
CSI Journal of Computing | Vol. 1 • No. 2, 2012

Prasad, Sushil K., et. al. 10 : 81

Introduction

The penetration of parallel and distributed computer
(PDC) technology into the daily lives of users via their wireless
networks, smartphones, social networking sites and more,
has made it imperative to impart a broad-based skill set in
PDC technology at various levels in the educational fabric.
However, the rapid advances in computing technology and
services challenges educators’ abilities to know what to teach
in any given semester. Other stakeholders in the push to cope
with fast-changing PDC technology, including employers, face
similar challenges in identifying basic expertise.

The curricular guidelines developed by the working group2
seek to address this challenge in a manner that is flexible and
broad, with allowance for variations in emphasis in response
different institutions and different curricular cultures. The field
of PDC is changing too rapidly for any inflexible proposal to
remain valuable to the community for any length of time. We
strive, instead, to identify basic concepts and learning goals that

are likely to retain their relevance for the foreseeable future.

The Preliminary Curriculum

Our initial work on a Parallel and Distributed Computing
(PDC) curriculum occurred during a planning workshop
sponsored by NSF and IEEE/TCPP in Feb., 2010. Building
on the outcomes of that workshop, a working group has
taken up the challenge of developing (and justifying) PDC
curricular guidelines for Computer Science (CS) and Computer
Engineering (CE) undergraduates, with particular emphasis
on developing a core curriculum that identifies what every
graduate should know about PDC. Throughout 2010, the
working group deliberated upon various topics and subtopics,
specifying both the expected minimum level of coverage and the
desired learning outcomes; we employed the well-known Bloom
classification as the medium for specifying the desired level of
expertise on a topic. The group also developed suggestions

Literacy for All in Parallel and Distributed Computing:
Guidelines for an Undergraduate Core Curriculum
Prasad, Sushil K. (Coordinator)1, Gupta, Anshul2, Kant, Krishna3, Lumsdaine, Andrew4, Padua, David5,
Robert, Yves6, Rosenberg, Arnold7 , Sussman, Alan8, Weems, Charles9

1 Georgia State University
2 IBM T.J. Watson Research Center
3 Intel and George Mason University
4 Indiana University
5 University of Illinois at Urbana-Champaign
6 ENS Lyon & INRIA, France
7 Northeastern University
8 University of Maryland
9	 University	of	Massachusetts

A working group composed of researchers from academia, government, and industry has formulated the first
proposed core curricular guidelines on parallel and distributed computing (PDC). The goal of this effort is
to ensure that all students graduating with a bachelor’s degree in computer science/computer engineering
receive an education that prepares them in the area of parallel and distributed computing, preparation which
is increasingly important in the light of emerging technology. Instructors who adopt the proposed guidelines
will receive periodically updated versions of the guidelines that identify aspects of PDC that are important to
cover and that suggest specific core courses in which their coverage might find an appropriate context. Roughly
four dozen early-adopter institutions worldwide are currently trying out this curriculum. The early adopters
have been awarded stipends through three rounds of competitions (Spring and Fall 2011, and Spring 2012) with
support from NSF, Intel, and NVIDIA. Additional competitions are planned for Fall 2012 and Fall 2013.1 A Center
for Parallel and Distributed Computing Curriculum Development and Educational Resources (CDER) is being
established to carry the work forward; much of the work in the Center is possible due to a new NSF grant.

1 All details (including deadlines) are posted at the Curriculum Initiative Website at http://www.cs.gsu.edu/~tcpp/curriculum/index.php. Contact
Email: sprasad@gsu.edu.
A version of this article has also appeared in Computing Education, June 2012, China. This work is partially supported by US National Science
Foundation under grants IIS 1143533, CCF 1135124, CCF 1048711 and CNS 0950432.

2 See for curriculum working group members in Appendix A.

CSI Journal of Computing | Vol. 1 • No. 2, 2012

 Literacy for All in Parallel and Distributed Computing:
10 : 82 Guidelines for an Undergraduate Core Curriculum

on how to teach each topic and guidance on where each topic
could potentially be incorporated into a core CS/CE course.
Recognizing the differing needs of institutions of various types
(liberal arts colleges vs. technical colleges, regional universities
vs. large research universities, etc.), sizes, laboratory facilities,
local needs and constraints, cultural and geographical settings,
etc., the group committed itself not to be prescriptive in its
recommendations, but rather to provide alternatives with
rationales for each. A preliminary version of the core curriculum
was released in Dec, 2010.3

The Early Adopter Competitions

A major mechanism for evaluating snapshots of our
guidelines at different times are the Early Adopter competitions
that we have thus far run three times: in Spring 2011 using
funds from the original grants from NSF and Intel; and in Fall
2011 and Spring 2012, funded by subsequent grants from the
same sources and supplemented by GPU card donations from
NVIDIA. Aspiring Early Adopters submit a proposal that is
evaluated by a committee from the working group. Selected
proposals are awarded a small stipend to use as seed money
in implementing a PDC curriculum. We selected 16, 18, and
21 institutions, respectively, in the Spring 2011, Fall 2011, and
Spring 2012 competitions4 awarding an average of $1.5K/
institution. The faculty associated with the selected proposals
are employing our initial curriculum guidelines in one or more
courses at their respective institutions. Each institution is
implementing a PDC curriculum in a way that is personalized to
its culture and environment.

The EduPar Workshop and Current Activities

In order to allow the Early Adopters, the public, and the
working group to benefit from everyone’s experiences and
evaluations, we organized the first EduPar Workshop, collocated
with IPDPS in Anchorage, Alaska in May 2011, to bring together
the Early Adopters and others interested in PDC education -
primarily to receive the feedback from the Adopters, but also to
stimulate discussion of curricular and other educational issues.
The inaugural EduPar workshop - the first workshop devoted
exclusively to educational matters at IPDPS - was a great
success, with attendance in the range of 40-80 throughout the
single day of the event.

