hierarchies, shared caches (as opposed to private 
caches) result in coherency and performance issues for software

Topics B
L
O
O
M
#

H
O
U
R
S

Where 
Covered

Learning Outcome
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Topics B
L
O
O
M
#

H
O
U
R
S

Where 
Covered

Learning Outcome

 � Atomicity N Arch 2 (K) Need for indivisible operations can be covered in programming, 
OS, or database context

 � Consistency N Arch 2 (K) Models for consistent views of data in sharing can be covered in 
programming, OS, or database context

 � Coherence N Arch 2 (C) Describe how cores share cache and resolve conflicts - may be 
covered in programming. OS, or database context

 � False sharing N Arch2 (K)/
ParProg (K)

Awareness, examples of how it originates

 � Impact on software N Arch2 (C)/
ParProg (A)

Issues of cache line length, memory blocks, patterns of array 
access, compiler optimization levels

Floating point representation These topics are supposed to be in the ACM/IEEE core curriculum 
already – they are included here to emphasize their importance, 
especially in the context of PDC.

Range K CS1/CS2/
Systems

Understand that range is limited, implications of infinities

Precision K 0.1 to 
0.5

CS1/CS2/
Systems

How single and double precision floating point numbers impact 
software performance

Rounding issues N Arch 2 (K)/ 
Algo 2 (A)

Understand rounding modes, accumulation of error and loss of 
precision

Error propagation K 0.1 to 
0.5

CS2 Understand NaN, Infinity values and how they affect computations 
and exception handling

IEEE 754 standard K 0.5 to 1 CS1/CS2/
Systems

Representation, range, precision, rounding, NaN, infinities, sub-
normals, comparison, effects of casting to other types

Performance metrics

Cycles per instruction (CPI) C 0.25 
to 1

Systems Number of clock cycles for instructions, understand the perfor-
mance of processor implementation, various pipelined implemen-
tations

Benchmarks K 0.25 to 
0.5

Systems Awareness of various benchmarks and how they test different 
aspects of performance

 � Spec mark K 0.25 to 
0.5

Systems Awareness of pitfalls in relying on averages (different averages 
can alter perception of which architecture is faster)

 � Bandwidth benchmarks N Arch 2 (K) Be aware that there are benchmarks focusing on data movement 
instead of computation

Peak performance C 0.1 to 
0.5

Systems Understanding peak performance, how it is rarely valid for 
estimating real performance, illustrate fallacies 

 � MIPS/FLOPS K 0.1 Systems Understand meaning of terms

Sustained performance C 0.1 to 
0.5

Systems Know difference between peak and sustained performance, how to 
define, measure, different benchmarks
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Programming Topics

Topics B
L
O
O
M
#

H
O
U
R
S

Where 
Covered

Learning Outcome

Parallel Programming paradigms

By the target machine model 5

SIMD K  0.5 CS2; Systems Understand common vector operations including element-by-
element operations and reductions.

 � Processor vector 
extensions

K  Systems Know examples - SSE/Altivec macros

 � Array language extensions N ParProg (A) Know how to write parallel array code in some language (e.g., 
Fortran95, Intel’s C/C++ Array Extension[CEAN])

Shared memory A 2.0    CS2; DS/A; 
Lang

Be able to write correct thread- based programs (protecting 
shared data) and understand how to obtain speed up. 

 � Language extensions K Know about language extensions for parallel programming. 
Illustration from Cilk (spawn/join) and Java (Java threads) 

 � Compiler     directives/ 
pragmas

C Understand what simple directives, such as those of OpenMP, 
mean (parallel for, concurrent section), show examples

 � Libraries C Know one in detail, and know of the existence of some other 
example libraries such as Pthreads, Pfunc, Intel’s TBB (Thread 
building blocks), Microsoft’s TPL (Task Parallel Library), etc.

