Performance Tools

First things first: Login to Blue Waters
$ ssh -Y: There are tools available on BW for debugging, visualization, and performance
tools that use a graphical user interface (GUI). To launch a GUI application remotely we need to
pass the “-Y” to the ssh command, for example:
Training accounts:

ssh -Y ludin@bwbay.ncsa.illinois.edu
This will login to Blue Waters using the username “ludin”. Keep in mind that temporary

accounts login to bwbay but project accounts login to bw.ncsa.illinois.edu, as shown
below.

HONCHO:~ mludin$ ssh -Y ludin@bw.ncsa.illinois.edu |

Request an interactive session for two nodes and three hours:
$ qsub -I: The command below is asking for two XE interactive compute nodes, each node
with 32 cores, and for 3 hours of total walltime.

gqsub -I -1 nodes=2:ppn=32:xe,walltime=03:00:00

Copy the performance tools directory from Mobeen’s account on BW:
$ cp -r source destination: The “~r” is used for recursive copy. Meaning copy the
directory and all other files and folders within it.

cp -r ~ludin/bwi_2015/perftool ~/scratch
NOTE: When you copy files/directories from another user’s directory you must use just “~”
followed by the user's username. The “~/” is used for your own home directory. The command
above copies the “per ftool” directory from Mobeen’s account to the “scratch” directory
on your account. For big projects make sure you use the “scratch” directory. Otherwise you
might encounter quota/limited disk space issue.
Now go to the perftool directory:

cd ~/scratch/perftool

Note: use “ls -1” command to make sure you have the following files:

ludin@h2o0login2:~/bwi 2015/perftool> 1ls -1

total 20

drwxr-xr-x 8 ludin EOT_jgx 4096 May 31 11:59 bw-bccd
-rw-r--r-- 1 ludin EOT_ jgx 994 May 20 13:28 life.h
-rw-r--r—-- 1 ludin EOT_ jgx 7971 May 20 14:10 life-serial.c
-rw-r--r—--— 1 ludin EOT jgx 88 May 31 11:57 Makefile
ludin@h2o0login2:~/bwi_2015/perftool> | |

What is profiling:
To analyze the runtime behavior of the program, these are the questions one can ask oneself
when profiling:
e Which parts (functions, statements, . . .) of a program take how long?
e How often are functions called?
e Which functions call which other functions?
o Construct the dynamic call graph
e Memory consumption
o Memory accesses, memory leaks
o Cache performance

Stages of profiling:
On BW first make sure you have the right programming environment loaded. You will need to
load the following modules:
e GNU gprof profiler: PrgEnv-gnu
e Cray Reveal profiler: PrgEnv-cray
Profiling has several steps:
1. You must compile and link your program with profiling enabled.
2. You must execute your program to generate a profile data file.
3. You must run the profiler to analyze the profile data.

GNU gprof Profiler (Manual: http://wwwcdf.pd.infn.it/localdoc/gprof.pdf) :
gprof provides several different methods for analyzing the program such as:

e Flat Profile:

o How much time does the program spend in which functions?
e C(Call Graph:

o Which functions call which functions, and how often?
e Annotated Sources Listing:

o Annotate each source line with the number of executions

Steps for using GNU “gprof” profiler on Blue Waters:
You will want to do these steps in the per ftool directory from earlier.
1. Switch to GNU programming environment from Cray:
module swap PrgEnv-cray PrgEnv-gnu
To make sure that the module was loaded:
module list
PrgEnv-gnu should be listed.
2. In order to compile and link our program with profiling enabled, the “-g -pg” options are
needed for providing debugging and profiling information:

http://wwwcdf.pd.infn.it/localdoc/gprof.pdf

cd Life/
gcc -g -pg -o life-serial life-serial.c
The “—pg” should generate a file “gmon.out”.

