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Abstract—In this article we document the process by which

we inserted parallel computational thinking throughout the

undergraduate computer science program at the University of

Puerto Rico–Rı́o Piedras. Our target audience is faculty and

other stakeholders from CS departments similar to ours that

might be interested in pursuing a similar endeavor. We discuss

our initial motivations, the curricular redesign strategy, results,

and experiences, as well as the educational resources created

along the way.

I. INTRODUCTION

It is a commonly accepted fact that, in the foreseeable
future, sustained computational performance and reliability
will be increasingly dependent on exploiting the parallelism
available throughout the whole spectrum of computing plat-
forms, e.g., from embedded systems to high–end multi–core
servers [1]. The implications of this reality to CS education
are evident: the ability to design effective solutions by means
of parallel and distributed computing should be a required
competency for all CS undergraduates.

However, up to now, traditional undergraduate CS pro-
grams have relegated their teaching of parallel computational
thinking (PCT) to advanced level or even elective courses.
We share the opinion articulated by some CS experts that the
importance and complexity of PCT merits its introduction early
and throughout the undergraduate CS curriculum [2], [3].

Our team is finishing its fourth year of a project titled
“Asserting Parallel Computational Thinking into Undergrad-
uate 4–year Computer Science Curriculum” to enhance our
undergraduate CS curriculum with PCT. We define PCT as
a set of competencies that are essential for CS students to
thrive as professionals in a field that is increasingly reliant on
parallelism to sustain performance/reliability in applications
(see Section II).

To the best of our knowledge, projects for enhancing CS
curricula through parallelism date as far back as 1992 [4], [5].
A few undergraduate programs in universities similar to ours
seem to have embraced parallelism as an essential component
throughout their undergraduate programs [6]. Nevertheless,
their curriculum redesign and evaluation processes have not
been properly disseminated to allow adoption by others. The
reality and composition of every CS department is unique,
which implies that even the adoption of curricular ideas from
others requires at least a structured process of self–assessment
and adaptation. In the process of improving our curriculum
we are applying sound and tested educational procedures (i.e.,
the backward curricular design method). Additionally, we are

documenting our progress and making all materials and results
available to the public [7], so that others can collaborate with
us, adopt or adapt the components of this work that they
feel applicable to their curricula, and even learn from our
experiences. In particular, the University of Puerto Rico (UPR)
system has six programs that can directly benefit from PCT
immersion: four CS programs, one in computer engineering,
and one information systems program. All but one (which
began on 2013) are ABET–accredited. Additionally, there
are two ABET–accredited computer engineering programs in
private universities in Puerto Rico. One of our goals is to
establish collaborations with these and other stakeholders, to
share our experiences, methods, results, and materials to instill
PCT throughout their CS curricula.

Our efforts at UPR–Rı́o Piedras

After going through a profound process of curricular
revision to comply with ABET accreditation standards, uni-
versity regulations, and a self–commitment to excellence, the
Computer Science Department at UPR–Rio Piedras (UPR–RP)
decided to take advantage of the momentum and requested
funding from the NSF CPATH program to permeate our entire
undergraduate curriculum with PCT. Our project, “Asserting
Parallel Computational Thinking into Undergraduate 4–year
Computer Science Curriculum”, was approved in the third
quarter of 2009, and since 2010 our curriculum has undergone
meticulous scrutiny looking for opportunities where PCT can
be instilled. Back in 2010, we knew that several institutions
[8], conferences [9], and interest groups [10] were actively
discussing ways to approach the problem of the lack of PCT
in the undergraduate curriculum but no agreement about PCT
standard content, methodologies or outcomes were in place.
We started our endeavor with the goal of ending up with a
stronger undergraduate curriculum emphasizing PCT and with
the aim that our case could be replicated or at least considered
by other CS departments similar in size and in composition to
ours.

Almost two years ago, we presented our work in progress
and plans for completion in [11]. In the present article we
discuss our experiences and provide a description of the
complete process of curriculum redesign, the courses impacted
and the academic resources created/adapted.