Distributed memory C 1.0 DS/A; 
Systems 

Know basic notions of messaging among processes, different 
ways of message passing, collective operations

 � Message passing N ParProg(C) Know about the overall organization of an message passing 
program as well as point-to-point and collective communication 
primitives (e.g., MPI)

 � PGAS languages N ParProg (C) Know about partitioned address spaces, other parallel constructs 
(UPC, CoArray Fortran, X10, Chapel)

Client Server C 1.0 DS/A; 
Systems

Know notions of invoking and providing services (e.g., RPC, RMI, 
web services) - understand these as concurrent processes

Hybrid K  0.5 Systems Know the notion of programming over multiple classes of machines 
simultaneously (CPU, GPU, etc.)

By the control statement

Task/thread spawning A 1 CS2; DS/A Be able to write correct programs with threads, synchronize (fork-
join, producer/consumer, etc.), use dynamic threads (in number 
and possibly recursively) thread creation - (e.g. Pthreads, CILK, 
Java threads, etc.)  - builds on shared memory topic above

SPMD C 1.0   CS2; DS/A Understand how SPMD program is written and how it executes

 � SPMD notations C Know the existence of highly threaded data parallel notations 
(e.g., CUDA, OpenCL), message passing (e.g, MPI), and some 
others (e.g., Global Arrays, BSP library)

Data parallel A 1 CS2; DS/A; 
Lang

Be able to write a correct data-parallel program for shared-
memory machines and get speedup, should do an exercise. 
Understand relation between different notations for data parallel: 
Array notations, SPMD, and parallel loops. Builds on shared 
memory topic above.
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 � Parallel loops for shared 
memory

A CS2; DS/A; 
Lang

Know, through an example, one way to implement parallel 
loops, understand collision/dependencies across iterations (e.g., 
OpenMP, Intel’s TBB)

 � Data parallel for 
distributed memory

N ParProg (K) Know data parallel notations for distributed memory (e.g., High 
Performance Fortran)

Functional/logic languages N ParProg (K) Understanding advantages and disadvantages of very different 
programming styles (e.g., Parallel Haskell, Parlog, Erlang)

Semantics and correctness issues

Tasks and threads K  0.5 CS2; DS/A; 
Systems, Lang

Understand what it means to create and assign work to threads/
processes in a parallel program, and know of at least one way do 
that (e.g., OpenMP, Intel TBB, etc.) 

Synchronization A 1.5 CS2; DS/A;  
Systems

Be able to write shared memory programs with critical regions, 
producer- consumer communication, and get speedup; know the 
notions of mechanisms for concurrency (monitors, semaphores, 
etc. - [from ACM 2008])

 � Critical regions A Be able to write shared memory programs that use critical regions 
for synchronization

 � Producer-consumer A Be able to write shared memory programs that use the producer-
consumer pattern to share data and synchronize threads

 � Monitors K Understand how to use monitors for synchronization

Concurrency defects C 1.0 D S / A ; 
Systems

Understand the notions of deadlock (detection, prevention), race 
conditions (definition), determinacy/non-determinacy in parallel 
programs (e.g., if there is a data race, the output may depend on 
the order of execution)

 � Deadlocks C Understand what a deadlock is, and methods for detecting and 
preventing them

 � Data Races K Know what a data race is, and how to use synchronization to 
prevent it

 Memory models N ParProg (C) Know what a memory model is, and the implications of the 
difference between strict and relaxed models (performance vs. 
ease of use)

 � Sequential consistency N Understand semantics of sequential consistency for shared 
memory programs

 � Relaxed consistency N Understand semantics of one relaxed consistency model (e.g., 
release consistency) for shared memory programs

Tools to detect concurrency 
defects

K  0.5 DS/A; 
Systems

Know the existence of tools to detect race conditions (e.g., Eraser)

Performance issues

Computation C 1.5 CS2; DS/A Understand the basic notions of static and dynamic scheduling, 
mapping and impact of load balancing on performance

Computation decomposition 
strategies

C Understand different ways to assign computations to threads or 
processes

 � Owner  
computes rule

C Understand how to assign loop iterations to threads based on which 
thread/process owns the data element(s) written in an iteration