EduPar’12 was held at Shanghai in May as a regular IPDPS’12
satellite workshop, with 5 regular and 8 short papers, a poster
session, and a keynote session, with similar attendance. The
accepted papers will appear in the proceedings of the IPDPS
workshops and will be uploaded into IEEE XPlore. EduPar’13
will be held in Boston. 5

We are currently revising the preliminary version of the
curriculum. We have worked through Fall 2011 and Spring 2012
on a bi-weekly basis. Feedback and evaluations from Early

Adopters are being collected and will be employed for finalizing
the revisions in the curriculum and for releasing an initial formal
version for the curriculum. We anticipate frequent updates and
revisions as we learn more from the experiences of the Early
Adopters.

The twin activities of Early Adopter competitions and
EduPar workshops will enable the working group to periodically
update the curriculum. This will form a series of annual
activities for the next few years to solidify the effort and root it
within the broader CS/CE community. We are beginning to put
together a website for educational resources from academia
and industry, and envision a book/tutorial series based on the
curriculum.

Upcoming CEDR Center - A Roadmap

CEDR or Center for Parallel and Distributed Computing
Curriculum Development and Educational Resources is being
established with the help of a NSF grant at Georgia State
University. The center aims to carry out four synergistic areas
of activities.

 � Develop PDC core curricula flexible enough for a broad
range of programs and institutions; collaborate with all
stakeholders (educators, students, researchers, authors,
industry, governments, funding agencies, professional
societies and task forces) to maintain currency and
facilitate adoption.

 � Develop, collect, and synthesize pedagogical and
instructional materials for teaching PDC curriculum topics–
including slides, modules, tutorials, lectures, books, testing
and evaluation tools.

 � Facilitate access to state-of-the-art hardware and software
resources for PDC instruction and training by instructors
and students worldwide in following areas: Hardware
architectures - multicores, manycores, shared and
distributed memories, high-end machines (in collaboration
with NSF-funded national infrastructures, industry, and
labs); Program development environments, compilers,
debuggers, and performance monitoring and enhancement
tools; Sample programs and “industrial-strength” PDC
software.

 � Organize and administer competitions for early adopters
of PDC curricula (winners receiving stipends, equipment,
etc.), organize workshops, special sessions, tutorials, and
training sessions to foster awareness and adoption of PDC
curricula.

Interface to the Broader Community

The CS2013 ACM/IEEE Computer Science Curriculum
Joint Task Force has recognized PDC (along with security) as
a main thrust area. We are closely interacting with the Task
Force, providing expert feedback on the PDC portion of their

3 See the curriculum in Appendix C.
4 See the Early Adopter institutions in Appendix B.
5 The proceedings of the EduPar’11 workshop is at http://www.cs.gsu.edu/~tcpp/curriculum/?q=node/16950; video coverage of all presentations is

available, courtesy of Intel, at http://techtalks.tv/events/53/. Proceedings of EduPar-12 is posted at
http://cs.gsu.edu/~tcpp/curriculum/?q=advanced-technical-program.

CSI Journal of Computing | Vol. 1 • No. 2, 2012

Prasad, Sushil K., et. al. 10 : 83

initial draft on PDC in Oct, 2011. We will continue to engage
with this and other education-oriented task forces in the hope of
having significant impact on the CS/CE academic community.

APPENDIX A: NSF/IEEE-TCPP Curriculum Working
Group
1. Chtchelkanova, Almadena (NSF),
2. Das, Sajal (University of Texas at Arlington),
3. Das, Chita (Penn State),
4. Dehne, Frank (Carleton University, Canada),
5. Gouda, Mohamed (University of Texas, Austin, NSF),
6. Gupta, Anshul (IBM T.J. Watson Research Center),
7. Jaja, Joseph (University of Maryland),
8. Kant, Krishna (NSF, Intel),
9. La Salle, Anita (NSF),
10. LeBlanc, Richard (Seattle University),
11. Lumsdaine, Andrew (Indiana University),
12. Padua, David (University of Illinois at Urbana-Champaign),
13. Parashar, Manish (Rutgers),
14. Prasad, Sushil (Georgia State University),
15. Prasanna, Viktor (University of Southern California),
16. Robert, Yves (INRIA, France),
17. Rosenberg, Arnold (Northeastern University),
18. Sahni, Sartaj (University of Florida),
19. Shirazi, Behrooz (Washington State University),
20. Sussman, Alan (University of Maryland),
21. Weems, Chip (University of Massachusetts), and
22. Wu, Jie (Temple University)

APPENDIX B : List of Early Adopters

Spring 2012 Competition
1. North Carolina State University, USA
2. Moravian College, USA
3. Western Oregon University, USA
4. Ohio University, School of EECS, USA
5. University of Cincinnati, USA
6. Purdue University, USA
7. University of Illinois at Urbana Champagne, USA
8. University of Massachusetts Amherst, USA
9. Prairie View A&M University, USA
10. Radford University, USA
11. University of Utah, USA
12. University of Colorado Boulder, USA
13. University of Houston-Downtown, USA
14. Institut Teknologi Bandung, Indonesia
15. Universidade Federal de Campina Grande, Brazil
16. Middlexsex College University of Western Ontario, Canada
17. Universidad Nacional de Córdoba - FaMAF, Argentina
18. University of Victoria, Canada
19. Jadavpur University, Kolkata, India
20. Departamento de Electrónica, Universidad Tecnológica