The remaining of this paper is organized as follows.
Section II describes our operational definition of PCT and
the main competencies focused by our efforts. In Section III
we briefly describe our CS undergraduate program and our
initial motivations towards PCT. Section IV summarizes the



educational methodology used for the curriculum redesign
process. Section V presents brief discussions of the major
educational activities and findings from the remaining six
PCT redesigned–and–deployed courses. In Section VI we
discuss our lessons learned, challenges, and opportunities, and
make our own recommendations. Section VII features three
modules developed to be used with the LittleFe educational
cluster. Lastly, Section VIII presents our conclusions and future
endeavors.

II. DEFINING AND FOCUSING PCT

We envision PCT as a specialization of the concept of Com-
putational Thinking (CT) presented in [12]. PCT is inherently
conceptual rather than a programming tool or technique. To
guide our efforts, we define PCT by establishing the main
competencies we would like to instill in our students:

(1) The ability to abstract a solution as concurrent activities.
This skill goes beyond mere hierarchical and modular abstrac-
tion since it involves consideration to issues such as commu-
nication, synchronization and use of common resources.

(2) The skills to identify opportunities for parallelization in
task processing and data dependencies.

(3) The capacity to understand advantages of parallelism at
different abstraction levels. For example, in computer systems
the abstraction levels can be hardware, system architecture,
operating systems, user applications, and user data. The ability
to take advantage of properties intrinsic to these levels in order
to materialize the benefits of the parallel solution is a very
important skill.

(4) The ability to effectively express ideas about parallelism in
written and in verbal form. The ability to express PCT concepts
in a theoretically sound manner as well as in more intuitive
ways is critical to the dissemination of PCT concepts.

III. OUR CURRICULUM

The Computer Science Department at UPR–RP is com-
posed of nine full–time faculty members, all actively involved
in various fields of research, and support personnel. We offer
a 4–year bachelor of science since 2002. As of this writing,
fall semester of academic year 2013–2014, there are 108
undergraduate students enrolled in our program. Our programs’
computer science course sequence is illustrated in Figure 1.
The students take a total of 17 CS courses, 14 of which are
mandatory, and three CS advanced elective courses. Within the
College of Natural Sciences, our department prides itself with
a high percentage (25%) of students involved in undergraduate
research.

During years 2007–08 our program underwent accredita-
tion by the American Board for Engineering and Technology
(ABET). The process of preparation to comply with the accred-
itation guidelines helped us focus our assessment strategies
and gathered valuable data regarding program performance
and identified areas for improvement. There was a unanimous
consensus among members of our faculty that we should take
advantage of the momentum created by the ABET accredita-
tion process to further improve the quality and pertinence of
the entire program.

Fig. 1. Sequence of courses in the undergraduate curriculum of the CS
Department at UPR–RP.

In our reflection, PCT stood out as a set of competencies
which, although they were of paramount importance, were not
sufficiently emphasized in our curriculum. As a result of the
traditional course descriptions and the way that the curricu-
lum is structured, students could graduate from the program
without ever being explicitly exposed to PCT concepts.

An elective course in parallel processing had been offered
twice in the past four years. Most of the students who enrolled
were in their fourth year, and enrollment averaged six students.
The instructor, Dr. Orozco, observed that, when faced with a
parallel processing problem, students automatically defaulted
to a sequential solution before even considering the existence
of a parallel counterpart. Sequential thinking was deeply
entrenched in our fourth year students minds. At this stage in
their course sequence, it was too late to remedy such reasoning
with a single parallel programming elective course.