Topics B
L
O
O
M
#

H
O
U
R
S

Where 
Covered

Learning Outcome
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 � Decomposition into atomic 
tasks 

C Understand how to decompose computations into tasks with 
communication only at the beginning and end of each task, and 
assign them to threads/processes

 � Work stealing N ParProg (C) Understand one way to do dynamic assignment of computations

Program transformations N Compilers (A) Be able to perform simple loop transformations by hand, and 
understand how that impacts performance of the resulting code 
(e.g., loop fusion, fission, skewing)

Load balancing C 1.0 DS/A; 
Systems

Understand the effects of load imbalances on performance, and 
ways to balance load across threads or processes

Scheduling and mapping C 1.0 DS/A; 
Systems

Understand how a programmer or compiler maps and schedules 
computations to threads/processes, both statically and 
dynamically

 � Static Understand how to map  and schedule computations before 
runtime

 � Dynamic Understand how to map  and schedule computations at runtime

 Data K 1.0 DS/A; Lang Understand impact of data distribution, layout and locality on 
performance; know false sharing and its impact on performance 
(e.g., in a cyclic mapping in a parallel loop); notion that transfer 
of data has fixed cost plus bit rate (irrespective of transfer from 
memory or inter-processor)

Data distribution K Know what block, cyclic,  and block-cyclic data distributions are, 
and what it means to distribute data across multiple threads/
processes

Data layout K Know how to lay out data in memory to get improve performance 
(memory hierarchy)

Data locality K Know what spatial and temporal locality are, and how to organize 
data to take advantage of them

False sharing K Know that for cache coherent shared memory systems, data is 
kept coherent in blocks, not individual words, and how to avoid 
false sharing across threads of data for a block

Performance monitoring tools K  0.5 DS/A; 
Systems

Know of tools for runtime monitoring (e.g., gprof, Vtune)

Performance metrics C 1.0 CS2; DS/A Know the basic definitions of performance metrics (speedup, 
efficiency, work, cost), Amdahl’s law; know the notions of 
scalability

Speedup C Understand how to compute speedup, and what it means

Efficiency C Understand how to compute efficiency, and why it matters

Amdahl’s law K Know that speedup is limited by the sequential portion of a parallel 
program, if problem size is kept fixed

Gustafson’s Law K Understand the idea of weak scaling, where problem size increases 
as the number of processes/threads increases

Isoefficiency N ParProg; Algo2 
(C)

Understand the idea of how quickly to increase problem size with 
number of processes/threads to keep efficiency the same
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Learning Outcome
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Algorithm Topics
Note: Recall that the numbers of hours in this table reflect just the coverage within the Algorithms portion of the curriculum.  (See 
the explanatory note earlier)

Topics B
L
O
O
M
#

H
O
U
R
S

Where 
Covered

Learning Outcome

Parallel and Distributed 
Models and Complexity

7.41 Be exposed to the models and to the intrinsic degree of 
parallelism of some elementary key algorithms (e.g., 
maximum-finding, summation)

Costs of computation: 1.66 Follow arguments for parallel time and space complexity 
given by instructor

Asymptotics C 1 DS/A Understand upper (big-O) and lower bounds (big- 
Omega,); follow elementary big-O analyses, e.g., the O(log 
n) tree-depth argument for mergesort with unbounded 
parallelism.