Nacional, Facutad Regional, Argentina

21. Central South University, Changsha, China

Fall 2012 Competition
1. St. Olaf College, USA

2. Kent State University, USA

3. Georgia State University, USA

4. NC A & T State University, USA

5. Ursinus College, USA

6. Southwest Baptist Unversity, USA

7. University of Central Arkansas, USA

8. Florida State University, USA

9. Texas A&M University - Corpus Christi, USA

10. Texas Tech University, USA

11. SPSU, USA

12. University of Puerto Rico, USA

13. University of Murcia, Spain

14. Universidad Nacional de La Plata, Argentina

15. Universidad Tecnológica Nacional, Facultad Regional Bahía
Blanca, Argentina

16. Universidad Nacional de San Luis, Argentina

17. Universidad de Buenos Aires, Argentina

18. Universidad Tecnológica Nacional – Facultad Regional
Mendoza, Argentina

Spring 2011 Competition
1. Columbia University, USA

2. Hampton University, USA

3. Georgia Institute of Technology, USA

4. Washington and Lee University, USA

5. University of Central Florida, USA

6. Loyola University Chicago, USA

7. Wittenberg University and Clemson University, USA

8. University of Georgia, USA

9. Calvin College, USA

10. Arizona State University, USA

11. Universidad Nacional de Río Cuarto, Argentina

12. University of Pannonia, Hungary

13. Kassel University, Germany

14. Knox College, USA

15. International Institute of Information Technology,
Hyderabad, India

16. Universidad Nacional del Sur, Argentina

APPENDIX C: NSF/IEEE-TCPP Proposed Curriculum

Notation

Absolutely every individual CS/CE undergraduate must be
at this level as a result of his or her required coursework

K = Know the term

C = Comprehend so as to paraphrase/illustrate

A = Apply it in some way

CSI Journal of Computing | Vol. 1 • No. 2, 2012

 Literacy for All in Parallel and Distributed Computing:
10 : 84 Guidelines for an Undergraduate Core Curriculum

N = Not in Core, but can be in an elective course

Core Courses:

CS1 - Introduction to Computer Programming (First
Course)

CS2 - Second Programming Course in the
Introductory Sequence

Systems - Intro Systems/Architecture Core Course
DS/A - Data Structures and Algorithms

DM - Discrete Structures/Math

ADVANCED/ELECTIVE COURSES:

Arch 2 - Advanced Elective Course on Architecture
Algo 2 - Elective/Advanced Algorithm Design and

Analysis
Lang - Programming Language/Principles (after

introductory sequence)
SwEngg - Software Engineering
ParAlgo - Parallel Algorithms
ParProg - Parallel Programming

Compilers - Compiler Design
Networking - Communication Networks
Dist Systems - Distributed Systems

Note: The numbers of hours suggested in the following
tables must be interpreted carefully. Within all tables except for
Algorithms, the number suggested for a given topic represents
a cumulative total across a number of higher-level topics.
For example, the number of hours required for achieving the
desired “A” level competence in shared memory programming
is the total of all hours allocated for “shared memory” across
all higher-level topics — in addition to the hours allocated
to related topics such as “SPMD,” “tasks and threads,” and
“synchronization.” In contrast, the hours allocated to Algorithms
topics represent our estimates of the effort required to achieve
the desired level of competence solely within the context of
Algorithms instruction. This decision reflects our recognition
that many Algorithms topics develop concepts and tools that
will pervade the coverage of many disparate non-Algorithms
topics — the specific list of topics varying from institution to
institution. The cumulative number of hours to master a topic
is, therefore, impossible to estimate in isolation.

Architecture Topics

Topics B
L
O
O
M
#

H
O
U
R
S

Where
Covered

Learning Outcome

Classes

Taxonomy C 0.5 Systems Flynn’s taxonomy, data vs. control parallelism, shared/distributed
memory

Data vs. control parallelism

Superscalar (ILP) K 0.25 to
1, based
on level

Systems Describe opportunities for multiple instruction issue and execution
(different instructions on different data)

SIMD/Vector
(e.g., SSE, Cray)

K 0.1 to
0.5

Systems Describe uses of SIMD/Vector (same operation on multiple data
items), e.g., accelerating graphics for games.

Pipelines

 � Single vs. multicycle K 1 to 2 Systems Describe basic pipelining process (multiple instructions can
execute at the same time), describe stages of instruction execution

 � Data and control hazards N Compilers (A),
Arch 2 (C)

Understand how one pipe stage can depend on a result from
another, or delayed branch resolution can start the wrong
instructions in a pipe, requiring forwarding, stalling, or restarting

 � OoO execution N Arch 2 (K) Understand how independent instructions can be rescheduled for
better pipeline utilization, and that various tables are needed to
ensure RAW, WAR, and WAW hazards are avoided.

Streams (e.g., GPU) K 0.1 to
0.5

Systems Know that stream-based architecture exists in GPUs for graphics

Dataflow N Arch 2 (K) Be aware of this alternative execution paradigm

CSI Journal of Computing | Vol. 1 • No. 2, 2012

Prasad, Sushil K., et. al. 10 : 85

MIMD K 0.1 to
0.5

Systems Identify MIMD instances in practice (multicore, cluster, e.g.), and
know the difference between execution of tasks and threads

Simultaneous Multi-
Threading

K 0.2 to
0.5

Systems Distinguish SMT from multicore (based on which resources are
shared)

Highly Multithreaded (e.g.,
MTA)

N Arch 2 (K) Have an awareness of the potential and limitations of thread level
parallelism in different kinds of applications

Multicore C 0.5 to 1 Systems Describe how cores share resources (cache, memory) and resolve
conflicts

Heterogeneous (e.g., Cell, on-
chip GPU)

K 0.1 to
0.5

Systems Recognize that multicore may not all be the same kind of core.