IV. METHODOLOGY AND TOOLS

The initial stages of our project convened most of the
CS program professors in several sessions to reflect upon the
meaning of parallelism/concurrency and its pertinence to their
courses. The Backward Design (BD) curricular methodology
was recommended by our educational consultants to help us
in the course/curriculum redesign [13]. This model proposes
three stages for curricular restructuring: (1) identify the de-
sired educational objectives for the students, (2) determine
acceptable evidence, and (3) plan learning experiences and
instruction. Each professor that had committed to introducing
PCT concepts related to his/her course was asked to fill a
questionnaire with guide questions that allowed him/her to
identify course conceptual contents, skills, and attitudes related
to PCT. Some of the questions contained in the questionnaire
were: (a) what are the big ideas of the course?, (b) what is



the knowledge that students will learn?, (c) what knowledge
and skills are required to develop the desired understanding?,
(d) what evidence should be collected to determine whether or
not the understanding has been developed, the knowledge and
skills attained, and the standards met?, and (e) what sequence
of learning and teaching activities will enable students to
perform well?

BD emphasizes prioritization of knowledge, skills and
attitudes early in the design process. The instructors were
asked to classify these into one of three levels of curricular
emphasis (i.e., mastery levels as in Bloom’s taxonomy [14]):
(1) essential to learn (“big ideas”), (2) important to know
and do, and (3) worth being familiar with. In our opinion,
this exercise is one of the most important reflections that
professors should perform when planning the addition to or
modification of any subject of a course. It helped us put into
perspective the importance of the PCT concepts in comparison
to the rest of the course content, prioritize the specific PCT
concepts to introduce, and it simplified the decision as to which
‘traditional’ course concepts were to be given less attention
once the PCT changes were introduced, e.g., the victims of
the zero–sum game.

Besides helping decide course–specific actions, the faculty
reflections and BD–driven sessions helped us draw a strategic
mapping of the various concepts onto the core courses. Figure
2 illustrates the comprehensive PCT–infusion plan as a course
vs. concept matrix. The main purpose of this plan is to
ascertain that all of the PCT key concepts are covered in
at least one of the core courses and if possible, concepts
are presented from different perspectives and levels of dif-
ficulty, e.g., concept follow–through. For instance, the basic
concept of a thread is discussed from the perspective of
multi–threading and multi–core processors as early as in the
“Fundamental Structures” course. The concept is followed–
through in the “Problem Solving with Programming” course
when teaching students how to parallelize for–loops, and in
the “Data Structures” course when students learn how to create
and synchronize threads to implement multi–threaded versions
of divide–and–conquer algorithms. Finally, notions related to
operating systems such as thread creation, scheduling, and
management are reinforced in the “Operating Systems” course.

Another important consideration to take into account when
assigning a PCT concept to a course was the ease of adaptation
of the concept into the existing content of a course. Many of
the key themes in PCT are easily relatable to “traditional”
content. For instance, discussion of repetition structures in an
introductory programming course presents a smooth transition
into data dependency and opportunities for parallel processing.
In some cases, the parallelism is even already in the traditional
content, albeit in an implicit manner. Thus, the educators job
becomes making the parallelism explicit in their discussions
and teaching activities. For instance, the discussion of adders
(ripple carry vs. carry lookahead) in the Computer Architecture
course can be used to emphasize the tradeoffs in speedup vs.
resources.

The specific themes and activities covered in each course
are part of the materials available online at our project’s
website [7].

Fundamental 
structures X! X! X! X! X! X!
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Fig. 2. Pairing of PCT key concepts to core courses. The shaded courses are
discussed in [11].

V. REDESIGN AND COURSE DEPLOYMENT

Ideally, the order in which PCT conversion affects core
courses should follow the course sequence. Otherwise, in
advanced courses, the student levels of PCT exposure will
be too disparate and the professor will spend precious class
time explaining elementary concepts. In our project, the initial
sequence for the PCT conversion of core courses was dictated
by the availability of instructors. Thus, instead of converting
the elementary courses first and then proceeding to interme-
diate and advanced courses, we had to start with the courses
that had been assigned to the principal investigators of this
project and then expand to courses taught by other faculty
members. For the redesign of each of the targeted courses,
the professor identified to lead the redesign of a course met
several times with the educational consultants to discuss the
BD and assessment tools. From this, the main outcomes were:
a plan to interweave PCT concepts from Figure 2 into the
course, the identification of the previous content that will be
affected, syllabus changes, learning activities and assessment
methods. Starting Spring 2013, all the redesigned courses had
been taught at least once.