Time C 0.33 DS/A Recognize time as a fundamental computational resource 
that can be influenced by parallelism

Space/Memory C 0.33 DS/A Recognize space/memory in the same manner as time

Cost reduction: 1 Be exposed to a variety of computational costs other than 
time that can benefit from parallelism (a more advanced 
extension of “speedup”)

Speedup C 1 DS/A Recognize the use of parallelism either to solve a given 
problem instance faster or to solve larger instance in the 
same time (strong and weak scaling)

Space compression N 0.33 Be exposed to ways in which the computational resource 
“space” behaves the same as “time” and to ways in which 
the two cost measures differ

Cost tradeoffs: 0.75 Recognize the inter-influence of various cost measures

Time vs. space N 0.5 DS/A Observe several examples of this prime cost tradeoff; lazy 
vs. eager evaluation supplies many examples

Power vs. time N 0.25 DS/A Observe at least one example of this prime cost tradeoff 
(the literature on “VLSI computation” — e.g., the footnoted 
books6 7 — yield many examples)

Scalability in algorithms and 
architectures

C/ K 0.5 DS/A Comprehend via several examples that having access more 
processors does not guarantee faster execution --- the 
notion of inherent sequentiality (e.g., the seminal paper by 
Brent)

Model-based notions: 4 Recognize that architectural features can influence 
amenability to parallel cost reduction and the amount of 
reduction achievable

Notions from complexity-
theory:

2 Understand (via examples) that some computational 
notions transcend the details of any specific model

 � PRAM K 1 DS/A Recognize the PRAM as embodying the simplest forms of 
parallel computation: Embarrassingly parallel problems 
can be sped up easily just by employing many processors.

6 F. T. Leighton (1992): Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes.  Morgan Kaufmann, San Mateo, Cal.
7 J. D. Ullman (1984): Computational Aspects of VLSI.  Computer Science Press, Rockville, Md.
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 � BSP/CILK K 1 DS/A Be exposed to higher-level algorithmic abstractions that 
encapsulate more aspects of real architectures. Either  
BSP or CILK would be a good option to introduce a higher 
level programming model and higher-level notions. Remark 
that both of these abstractions have led to programming 
models.

 � Simulation/emulation N 1 Algo 2 See simple examples of this abstract, formal analogue of 
the virtual machines that are discussed under programming 
topics.  It is important to stress that (different aspects of 
the same) central notions of PDC can be observed in all 
four of our main topic areas. 

 � P-completeness and 
#P-completeness

N 1 Algo 2 Recognize these two notions as the parallel analogues of 
NP-completeness.  They are the quintessential model-
independent complexity-theoretic notions.

 � Cellular automata N 1 Algo 2 Be exposed to this important model that introduces new 
aspects of parallelism/distributed computing --- possibly 
via games (such as Life)

Notions from scheduling: 2 Understand how to decompose a problem into tasks

 � Dependencies A 0.5 C S 1 / C S 2 , 
DS/A

Observe how dependencies constrain the execution order 
of sub-computations --- thereby lifting one from the limited 
domain of “embarrassing parallelism” to more complex 
computational structures.

 � Task graphs C 0.5 DS/A;
SwEngg

See multiple examples of this concrete algorithmic 
abstraction as a mechanism for exposing inter-task 
dependencies.  These graphs, which are used also in 
compiler analyses, form the level at which parallelism is 
exposed and exploited.

 � Work K 0.5 DS/A Observe the impact of computational work (e.g., the total 
number of tasks executed) on complexity measures such 
as power consumption.

 � (Make)span K 0.5 DS/A Observe analyses in which makespan is identified with 
parallel time (basically, time to completion)

Algorithmic Paradigms 4.5

Divide & conquer (parallel 
aspects)

C 1 CS2, DS/A, 
Algo 2

Observe, via tree-structured examples such as mergesort 
or numerical integration (trapezoid rule, Simpson’s rule) 
or (at a more advanced level) Strassen’s matrix-multiply, 
how the same structure that enables divide and conquer 
(sequential) algorithms exposes opportunities for parallel 
computation.