Shared vs. distributed memory

SMP N Arch 2 (C) Understand concept of uniform access shared memory architecture

 � Buses C 0.5
to 1

Systems Single resource, limited bandwidth and latency, snooping,
scalability issues

NUMA(Shared Memory) N

 � CC-NUMA N Arch 2 (K) Be aware that caches in the context of shared memory depend on
coherence protocols

 � Directory-based
CC-NUMA

N Arch 2 (K) Be aware that bus-based sharing doesn’t scale, and directories
offer an alternative

Message passing (no
shared memory)

N Arch 2 (K) Shared memory architecture breaks down when scaled due to
physical limitations (latency, bandwidth) and results in message
passing architectures

 � Topologies N Algo 2 (C) Various graph topologies - linear, ring, mesh/torus, tree,
hypercube, clique, crossbar

 � Diameter N Algo 2 (C) Appreciate differences in diameters of various graph topologies

 � Latency K 0.2 to
0.5

Systems Know the concept, implications for scaling, impact on work/
communication ratio to achieve speedup

 � Bandwidth K 0.1 to
0.5

Systems Know the concept, how it limits sharing, and considerations of
data movement cost

 � Circuit switching N Arch 2 (C) or
Networking
(A)

Know that interprocessor communication can be managed using
switches in networks of wires to establish different point-to-point
connections, that the topology of the network affects efficiency,
and that some connections may block others

 � Packet switching N Arch 2 (C) or
Networking
(A)

Know that interprocessor communications can be broken into
packets that are redirected at switch nodes in a network, based
on header info

 � Routing N Arch 2 (C) or
N e t w o r k i n g
(A)

Know that messages in a network must follow an algorithm
that ensures progress toward their destinations, and be
familiar with common techniques such as store-and-
forward, or wormhole routing

Memory Hierarchy

 � Cache organization C 0.2 to 1 Systems Know the cache hierarchies, shared caches (as opposed to private
caches) result in coherency and performance issues for software

Topics B
L
O
O
M
#

H
O
U
R
S

Where
Covered

Learning Outcome

CSI Journal of Computing | Vol. 1 • No. 2, 2012

 Literacy for All in Parallel and Distributed Computing:
10 : 86 Guidelines for an Undergraduate Core Curriculum

Topics B
L
O
O
M
#

H
O
U
R
S

Where
Covered

Learning Outcome

 � Atomicity N Arch 2 (K) Need for indivisible operations can be covered in programming,
OS, or database context

 � Consistency N Arch 2 (K) Models for consistent views of data in sharing can be covered in
programming, OS, or database context

 � Coherence N Arch 2 (C) Describe how cores share cache and resolve conflicts - may be
covered in programming. OS, or database context

 � False sharing N Arch2 (K)/
ParProg (K)

Awareness, examples of how it originates

 � Impact on software N Arch2 (C)/
ParProg (A)

Issues of cache line length, memory blocks, patterns of array
access, compiler optimization levels

Floating point representation These topics are supposed to be in the ACM/IEEE core curriculum
already – they are included here to emphasize their importance,
especially in the context of PDC.

Range K CS1/CS2/
Systems

Understand that range is limited, implications of infinities

Precision K 0.1 to
0.5

CS1/CS2/
Systems

How single and double precision floating point numbers impact
software performance

Rounding issues N Arch 2 (K)/
Algo 2 (A)

Understand rounding modes, accumulation of error and loss of
precision

Error propagation K 0.1 to
0.5

CS2 Understand NaN, Infinity values and how they affect computations
and exception handling

IEEE 754 standard K 0.5 to 1 CS1/CS2/
Systems

Representation, range, precision, rounding, NaN, infinities, sub-
normals, comparison, effects of casting to other types

Performance metrics

Cycles per instruction (CPI) C 0.25
to 1

Systems Number of clock cycles for instructions, understand the perfor-
mance of processor implementation, various pipelined implemen-
tations

Benchmarks K 0.25 to
0.5

Systems Awareness of various benchmarks and how they test different
aspects of performance

 � Spec mark K 0.25 to
0.5

Systems Awareness of pitfalls in relying on averages (different averages
can alter perception of which architecture is faster)

 � Bandwidth benchmarks N Arch 2 (K) Be aware that there are benchmarks focusing on data movement
instead of computation

Peak performance C 0.1 to
0.5

Systems Understanding peak performance, how it is rarely valid for
estimating real performance, illustrate fallacies

 � MIPS/FLOPS K 0.1 Systems Understand meaning of terms

Sustained performance C 0.1 to
0.5

Systems Know difference between peak and sustained performance, how to
define, measure, different benchmarks

CSI Journal of Computing | Vol. 1 • No. 2, 2012

Prasad, Sushil K., et. al. 10 : 87

Programming Topics

Topics B
L
O
O
M
#

H
O
U
R
S

Where
Covered

Learning Outcome

Parallel Programming paradigms

By the target machine model 5

SIMD K 0.5 CS2; Systems Understand common vector operations including element-by-
element operations and reductions.

 � Processor vector
extensions

K Systems Know examples - SSE/Altivec macros

 � Array language extensions N ParProg (A) Know how to write parallel array code in some language (e.g.,
Fortran95, Intel’s C/C++ Array Extension[CEAN])

Shared memory A 2.0 CS2; DS/A;
Lang

Be able to write correct thread- based programs (protecting
shared data) and understand how to obtain speed up.

 � Language extensions K Know about language extensions for parallel programming.
Illustration from Cilk (spawn/join) and Java (Java threads)

 � Compiler directives/
pragmas

C Understand what simple directives, such as those of OpenMP,
mean (parallel for, concurrent section), show examples

 � Libraries C Know one in detail, and know of the existence of some other
example libraries such as Pthreads, Pfunc, Intel’s TBB (Thread
building blocks), Microsoft’s TPL (Task Parallel Library), etc.