We proceed to briefly discuss the major educational activ-
ities and findings from the courses that have been redesigned
and deployed since [11].

A. Fundamental Structures of Computer Science
(CCOM 3030)

This course presents a panoramic view of different subjects
of computer science and their interconnections. By its own
nature, this course lend itself to introduce many PCT basic
notions through activities as described in CS Unpluged [15]. A
specific activity performed by the instructor was to simulate a
parallel processor to convert a binary to a decimal number with
the students in the classroom. This exercise served to illustrate
the notions of divide–and–conquer, running time, load balanc-
ing, directed acyclic graphs (DAGs), and concurrency. Addi-
tionally, one lecture was dedicated to a discussion of DAGs and
concurrency, and another to MapReduce. Pre/post tests about



the discussed concepts were offered at the beginning and at
the end of the semester. Among the salient results that will
require our attention on future offerings of this course are: (1)
one lecture (without student practice) was not enough to grasp
a strategy like mapReduce, and (2) although most students
were able to express instruction dependency using a DAG, the
concurrency notions that can be extracted from the DAG were
not as evident.

B. Introduction to Problem Solving with Programming
(CCOM 3033)

This course provides the basic tools for students to learn
problem solving with programming through the use of com-
puter algorithms. Initially, this course was designed to expose
students to the use of control and loop structures, functions,
recursion, basic data structures and objects, with a sequential
focus even neglecting natural parallelism that comes from, say
divide–and–conquer algorithms.

In order to assert PCT in CCOM 3033, in each lecture we
included the construction of a DAG to highlight data depen-
dencies and concurrency among instructions. Our aim was to
start developing the necessary skills to identify opportunities
for parallelization from an early stage of the course. In the
loops topic, students were also exposed to divide–and–conquer
and map–and–reduce techniques, which, at the same time,
generated discussions on race conditions and synchronization.
The lectures included examples, figures, and in–class exercises,
besides bringing the laboratory experience on how to create
and manage threads using the Qt C++ framework [16].

A pre/post test was developed to assess the student per-
formance. With an average score of 1.5 out of 8, the pre–test
showed what was already expected: most of our students in the
introductory class do not have a clear idea on how to solve
problems computationally, even less an idea on how to solve
problems via PCT. However, the post–test results (average
score 6.7 out of 8) are quite encouraging in that they reaffirm
that PCT knowledge can be included and assimilated at a basic
level. We anticipate that introducing PCT from an early stage
will help change the current behavior of senior students in
which they automatically default to sequential solutions when
faced to problems that can be solved in parallel.

C. Operating Systems (CCOM 4017)

Unlike most courses in the undergraduate CS curriculum,
Operating Systems (OS) has always included topics implicitly
related to PCT, e.g., interprocess communication, race condi-
tions, concurrency, deadlocks, synchronization, shared memory
and threads. Furthermore, our current textbook includes a
chapter on multiple processor systems, which discusses more
advanced topics related to PCT [17], e.g., multiprocesors,
multicomputers, multi–cores, distributed systems, distributed
memory, computer clusters, and scheduling multiprocessor
systems. For this reason, there was no need to add much
new material to the OS course, but rather reorganize the
lectures to make PCT explicit. Instead of devoting most of the
course discussion to operating system concepts from a single
processor system point of view, the content on multiprocessor
systems, which is usually left for the end (as an extension
of single–processor systems) was merged with the regular

content of the course. Thus, multiprocessor systems become an
integral concept throughout the course rather than an isolated
topic. The new topics integrated to the course as an extension
of classical OS topics were: current distributed file systems
(DFS), included in the discussion on file systems, and security
in distributed systems which was added in the discussion
about OS security. The topics were presented through lectures
with examples and case studies; two lab experiences in which
students had to create and manage threads, and use divide–
and–conquer to solve a specific problem; one class project to
simulate multiprocessor scheduling; and one oral presentation
discussing a paper related to DFS.