Recursion (parallel aspects) C 0.5 CS2, DS/A Recognize algorithms that, via unfolding, yield tree 
structures whose subtrees can be computed independently, 
in parallel

Scan (parallel-prefix) N 0.5 ParAlgo,
Architecture

Observe, via several examples8,9 this “high-level” 
algorithmic tool

Topics B
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8 G. E. Blelloch (1989): Scans as primitive parallel operations.  IEEE Transactions on Computers 38, pp. 1526–1538
9 F.T. Leighton (1992): Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Mateo, Cal.
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Reduction (map-reduce) K/C 1 DS/A Recognize, and use, the tree structure implicit in scalar 
product or mergesort or histogram (equivalent apps)

Stencil-based iteration N 0.5 ParAlgo Observe illustrations of mapping and load balancing via 
stenciling

Dependencies: K 0.5 Systems Understand the impacts of dependencies

“Oblivious” algorithms N 0.5 ParAlgo Observe examples of these “model-independent” 
algorithms that ignore the details of the platform on 
which they are executed.  Recognize obliviousness as an 
important avenue toward portability.

Blocking N 0.5 ParAlgo See examples of this algorithmic manifestation of memory 
hierarchies

Striping N 0.5 ParAlgo See examples of this algorithmic manifestation of memory 
hierarchies

“Out-of-core” algorithms N 0.5 ParAlgo Observe ways of accommodating a memory/storage 
hierarchy by dealing with issues such as locality and 
acknowledging the changes in cost measures at the various 
levels of the hierarchy.

Series-parallel composition C 1 CS2(K), 
Systems(C)

Understand how “barrier synchronizations” can be used 
to enable a simple thread-based abstraction for parallel 
programming.  Understand the possible penalties (in 
parallelism) that this transformation incurs

Graph embedding as an 
algorithmic tool

N 1 ParAlgo Recognize this key algorithmic tool for crafting simulations/
emulations.

Algorithmic problems 8.5 The important thing here is to emphasize the parallel/
distributed aspects of the topic

Communication C/ A 2 Understand — via hands-on experience — that inter-
processor communication is one of the most challenging 
aspects of PDC. 

Broadcast C/ A 1 DS/A Use this important mode of global communication; observe 
enabling algorithms for various platforms (e.g.,  recursive 
doubling)

Multicast K/ C 0.5 DS/A Recognize other modalities of global communication on a 
variety of platforms: e.g., rings, 2D-meshes, hypercubes,  
trees

Scatter/gather C/ A 0.5 DS/A Recognize these informational analogues of Map and 
reduce

Gossip N 0.5 Dist Systems, 
Networking

Recognize how all-to-all communication simplifies certain 
computations

Asynchrony K 0.5 CS2 Understand asynchrony as exhibited on a distributed 
platform, its strengths (no need for synchs) and pitfalls 
(the danger  of race conditions)

Synchronization K 1 CS2, DS/A Be aware of methods for controlling race conditions

Sorting C 1.5 CS2, DS/A Observe several sorting algorithms for varied platforms 
— together with analyses.  Parallel merge sort is the 
simplest example, but equally simple alternatives for rings 
and meshes might be covered also; more sophisticated 
algorithms might be covered in more advanced courses
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Selection K 0.5 CS2, DS/A Observe algorithms for finding order statistics, notably 
min and max.  Understand that selection can always be 
accomplished by sorting but that direct algorithms may be 
simpler. 

Graph algorithms: 1

Search C 1 DS/A Know how to carry out BFS- and DFS-like  parallel search in 
a graph or solution space

Path selection N 1

Specialized computations A 2 CS2, DS/A Master one or two from among computations such as: 
matrix product, transposition, convolution, and linear 
systems; recognize how algorithm design reflects the structure 
of the computational problems. 

Convolutions Optional 1 Be exposed to block or cyclic mappings; understand trade-
offs with communication costs

Matrix computations Optional 1 Understand the mapping and load balancing problems 
on various platforms for significant concrete instances of 
computational challenges that are discussed at a higher 
level elsewhere

 � Matrix product Optional 1 Observe a sample “real” parallel algorithm, such as 
Cannon’s algorithm10

 � Linear systems Optional 1 Observe load-balancing problems in a concrete setting

 � Matrix arithmetic Optional 1 Observe the challenges in implementing even “simple” 
arithmetic

 � Matrix transpose Optional 1 Observe a challenging concrete data permutation problem 

Termination detection N/K 1 ParAlgo See examples that suggest the difficulty of proving that 
algorithms from various classes actually terminate.  For 
more advanced courses, observe proofs of termination, to 
understand the conceptual tools needed.