Distributed memory C 1.0 DS/A;
Systems

Know basic notions of messaging among processes, different
ways of message passing, collective operations

 � Message passing N ParProg(C) Know about the overall organization of an message passing
program as well as point-to-point and collective communication
primitives (e.g., MPI)

 � PGAS languages N ParProg (C) Know about partitioned address spaces, other parallel constructs
(UPC, CoArray Fortran, X10, Chapel)

Client Server C 1.0 DS/A;
Systems

Know notions of invoking and providing services (e.g., RPC, RMI,
web services) - understand these as concurrent processes

Hybrid K 0.5 Systems Know the notion of programming over multiple classes of machines
simultaneously (CPU, GPU, etc.)

By the control statement

Task/thread spawning A 1 CS2; DS/A Be able to write correct programs with threads, synchronize (fork-
join, producer/consumer, etc.), use dynamic threads (in number
and possibly recursively) thread creation - (e.g. Pthreads, CILK,
Java threads, etc.) - builds on shared memory topic above

SPMD C 1.0 CS2; DS/A Understand how SPMD program is written and how it executes

 � SPMD notations C Know the existence of highly threaded data parallel notations
(e.g., CUDA, OpenCL), message passing (e.g, MPI), and some
others (e.g., Global Arrays, BSP library)

Data parallel A 1 CS2; DS/A;
Lang

Be able to write a correct data-parallel program for shared-
memory machines and get speedup, should do an exercise.
Understand relation between different notations for data parallel:
Array notations, SPMD, and parallel loops. Builds on shared
memory topic above.

CSI Journal of Computing | Vol. 1 • No. 2, 2012

 Literacy for All in Parallel and Distributed Computing:
10 : 88 Guidelines for an Undergraduate Core Curriculum

 � Parallel loops for shared
memory

A CS2; DS/A;
Lang

Know, through an example, one way to implement parallel
loops, understand collision/dependencies across iterations (e.g.,
OpenMP, Intel’s TBB)

 � Data parallel for
distributed memory

N ParProg (K) Know data parallel notations for distributed memory (e.g., High
Performance Fortran)

Functional/logic languages N ParProg (K) Understanding advantages and disadvantages of very different
programming styles (e.g., Parallel Haskell, Parlog, Erlang)

Semantics and correctness issues

Tasks and threads K 0.5 CS2; DS/A;
Systems, Lang

Understand what it means to create and assign work to threads/
processes in a parallel program, and know of at least one way do
that (e.g., OpenMP, Intel TBB, etc.)

Synchronization A 1.5 CS2; DS/A;
Systems

Be able to write shared memory programs with critical regions,
producer- consumer communication, and get speedup; know the
notions of mechanisms for concurrency (monitors, semaphores,
etc. - [from ACM 2008])

 � Critical regions A Be able to write shared memory programs that use critical regions
for synchronization

 � Producer-consumer A Be able to write shared memory programs that use the producer-
consumer pattern to share data and synchronize threads

 � Monitors K Understand how to use monitors for synchronization

Concurrency defects C 1.0 D S / A ;
Systems

Understand the notions of deadlock (detection, prevention), race
conditions (definition), determinacy/non-determinacy in parallel
programs (e.g., if there is a data race, the output may depend on
the order of execution)

 � Deadlocks C Understand what a deadlock is, and methods for detecting and
preventing them

 � Data Races K Know what a data race is, and how to use synchronization to
prevent it

 Memory models N ParProg (C) Know what a memory model is, and the implications of the
difference between strict and relaxed models (performance vs.
ease of use)

 � Sequential consistency N Understand semantics of sequential consistency for shared
memory programs

 � Relaxed consistency N Understand semantics of one relaxed consistency model (e.g.,
release consistency) for shared memory programs

Tools to detect concurrency
defects

K 0.5 DS/A;
Systems

Know the existence of tools to detect race conditions (e.g., Eraser)

Performance issues

Computation C 1.5 CS2; DS/A Understand the basic notions of static and dynamic scheduling,
mapping and impact of load balancing on performance

Computation decomposition
strategies

C Understand different ways to assign computations to threads or
processes

 � Owner
computes rule

C Understand how to assign loop iterations to threads based on which
thread/process owns the data element(s) written in an iteration

Topics B
L
O
O
M
#

H
O
U
R
S

Where
Covered

Learning Outcome

CSI Journal of Computing | Vol. 1 • No. 2, 2012

Prasad, Sushil K., et. al. 10 : 89

 � Decomposition into atomic
tasks

C Understand how to decompose computations into tasks with
communication only at the beginning and end of each task, and
assign them to threads/processes

 � Work stealing N ParProg (C) Understand one way to do dynamic assignment of computations

Program transformations N Compilers (A) Be able to perform simple loop transformations by hand, and
understand how that impacts performance of the resulting code
(e.g., loop fusion, fission, skewing)

Load balancing C 1.0 DS/A;
Systems

Understand the effects of load imbalances on performance, and
ways to balance load across threads or processes

Scheduling and mapping C 1.0 DS/A;
Systems

Understand how a programmer or compiler maps and schedules
computations to threads/processes, both statically and
dynamically

 � Static Understand how to map and schedule computations before
runtime

 � Dynamic Understand how to map and schedule computations at runtime

 Data K 1.0 DS/A; Lang Understand impact of data distribution, layout and locality on
performance; know false sharing and its impact on performance
(e.g., in a cyclic mapping in a parallel loop); notion that transfer
of data has fixed cost plus bit rate (irrespective of transfer from
memory or inter-processor)