A pre/post test was developed to assess student perfor-
mance. The average score in the pre–test was 3.4 out of 8, and
the average score in the post–test was 5.2 out of 8. Although
the post–test shows some improvement over the pre–test, it
was not as significant as we were expecting. Further analysis
of the scores showed that most students failed to provide
correct answers to questions about topics discussed earlier in
the course. The reason for this could be that the post–test was
administered late in the semester and without previous notice.
Similar questions to those in the post–test were used in regular
exams and the students seemed to have performed better. Thus,
we conjecture that most of the students do gain an aptitude
for the topics once they have had time to reflect and practice
outside the classroom activities.

Two new projects were designed to improve the results
obtained on the first assessment. The first project was im-
plemented in Fall 2012. The idea was to give students a
final project where they were encouraged to refresh the PCT
material learned across the course, and to provide them with
a nifty assignment of one of the most important topics of
the OS course whose PCT material was currently the most
time limited: File Systems. In the previous year the students
learned about DFS through a presentation related to research
or a particular implementation. In Fall 2012, instead, students
learned the material through assigned article readings and also
with the implementation of a simple DFS using Python. This
DFS consisted of a metadata server, a collection of data nodes,
and a client application to copy files from and to the DFS. In
order to copy a file to the DFS, the client asks the metadata
server for a list of available data nodes to distribute pieces
of the files, then it establishes connections to the data nodes
and transfer their pieces of the file. If the copy is successful,
the client sends an update message to the metadata server so
that it can keep track of how the file was distributed. To copy
the file from the DFS, the client asks the metadata server for
the file storage information, and then the client asks the data
nodes for the file pieces and merges them into the original file.
This project provided opportunities for the discussion of data
replication, system availability, and fault tolerance.

The project was assigned to collaborative teams of 4
students. With the aim of integrating balanced teams, groups
were selected based on their course performance and Python
programming skills. At the beginning, a few members of
some teams were hesitant about the complexity of the work.
However, at the end every group completed the project and
provided positive feedback: “this project was a bit challenging
but awesome” and “it should definitely be assigned again.”

The second project was designed as a preparation for their



final DFS project. The most frequently expressed concern by
the collaborative teams on the DFS project was their lack of
previous exposure to socket programming. Although all the
teams overcame their expressed limitations, the instructor of
the course decided to modify one scheduling project from the
simulation of a scheduler of a multiprocessor system, to be
a scheduler of jobs submitted by resource constrained mobile
devices with the purpose of exposing the students to hands–on
socket programming early in the course. The intention was
to include socket message–passing with the topics already
covered by the project: synchronization and race conditions.

D. Introduction to Data Management (CCOM 4027)

This course provides third or fourth year students the con-
cepts of data management mainly through databases. Here they
learn about relational databases as well as the SQL language.
To assert PCT, three lectures (4.5 hours) were included to
present distributed, parallel and shared databases including
architectures that will allow for a better scaling of a parallel
or distributed database system. We also presented concepts in
parallelizing queries using query plans taking into account the
various data partition schemes.

E. Computer Architecture (CCOM 4086)

The Computer Architecture course has traditionally
touched upon many aspects that are part of the PCT vocabu-
lary: pipelines, threads, and speedup. To permeate it with PCT,
the strategy being followed is to make explicit how parallelism
can be exploited at the many levels of a computer system: from
the circuit level, through the support by the instruction set and
performance enhancing techniques such as multithreading and
pipelining. Some activities in support of PCT learning are:

• Students implemented ripple carry and carry looka-
head adders using LogiSim [18] and were asked to
compared the pros and cons of each in terms of
performance and resource utilization.

• Students implemented a single–cycle simplified MIPS
processor (also using LogiSim), and compared the
single–cycle design with the design of a pipelined
version.

• Expanding on a thread and mutex exercise done in
CCOM 3033 students learn the hardware support in
MIPS for atomic operations (llw, load linked word
and scw, store conditional word) and implement a
simple mutex. Later, they are asked to design hardware
support to implement one of these instructions.