Leader election/symmetry 
breaking

N/K 2 ParAlgo Observe simple symmetry-breaking algorithms, say for a 
PRAM

Cross Cutting and Advanced Topics 
Topics B

L
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O
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High level themes: 
Why and what is parallel/
distributed computing?

K 0.5 CS1, CS2 Know the common issues and differences between parallel 
and distributed computing; history and applications. 
Microscopic level to macroscopic level parallelism in 
current architectures.

Cross-Cutting topics know these underlying themes
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10 H. Gupta, P. Sadayappan (1996): Communication Efficient Matrix-Multiplication on Hypercubes. Parallel Computing 22 , pp. 75-99.
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Locality C 1 DS/A, Systems Understand this as a dominant factor impacting 
performance - minimizing cache/memory access latency 
or  inter-processor communication. 

Concurrency K 0.5 CS2, DS/A The degree of inherent parallelism in an algorithm, 
independent of how it is executed on a machine 

Non-determinism K 0.5 DS/A, Systems Different execution sequences can lead to different 
results hence algorithm design either be tolerant to such 
phenomena or be able to take advantage of this.

Power Consumption K 0.5 Systems, DS/A Know that power consumption is a metric of growing 
importance, its impact on architectural evolution, and 
design of algorithms and software.  

Fault tolerance K 0.5 Systems Large-scale parallel/distributed hardware/software 
systems are prone to components failing but system as a 
whole needs to work. 

Performance modeling N 0.5 Arch 2, 
Networking, 
Adv OS

Be able to describe basic performance measures and 
relationships between them for both individual resources 
and systems of resources.

Current/Advanced Topics

Cluster Computing K 0.25 CS2, DS/A, 
System

Be able to describe a cluster as a popular local-memory 
architecture with commodity compute nodes and a high-
performance interconnection network.

Cloud/grid Computing K 0.25 CS2, DS/A, 
System

Recognize cloud and grid  as shared distributed resources 
- cloud is distinguished by on-demand, virtualized, service-
oriented software and hardware resources.

Peer to Peer Computing K 0.25 CS1, CS2 Be able to describe a peer to peer system and the roles of 
server and client  nodes with distributed data.  Recognize 
existing peer to peer systems.

Consistency in Distributed 
Transactions

K 0.25 CS1,CS2, 
Systems

Recognize classic consistency problems.  Know that 
consistency maintenance is a primary issue in transactions 
issued concurrently by multiple agents.

Web search K 0.25 CS1, CS2 Recognize popular search engines  as large distributed 
processing systems for information gathering that  employ 
distributed hardware to support efficient response to user 
searches.

Security in Distributed 
Systems

K 0.5 Systems Know that distributed systems are more vulnerable to 
privacy and security threats; distributed attacks modes; 
inherent tension between privacy and security.

Social Networking/Context N 0.5 AI, Distributed 
Systems, 
Networking, 

Know that the rise of social networking provides new  
opportunities for enriching distributed computing with 
human & social context.

Collaborative Computing N 0.25 HCI, Dist 
Systems, OS

Know that collaboration between multiple users or devices 
is a form of distributed computing with application specific 
requirements.

Performance modeling N 0.5 Arch 2, 
Networking

Be able to describe basic performance measures and 
relationships between them for both individual resources 
and systems of resources.
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Web services  N 0.5 Web 
Programming, 
Dist Systems, 
Adv OS, 

Know that web service technology forms the basis of all 
online user interactions via browser.  

Pervasive and Mobile 
computing

N 0.5 Mobile 
Computing, 
Networking, 
Dist System

Know that the emerging pervasive and mobile computing 
is another form of distributed computing where context 
plays a central role.
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