Data distribution K Know what block, cyclic, and block-cyclic data distributions are,
and what it means to distribute data across multiple threads/
processes

Data layout K Know how to lay out data in memory to get improve performance
(memory hierarchy)

Data locality K Know what spatial and temporal locality are, and how to organize
data to take advantage of them

False sharing K Know that for cache coherent shared memory systems, data is
kept coherent in blocks, not individual words, and how to avoid
false sharing across threads of data for a block

Performance monitoring tools K 0.5 DS/A;
Systems

Know of tools for runtime monitoring (e.g., gprof, Vtune)

Performance metrics C 1.0 CS2; DS/A Know the basic definitions of performance metrics (speedup,
efficiency, work, cost), Amdahl’s law; know the notions of
scalability

Speedup C Understand how to compute speedup, and what it means

Efficiency C Understand how to compute efficiency, and why it matters

Amdahl’s law K Know that speedup is limited by the sequential portion of a parallel
program, if problem size is kept fixed

Gustafson’s Law K Understand the idea of weak scaling, where problem size increases
as the number of processes/threads increases

Isoefficiency N ParProg; Algo2
(C)

Understand the idea of how quickly to increase problem size with
number of processes/threads to keep efficiency the same

Topics B
L
O
O
M
#

H
O
U
R
S

Where
Covered

Learning Outcome

CSI Journal of Computing | Vol. 1 • No. 2, 2012

 Literacy for All in Parallel and Distributed Computing:
10 : 90 Guidelines for an Undergraduate Core Curriculum

Algorithm Topics
Note: Recall that the numbers of hours in this table reflect just the coverage within the Algorithms portion of the curriculum. (See
the explanatory note earlier)

Topics B
L
O
O
M
#

H
O
U
R
S

Where
Covered

Learning Outcome

Parallel and Distributed
Models and Complexity

7.41 Be exposed to the models and to the intrinsic degree of
parallelism of some elementary key algorithms (e.g.,
maximum-finding, summation)

Costs of computation: 1.66 Follow arguments for parallel time and space complexity
given by instructor

Asymptotics C 1 DS/A Understand upper (big-O) and lower bounds (big-
Omega,); follow elementary big-O analyses, e.g., the O(log
n) tree-depth argument for mergesort with unbounded
parallelism.

Time C 0.33 DS/A Recognize time as a fundamental computational resource
that can be influenced by parallelism

Space/Memory C 0.33 DS/A Recognize space/memory in the same manner as time

Cost reduction: 1 Be exposed to a variety of computational costs other than
time that can benefit from parallelism (a more advanced
extension of “speedup”)

Speedup C 1 DS/A Recognize the use of parallelism either to solve a given
problem instance faster or to solve larger instance in the
same time (strong and weak scaling)

Space compression N 0.33 Be exposed to ways in which the computational resource
“space” behaves the same as “time” and to ways in which
the two cost measures differ

Cost tradeoffs: 0.75 Recognize the inter-influence of various cost measures

Time vs. space N 0.5 DS/A Observe several examples of this prime cost tradeoff; lazy
vs. eager evaluation supplies many examples

Power vs. time N 0.25 DS/A Observe at least one example of this prime cost tradeoff
(the literature on “VLSI computation” — e.g., the footnoted
books6 7 — yield many examples)

Scalability in algorithms and
architectures

C/ K 0.5 DS/A Comprehend via several examples that having access more
processors does not guarantee faster execution --- the
notion of inherent sequentiality (e.g., the seminal paper by
Brent)

Model-based notions: 4 Recognize that architectural features can influence
amenability to parallel cost reduction and the amount of
reduction achievable

Notions from complexity-
theory:

2 Understand (via examples) that some computational
notions transcend the details of any specific model

 � PRAM K 1 DS/A Recognize the PRAM as embodying the simplest forms of
parallel computation: Embarrassingly parallel problems
can be sped up easily just by employing many processors.

6 F. T. Leighton (1992): Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Mateo, Cal.
7 J. D. Ullman (1984): Computational Aspects of VLSI. Computer Science Press, Rockville, Md.

CSI Journal of Computing | Vol. 1 • No. 2, 2012

Prasad, Sushil K., et. al. 10 : 91

 � BSP/CILK K 1 DS/A Be exposed to higher-level algorithmic abstractions that
encapsulate more aspects of real architectures. Either
BSP or CILK would be a good option to introduce a higher
level programming model and higher-level notions. Remark
that both of these abstractions have led to programming
models.

 � Simulation/emulation N 1 Algo 2 See simple examples of this abstract, formal analogue of
the virtual machines that are discussed under programming
topics. It is important to stress that (different aspects of
the same) central notions of PDC can be observed in all
four of our main topic areas.

 � P-completeness and
#P-completeness

N 1 Algo 2 Recognize these two notions as the parallel analogues of
NP-completeness. They are the quintessential model-
independent complexity-theoretic notions.

 � Cellular automata N 1 Algo 2 Be exposed to this important model that introduces new
aspects of parallelism/distributed computing --- possibly
via games (such as Life)

Notions from scheduling: 2 Understand how to decompose a problem into tasks

 � Dependencies A 0.5 C S 1 / C S 2 ,
DS/A

Observe how dependencies constrain the execution order
of sub-computations --- thereby lifting one from the limited
domain of “embarrassing parallelism” to more complex
computational structures.

 � Task graphs C 0.5 DS/A;
SwEngg

See multiple examples of this concrete algorithmic
abstraction as a mechanism for exposing inter-task
dependencies. These graphs, which are used also in
compiler analyses, form the level at which parallelism is
exposed and exploited.

 � Work K 0.5 DS/A Observe the impact of computational work (e.g., the total
number of tasks executed) on complexity measures such
as power consumption.