• The instructor gave a presentation on GPUs, the
CUDA programming model, and demonstrated pro-
grams adapted to take advantage of data parallelism
on the GPU platform.

The first two activities are traditionally taught as part of
the course and thus it was only required that the instructor
highlight the parallelism and its importance even at the lowest
levels of abstraction. Only four of seven students were able
to satisfactorily complete parallel carry lookahead exercise
in Spring semester 2011. We will provide more guidance to
students this semester and try again. The third and fourth

activity were new. The third activity is specifically designed
to build on PCT content in a prior course, in consultation
with faculty in both courses. In Fall 2012, the first time we
gave the assignment, only 21 out of 38 students were able
to successfully design a circuit for scw. This assignment will
be redesigned to give the students more guidance. The fourth
activity is a new addition to the textbook used in class, and
the time allotted during its first implementation (1.5 hours) was
found to be too short to develop any learning depth beyond
the first two levels of Blooms’ taxonomy, e.g., remembering
and understanding. A CUDA programming lab experience is
planned for this semester, to supplement the lecture.

F. Design and Analysis of Algorithms (CCOM 5050)

This course introduces undergraduate students to the no-
tions and techniques that are used as building blocks in the
design and analysis of algorithms. In order to permeate our
Algorithms course with PCT we decided to include dynamic
multithreaded programming (DMP) as is treated in [19]. The
main reasons to choose this theme were: (1) it can be presented
as a simple extension of sequential programming by adding a
few key words and, (2) parallel performance analysis can be
achieved using the same mathematical tools except by adding
the notions of critical path, work, and span. A natural place
to include DMP material was right after divide–and–conquer
fundamentals. A total of two lectures (3.0 hours) were devoted
to include the following topics and corresponding activities:
DMP as an abstract model of parallel programming, concepts
of work, critical path, span, and parallelism; extension of a
suitable sequential algorithm to a parallel one by inserting
key words spawn, sync, and return into the appropriate lines.
Details of assessment, objectives, examples, activities, and
exercises can be found in [7]

VI. LESSONS LEARNED, CHALLENGES AND
OPPORTUNITIES

As a growing department, one of the challenges we encoun-
tered was incorporating new faculty hires into the project. The
newcomers missed the essence of the start of the project. They
did not participate in all meetings, discussions, and exchange
of ideas that enriched the conception and development of the
whole idea. More fundamentally, they lacked the commitment
acquired by the initial team. In order to deal with these and
other issues we make the following recommendations:

(1) Train the trainer: carefully mentor and engage all in-
structors that will be in charge of courses related to the project.
In particular, as soon as a new faculty is hired, train her/him
in the specific goals, methodologies, new topics, and activities
that could speed–up the learning process. Actively inform them
about available conferences or workshops relevant to the goals
of the project (for instance, The SC Conference Series [9], the
ACM Special Interest Group on Computer Science Education
[10], and the National Computational Science Institute [20], to
name a few). An incentive for the new hire is that attendance to
these forums contributes to his/her professional development.

(2) Prepare hands–on material: avoid themes that are overly
specialised, i.e., stay clear of topics/tools from your own
research. Prepare material that requires as a pre–requisite only
common knowledge and is easy to digest and adopt by others.



In Section VII we describe a set of educational modules that we
developed for using the LittleFe computational cluster together
with the Bootable Cluster CD (BCCD) [21]. These are publicly
available through our project’s website.

(3) Be ready: if you are part of the leading team, be
prepared to take over in case you have to do the work yourself;
sometimes instructors are not ready/willing to or not available
for teaching with new approaches or new material, unless there
is a mandate to do so (for instance, an accreditation).

(4) Curricular changes are painful: in our experience, mak-
ing official changes to our curriculum has opened many oppor-
tunities as well as challenges. We have used the opportunities
to improve and update the pertinence of our CS curriculum
and, hence, the quality of our graduates. We also have faced
challenges such as the zero–sum game and administrative
burdens. For instance, even though all the planned core courses
have been redesigned and taught at least once, only three
syllabi are in the pipeline for official, campus–level approval.