ludin@h20login2:~/bwi_2015/perftool> gcc -g -pg -o life-serial life-serial.c
ludin@h2o0login2:~/bwi_2015/perftool>

ludin@h20login2:~/bwi_2015/perftool>

ludin@h2o0login2:~/bwi 2015/perftool> 1s

bw-bccd gmon.out life.h life-serial 1life-serial.c Makefile
ludin@h2ologin2:~/bwi_2015/perftool> | |

3. Now that we have successfully linked and compiled our program for profiling, the next
step is to run our program to actually generate the profiling information:
./life-serial -t 100 -r 100 -c 100
This command will generate a bunch of output in an attempt to visualize the program. We can
ignore this output.
gprof is smart, but usually it still needs a bigger problem size to create meaningful profiling
data.
4. Now let’s finally use the “gprof” command to visualize the program profiled data:
gprof ./life-serial gmon.out > profiling_data
This command will save the visualization data into a file called profiling_data. The
command itself will not show anything on the terminal unless there is a typo.
5. See the data using the less command:
less profiling_data
You can use the up/down arrow to move up and down.
6. Flat Profile: In which functions did your program spent most of its time?
A sample output is provided below.

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls us/call us/call name
30.00 0.03 0.03 1000000 0.03 0.06 countAliveNeighbors
20.00 0.05 0.02 100 200.00 800.00 setNextGrid
10.00 0.06 0.01 1000000 0.01 0.01 checkBottomLeftNeighbor
10.00 0.07 0.01 1000000 0.01 0.01 checkBottomRightNeighbor
10.00 0.08 0.01 1000000 0.01 0.01 checkTopLeftNeighbor
10.00 0.09 0.01 101 99.01 99.01 displayGrid
10.00 0.10 0.01 100 100.00 100.00 advanceGrid
0.00 0.10 0.00 1000000 0.00 0.00 checkBottomNeighbor
0.00 0.10 0.00 1000000 0.00 0.00 checkLeftNeighbor
0.00 0.10 0.00 1000000 0.00 0.00 checkRightNeighbor
0.00 0.10 0.00 1000000 0.00 0.00 checkTopNeighbor
0.00 0.10 0.00 1000000 0.00 0.00 checkTopRightNeighbor
0.00 0.10 0.00 10000 0.00 0.00 getRandState
0.00 0.10 0.00 1 0.00 0.00 allocMem
0.00 0.10 0.00 1 0.00 0.00 freeMem
0.00 0.10 0.00 1 0.00 0.00 parseArgs
0.00 0.10 0.00 1 0.00 0.00 randomizeGrid
0.00 0.10 0.00 1 0.00 0.00 seedRand
0.00 0.10 0.00 1 0.00 0.00 walidateInput
] the percentage of the total running time of the

time program used by this function.

granularity:

7. Call Graph: How much time was spent in each function and other functions that were

called from it? The call graph helps us find out if the functions themselves spent a long

time or if their children/subfunctions took most of the runtime. A sample output is

provided below.

index % time self

[1]

100.0 0.00
0.02
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00

Call graph (explanation follows)

each sample hit covers 4 byte(s) for 10.00% of 0.10 seconds

children called name
<spontaneocus>
0.10 main [1]
0.06 100/100 setNextGrid [2]
0.00 101/101 displayGrid [7]
0.00 100/100 advanceGrid [8]
0.00 1/1 parseArgs [17]
0.00 1/1 validateInput [20]
0.00 1/1 seedRand [19]
0.00 1/1 allocMem [15]
0.00 1/1 randomizeGrid [18]
0.00 1/1 freeMem [16]
0.086 100/100 main [1]
0.06 100 setNextGrid [2]
0.03 1000000/1000000 countAliveNeighbors [3]
0.03 1000000/1000000 setNextGrid [2]
0.03 1000000 countAliveNeighbors [3]
0.00 1000000/1000000 checkTopLeftNeighbor [6]
0.00 1000000/1000000 checkBottomLeftNeighbor [4]
0.00 1000000/1000000 checkBottomRightNeighbor [5]
0.00 1000000/1000000 checkLeftNeighbor [10]
0.00 10000q0/1000000 checkTopNeighbor [12]

The call graph divides each function and its children as separate entries separated by lines of

dashes. In each entry the main function/parent function has an index value in [], to the left.