 � (Make)span K 0.5 DS/A Observe analyses in which makespan is identified with
parallel time (basically, time to completion)

Algorithmic Paradigms 4.5

Divide & conquer (parallel
aspects)

C 1 CS2, DS/A,
Algo 2

Observe, via tree-structured examples such as mergesort
or numerical integration (trapezoid rule, Simpson’s rule)
or (at a more advanced level) Strassen’s matrix-multiply,
how the same structure that enables divide and conquer
(sequential) algorithms exposes opportunities for parallel
computation.

Recursion (parallel aspects) C 0.5 CS2, DS/A Recognize algorithms that, via unfolding, yield tree
structures whose subtrees can be computed independently,
in parallel

Scan (parallel-prefix) N 0.5 ParAlgo,
Architecture

Observe, via several examples8,9 this “high-level”
algorithmic tool

Topics B
L
O
O
M
#

H
O
U
R
S

Where
Covered

Learning Outcome

8 G. E. Blelloch (1989): Scans as primitive parallel operations. IEEE Transactions on Computers 38, pp. 1526–1538
9 F.T. Leighton (1992): Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Mateo, Cal.

CSI Journal of Computing | Vol. 1 • No. 2, 2012

 Literacy for All in Parallel and Distributed Computing:
10 : 92 Guidelines for an Undergraduate Core Curriculum

Reduction (map-reduce) K/C 1 DS/A Recognize, and use, the tree structure implicit in scalar
product or mergesort or histogram (equivalent apps)

Stencil-based iteration N 0.5 ParAlgo Observe illustrations of mapping and load balancing via
stenciling

Dependencies: K 0.5 Systems Understand the impacts of dependencies

“Oblivious” algorithms N 0.5 ParAlgo Observe examples of these “model-independent”
algorithms that ignore the details of the platform on
which they are executed. Recognize obliviousness as an
important avenue toward portability.

Blocking N 0.5 ParAlgo See examples of this algorithmic manifestation of memory
hierarchies

Striping N 0.5 ParAlgo See examples of this algorithmic manifestation of memory
hierarchies

“Out-of-core” algorithms N 0.5 ParAlgo Observe ways of accommodating a memory/storage
hierarchy by dealing with issues such as locality and
acknowledging the changes in cost measures at the various
levels of the hierarchy.

Series-parallel composition C 1 CS2(K),
Systems(C)

Understand how “barrier synchronizations” can be used
to enable a simple thread-based abstraction for parallel
programming. Understand the possible penalties (in
parallelism) that this transformation incurs

Graph embedding as an
algorithmic tool

N 1 ParAlgo Recognize this key algorithmic tool for crafting simulations/
emulations.

Algorithmic problems 8.5 The important thing here is to emphasize the parallel/
distributed aspects of the topic

Communication C/ A 2 Understand — via hands-on experience — that inter-
processor communication is one of the most challenging
aspects of PDC.

Broadcast C/ A 1 DS/A Use this important mode of global communication; observe
enabling algorithms for various platforms (e.g., recursive
doubling)

Multicast K/ C 0.5 DS/A Recognize other modalities of global communication on a
variety of platforms: e.g., rings, 2D-meshes, hypercubes,
trees

Scatter/gather C/ A 0.5 DS/A Recognize these informational analogues of Map and
reduce

Gossip N 0.5 Dist Systems,
Networking

Recognize how all-to-all communication simplifies certain
computations

Asynchrony K 0.5 CS2 Understand asynchrony as exhibited on a distributed
platform, its strengths (no need for synchs) and pitfalls
(the danger of race conditions)

Synchronization K 1 CS2, DS/A Be aware of methods for controlling race conditions

Sorting C 1.5 CS2, DS/A Observe several sorting algorithms for varied platforms
— together with analyses. Parallel merge sort is the
simplest example, but equally simple alternatives for rings
and meshes might be covered also; more sophisticated
algorithms might be covered in more advanced courses

Topics B
L
O
O
M
#

H
O
U
R
S

Where
Covered

Learning Outcome

CSI Journal of Computing | Vol. 1 • No. 2, 2012

Prasad, Sushil K., et. al. 10 : 93

Selection K 0.5 CS2, DS/A Observe algorithms for finding order statistics, notably
min and max. Understand that selection can always be
accomplished by sorting but that direct algorithms may be
simpler.

Graph algorithms: 1

Search C 1 DS/A Know how to carry out BFS- and DFS-like parallel search in
a graph or solution space

Path selection N 1

Specialized computations A 2 CS2, DS/A Master one or two from among computations such as:
matrix product, transposition, convolution, and linear
systems; recognize how algorithm design reflects the structure
of the computational problems.

Convolutions Optional 1 Be exposed to block or cyclic mappings; understand trade-
offs with communication costs

Matrix computations Optional 1 Understand the mapping and load balancing problems
on various platforms for significant concrete instances of
computational challenges that are discussed at a higher
level elsewhere

 � Matrix product Optional 1 Observe a sample “real” parallel algorithm, such as
Cannon’s algorithm10

 � Linear systems Optional 1 Observe load-balancing problems in a concrete setting

 � Matrix arithmetic Optional 1 Observe the challenges in implementing even “simple”
arithmetic

 � Matrix transpose Optional 1 Observe a challenging concrete data permutation problem

Termination detection N/K 1 ParAlgo See examples that suggest the difficulty of proving that
algorithms from various classes actually terminate. For
more advanced courses, observe proofs of termination, to
understand the conceptual tools needed.

Leader election/symmetry
breaking

N/K 2 ParAlgo Observe simple symmetry-breaking algorithms, say for a
PRAM

Cross Cutting and Advanced Topics
Topics B

L
O
O
M
#

H
O
U
R
S

Where
Covered

Learning Outcome

High level themes:
Why and what is parallel/
distributed computing?