(5) Engagement: Provide workshops and trainings in cur-
rent trends. Invite guest speakers from the academia and the
private sector to make your community see the theory come
to life. For instance, we sponsored a three–day (12 hour)
Cloud Computing workshop, where the participants studied the
concepts, learned to use the common tools, and formed teams
which proposed ideas and created prototypes for cloud–based
applications.

(6) Acquire the right equipment: we had access to remote
computational resources for education but it was too burden-
some on authentication and validation of accounts to be used
in the classroom. If possible, try to get your own equipment.
Something in the line of the LittleFe [22] or building your own
cluster with a fair budget will suffice [23].

(7) Textbooks: certainly there is a number of good books
on PDC for stand–alone courses [24], [25], [26], they are
targeted mostly for upper–division undergraduate or even for
graduate level students. However, we, as educators facing the
necessity of spreading PCT on the whole spectrum of the
CS curriculum, need approaches such as the Book Project of
CDER [27] together with contributions from a large portion
of the academic and industry communities.

VII. AVAILABLE RESOURCES

In our opinion, one of the most practical contributions that
our project provides to instructors of courses instilled with PCT
is a list of hands–on modules developed to be used with the
LittleFe cluster and this section is devoted to introduce them
[28]. The rest of the resources developed as part of our project,
i.e., presentations, pre/post tests, questionnaires, assignments,
as well as curricular redesign documents are available through
the website of our project [7].

Hands–on programming exercises and code demonstra-
tions/experiments are an essential educational resource for
teaching introductory parallel computing concepts. The design
of effective and applicable exercises can be challenging to
the instructor, especially since many libraries or frameworks
for parallel programming require intricate system setups and
training students in low–level details to get even the most
basic programs to work. In our experiences, low–level details

in parallel computation exercises lead, among other things, to
student (and instructor) frustration and deter the students from
focusing on the essential concepts.

Besides preparing modules for learning MPI4py and for
setting up the LittleFe cluster with Disco [29], we also
have designed a set of easy–to–deploy hands–on educational
modules for the LittleFe educational Cluster, which can be
used to introduce students to concepts such as: the map–and–
reduce and master–slave models, load distribution, and scaling.
The programming exercises use the Python MPI4py and Disco
(map–reduce) libraries to significantly deemphasize attention
to low–level details and allow time to complete solutions to
more elaborate problems. Each module is constructed around
a real–world or easy to grasp research problem to showcase
the importance of parallel computing and to motivate the stu-
dents. Our growing list of modules includes: two modules for
teaching and practicing MPI distributed memory programming
concepts and a module to practice MapReduce basics.

A. Module 1: Learning MPI distributed memory programming
through Costas arrays

The first module uses the enumeration of Costas arrays
to introduce the Master/Worker paradigm using MPI4py. The
classic (non–parallel) solution to this problem uses a back-
tracking algorithm to list all permutations that meet the Costas
property [30]. As expected, the time complexity of such a
solution grows factorially with the size of the sequence. A par-
allel solution is easy to explain and implement: let the master
compute all permutations up to a given position, then distribute
these sub–permutations to be completed independently by the
workers. Figure 3 shows the search of Costas sequences of
size 6. The initial permutations represent a small portion of the
total computation, thus parallelization achieves almost linear
speedup.
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(1,3,2,5,4)	

(1,3,2,5,6)	

(1,3,2,6,4)	

(1,3,2,6,5)	

Not Costas!

Not Costas!

(1,3,2,5,6,4)	

(1,3,2,6,4,5)	

Not Costas!

Costas!

Costas!

Fig. 3. (a) Computation of Costas arrays using backtracking, e.g., compu-
tational branch of the Costas arrays of size 6 that start with sub–permutation
(1,3,2). (b) Master/worker diagram of Costas problem. Master sends sub
problems to slaves. Slaves return the solution to the sub problems.