K 0.5 CS1, CS2 Know the common issues and differences between parallel
and distributed computing; history and applications.
Microscopic level to macroscopic level parallelism in
current architectures.

Cross-Cutting topics know these underlying themes

Topics B
L
O
O
M
#

H
O
U
R
S

Where
Covered

Learning Outcome

10 H. Gupta, P. Sadayappan (1996): Communication Efficient Matrix-Multiplication on Hypercubes. Parallel Computing 22 , pp. 75-99.

CSI Journal of Computing | Vol. 1 • No. 2, 2012

 Literacy for All in Parallel and Distributed Computing:
10 : 94 Guidelines for an Undergraduate Core Curriculum

Topics B
L
O
O
M
#

H
O
U
R
S

Where
Covered

Learning Outcome

Locality C 1 DS/A, Systems Understand this as a dominant factor impacting
performance - minimizing cache/memory access latency
or inter-processor communication.

Concurrency K 0.5 CS2, DS/A The degree of inherent parallelism in an algorithm,
independent of how it is executed on a machine

Non-determinism K 0.5 DS/A, Systems Different execution sequences can lead to different
results hence algorithm design either be tolerant to such
phenomena or be able to take advantage of this.

Power Consumption K 0.5 Systems, DS/A Know that power consumption is a metric of growing
importance, its impact on architectural evolution, and
design of algorithms and software.

Fault tolerance K 0.5 Systems Large-scale parallel/distributed hardware/software
systems are prone to components failing but system as a
whole needs to work.

Performance modeling N 0.5 Arch 2,
Networking,
Adv OS

Be able to describe basic performance measures and
relationships between them for both individual resources
and systems of resources.

Current/Advanced Topics

Cluster Computing K 0.25 CS2, DS/A,
System

Be able to describe a cluster as a popular local-memory
architecture with commodity compute nodes and a high-
performance interconnection network.

Cloud/grid Computing K 0.25 CS2, DS/A,
System

Recognize cloud and grid as shared distributed resources
- cloud is distinguished by on-demand, virtualized, service-
oriented software and hardware resources.

Peer to Peer Computing K 0.25 CS1, CS2 Be able to describe a peer to peer system and the roles of
server and client nodes with distributed data. Recognize
existing peer to peer systems.

Consistency in Distributed
Transactions

K 0.25 CS1,CS2,
Systems

Recognize classic consistency problems. Know that
consistency maintenance is a primary issue in transactions
issued concurrently by multiple agents.

Web search K 0.25 CS1, CS2 Recognize popular search engines as large distributed
processing systems for information gathering that employ
distributed hardware to support efficient response to user
searches.

Security in Distributed
Systems

K 0.5 Systems Know that distributed systems are more vulnerable to
privacy and security threats; distributed attacks modes;
inherent tension between privacy and security.

Social Networking/Context N 0.5 AI, Distributed
Systems,
Networking,

Know that the rise of social networking provides new
opportunities for enriching distributed computing with
human & social context.

Collaborative Computing N 0.25 HCI, Dist
Systems, OS

Know that collaboration between multiple users or devices
is a form of distributed computing with application specific
requirements.

Performance modeling N 0.5 Arch 2,
Networking

Be able to describe basic performance measures and
relationships between them for both individual resources
and systems of resources.

CSI Journal of Computing | Vol. 1 • No. 2, 2012

Prasad, Sushil K., et. al. 10 : 95

Web services N 0.5 Web
Programming,
Dist Systems,
Adv OS,

Know that web service technology forms the basis of all
online user interactions via browser.

Pervasive and Mobile
computing

N 0.5 Mobile
Computing,
Networking,
Dist System

Know that the emerging pervasive and mobile computing
is another form of distributed computing where context
plays a central role.

About the Authors

Prasad, Sushil K.
Professor of Computer Science at Georgia
State University
Director of DiMoS Lab
Former Chair, IEEE Computer Society Technical
Committee on Parallel Processing (TCPP)
Homepage: http://www.cs.gsu.edu/prasad/

Gupta, Anshul
IBM Research
Business Analytics & Mathematical Sciences
Homepage: http://researcher.ibm.com/view.
php?person=us-anshul

Kant, Krishna
Program director in the Computer and
Networks Systems (CNS) division cluster of
CISE/CNS division within National Science
Foundation
Center of Secure Information Systems (CSIS)
at George Mason University
Homepage: http://www.kkant.net/

Lumsdaine, Andrew
Director, Computer Science Program
Professor of Computer Science
Director, Open Systems Laboratory
Associate Director, Digital Science Center
Computer Science Department, Indiana
University

Homepage: http://osl.iu.edu/~lums/

Padua, David
Professor

Siebel Center for Computer Science
University of Illinois at Urbana-Champaign
Homepage: http://polaris.cs.uiuc.
edu/~padua/.

Robert, Yves
Professor at ENS Lyon & INRIA
Fellow of the IEEE Senior Member, Institut
Universitaire de France, Visiting scientist,
University of Tennessee Knoxville
Homepage: http://graal.ens-lyon.fr/~yrobert/

Rosenberg, Arnold
Research Professor of Computer Science at
Northeastern University

Distinguished University Professor Emeritus of
Computer Science at University of Massachu-
setts Amherst
Homepage: http://people.cs.umass.
edu/~rsnbrg/

Sussman, Alan
Professor, Department of Computer Science
& UMIACS

University of Maryland

Homepage: http://www.cs.umd.edu/~als/

Weems, Charles
Associate Professor,
Dept. of Computer Science

University of Massachusetts

Co-director of Architecture and Language
Implementation research group

Homepage:http://people.cs.umass.
edu/~weems/homepage/Main_Page.html