B. Module 2: Learning MPI distributed memory programming
through password cracking

The second module uses password cracking as a the moti-
vating application. Password cracking is a method by which an
intruder that gains access to an encrypted passwords file can
deduce the original (clear text) passwords using a dictionary
and brute force, e.g., word in a dictionary is encrypted and
compared to the encrypted passwords in the password file.
We use the password cracking example to teach how to solve
problems by dividing the problem in sub problems of approx-
imately the same size among the available compute nodes.
Figure 4 illustrates our approach: the complete password file
is sent to all the compute nodes (MPI broadcast), and the
dictionary file is divided in (approximately) equal parts and
distributed among the compute nodes.

Node 0! Node 1! Node 2!

Node 0!

Node 0!

Broadcast Password file 

Cracked Passwords 

Crack password with their 
portion of the  dictionary 

dictionary!

Fig. 4. Map/Reduce diagram of the password cracking problem. Node
0 broadcasts the password file to all nodes. The dictionary is divided in
approximately the same size for each node. Cracked passwords are sent back
to the master.

C. Module 3: Learning MapReduce basics through NetFlow
data analysis

The motivating application for this module is network data
processing. In computer networks, aggregation of traffic data
per host helps to identify anomalies such as (1) an IP in use that
is not delegated, (2) an IP that is generating more traffic than
normal, and (3) an IP that is not generating traffic. NetFlow
is a network protocol that aggregates connection information
from one host to another over a certain period of time
(flow). NetFlow files consist of large quantities of connection
information such as IP addresses of the source and destination
hosts, and the traffic in each connection (e.g., 5 minutes of
UPR network traffic can be as high as 6.5MB, or 363,149 lines
of flows). Thus, processing them takes considerable processing
effort.

In this module, we use NetFlow data processing as an
example of an application that can be accelerated using Disco
MapReduce. Simplified code for this application is presented
in Figure 5, wherein (1) the source and destination IPs are
mapped by their addresses and valued by their traffic octets
(2) the reducer gathers the sorted key–values and computes
their aggregated sums.

VIII. CONCLUSIONS AND FUTURE WORK

The idea of instilling PCT in the undergraduate curriculum
continuum has been around for a while. However, its imple-
mentation is not trivial and deserves a systematic curricular
treatment to succeed in the long run.

	
def map(line, params):	
  # Split the data into an array:	
  # data[0] is the source, data[1] is destination	
  # data[5] is the octet	
	
  data = line.split()	
  yield data[0], int(data[5])	
  yield data[1], int(data[5])	
	
	
def reduce(line, params):	
  for ip, traffic in kvgroup(sorted(iter)):	
    yield ip, sum(traffic)	
	
	
	
	
	
    	
	

Fig. 5. Map and reduce functions for basic NetFlow data processing

The PCT–assertion strategy established by any department
will be influenced by factors such as faculty member strengths
and weaknesses, their availability for training other members
in PCT educational strategies, and the existing curricular
sequences. The CS education community can help by sharing
their experiences and educational resources with programs that
are in the early stages of adoption. Most importantly, we need
the concert of a broader community effort such as the CS2013
task force and the NSF/IEEE–TCPP Curriculum Initiative to
provide guidelines that every program in CS should instill in
their students. We believe that our PCT project aligns us with
the coming parallel and distributed computing standards.

What becomes of the elective Parallel Processing course
once the PCT has been infused throughout the curriculum?
Currently it is offered once a year and will remain as an
elective until “official” standards about PCT are released. Our
department has considered the strategy of transforming it into a
capstone–like course that includes advanced topics not taught
on other courses and that summarizes knowledge and skills
as PCT mini-projects. Besides deciding the fate of this course,
our future work includes establishing collaborations with other
CS/IT programs in Puerto Rico, to share our experiences,
methods, results, and materials to instill PCT throughout their
own curricula. Furthermore, we will keep improving and
adding to our educational resources.
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