8. Annotated Sources Listing: We have to give gprof the “—~A” option to trigger the

annotated source listing. This will print out the source code for each function and how

many times it was called. It will also give you top 10 lines and count for how many

times they were called. An example is shown below.
gprof ./life-serial gmon.out -A

1 —> wvoid freeMem() {
int i;

/* free memory in the opposite order it was allocated */
for (i=N Rows-1; i>=0; i--) {

free(Next Grid[i]);

free(Grid[i]);
}

free(Next Grid);
free(Grid);

}
Top 10 Lines:

Line Count
206 1000000
224 1000000
234 1000000
244 1000000
254 1000000
264 1000000
282 1000000
300 1000000
318 1000000
135 10000

Execution Summary:

20 Executable lines in this file
20 Lines executed
100.00 Percent of the file executed

Before you go to break, please make sure run top in your compute node terminal and
login node too.

For Profiling GalaxSee with gprof:

e Make sure you request a compute nodes if you lost connection or don't have, and make sure

you’re on a compute node to execute these commands.

@ export GMON_OUT_PREFIX=gmon.out-
(this will make every process to write -+its profile data in a
separate file)

@® cd ~/scratch/perftool/GalaxSee

@® make clean && make

@® aprun -n 1 ./GalaxSee.cxx-mpi

@® gprof ./GalaxSee.cxx-mpi gmon.out-.*x > profile_data

@® less profile_data

Cray Reveal Profiler:
Install X11 (Mac Users only): http://xquartz.macosforge.org/landing/

Cray Reveal is another profiler that is more specific for finding candidate loops for parallelism. It
is mainly designed for shared memory, OpenMP, and is currently also being used for OpenACC.
Documentation is available on the BW portal. First we will be using Cray’s Apprentice2 tool for
visualizing data captured during the program execution. Its a GUI tool that let us visualize some
awesome information about our program. Second, we will use Cray Reveal with Apprentice2 to
find out best candidate loops for OpenMP.

Step 1-4 generates loop statistics using CrayPAT to determine which loops have the most work.
Step 5-7 is to visualize performance data captured during program execution, and the remaining
steps to optimize code using Reveal.

Requirements: you must be compiling and running your program under the Cray programming
environment (PrgEnv-Cray)
1. Switch to Cray Programming environment if you haven’t:
module swap PrgEnv-gnu PrgEnv-cray
2. Load perftools: By default the BW system loads the “Darshan” profiler. We need to
unload that so we can load the Cray’s perftools.
module swap darshan perftools
3. Compile and link the code: Instead of “—pg?», we will need to pass “~h
profile_generate” when compiling for loop work measurements. Also remember
we will not be using the “gec” compiler and instead will use “cc”.

cd ~/scratch/perftool/Life

cc -h profile_generate -o life-serial life-serial.c
This will save some objects files in a hidden directory, so you will get an message like this
“WARNING: CrayPat is saving object files from a temporary
directory 1into directory
'/u/training/ludin/.craypat/life-serial/40149”

4. Instrument the executable for tracing: Command below will generate a new
instrumented executable “11fe-serial+pat”

pat_build -w life-serial

5. Generate new data file: Now on a compute node make sure you have the same modules
(PrgEnv-cray, perftools) loaded, then run the instrumented code to generate new data file
for example: “life-serial+pat+27004-25430t.xf”

http://xquartz.macosforge.org/landing/
https://bluewaters.ncsa.illinois.edu/reveal-and-openmp

./life-serial+pat -t 100 -r 100 -c 100

6. Create report with loop statistics: On the login node now, we have to process the
* . xf file to create report with loop statistics. This generates “1ife-serialx.ap2”
file that could later be used to visualize using Apprentice?2.

pat_report -f ap2 life-serialx.xf > loop_report

7. We will use the output of “pat_report” to visualize with GUI analyzer “Apprentice
2”. Now lets launch Apprentice2 (app2) on the login node:

app2 life-serialx.ap2 &
This will open the following display:

[NON) [%| Apprentice2
File Help

w About Apprentice2 J{ v life-serial+pat+27004-25430t.ap2 x |

[N SRR TP,

7 Overview |~ Profile |+ CallTree X|

Profile

CPU !!I

Memory Utilization

Function/Region Profile

71.4% = displavGrid
22,09 = setNextGrid

Process HiMem (MBvtes) 15945
3.9% = allocMem

10011 s 10011
10101 10101

Load Imbalance

Programming Model
0.0% Data Movement
- =displavGrid
- = seiNextGrid Na data collected.
-- = allocMem

Wallclock time: 0.454230s

Canceled.

8. Generate Program Library: In order to use Cray Reveal, we have to recompile our
code to generate a program library. This is necessary because the —h
profile_generate disables most compiler optimizations. However, for Reveal
want to know where the code does worst job, even when fully optimized.

rm life-serial

cc -03 -h pl=life-serial.pl -h wp -o life-serial life-serial.c

This command should now generate a life-serial.pl file, which can be used with Reveal.

9. Run Reveal: First for compiler information only. It will open the following window:

reveal life-serial.pl

% Reveal
File Edit View Help

w life-serialpl X |
-Navigation -Source
4 Program View IV | e 3 Qownl
P life-serialc @
New to Reveal!
Try "Getting Started"
s in the "Help” Menu
—_—
fife-serialpl loaded <~ I

This GUI show what kind of automatic optimizations were performed by the compiler and
suggest OpenMP directives for the loops.

10. Visualize compiler and loop work estimates: we will run Reveal by combining the
program library with the performance data file (* . ap2)
reveal life-serial.pl life-serial+pat+*.ap2 &
This will open the following window:

% Reveal
File Edit View Help |

 life-serialpl ¥ |

'HIII.H.EI.L -Source
4 Loop Performance [v | [+]

§ave| E+ 3

0.2834 main@31
0.2103 main@150
0.1158 main@152
00688 main@168
0.0685 main@170
0.0020 main@201
00017 main@202
0.0007 main@146 / s Try "Gelting Started”
0.0007 main@158 @ . = inthe "Help” Menu

New to Reveal?

0.0002 main@128
0.0002 main@129
0.0001 main@112 @
0.0000 main@340
0.0000 main@45

A A A A A A A A A A~ = A

-Info

life-serial.pl loaded. life-serial+pat+27004-254 30tap? loaded.

Save the loops, open the file and resolve the unresolved variables to either shared or private.

Additional Resources:
Using Cray Reveal for OpenMP:
https://bluewaters.ncsa.illinois.edu/reveal-and-openmp

Cray C and C++ Refrence Manual: http://docs.cray.com/books/S-2179-83//S-2179-83.pdf

Cray Fortran Reference Manual: http://docs.cray.com/books/S-3901-83/S-3901-83.pdf

Cray C++ Compiler:

:g=1d%3dcrayCC. 1 :f=man/xt_ccm/
83/catl/crayCC.1.html

Cray C Compiler:
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=Show:q=id%3dcrayCC.1:f=man/xt ccm/
82/catl/craycc.1.html

Cray Fortran Compiler:
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=Show:q=id%3dcrayftn.1:f=man/xt ftnm/
83/catl/crayftn.1.html

GCC Online Documentation: https://gcc.gnu.org/onlinedocs/

GNU Libgomp for OpenMP and OpenACC: https://gcc.gnu.org/onlinedocs/gec-5.1.0/libgomp/

Intro-MPI for Cray XE System:

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=Show:q=:f=man/xe_mptm/72/cat3/intro_

mpi.3.html

Tuning Parallel I/O on Blue Waters for Writing 10 Trillion Particles:
https://sdm.Ibl.gov/~sbyna/research/papers/201504-CUG-VPICBW.pdf

Bunch of Cray Documentations:
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=SiteMap:f=xe_sitemap

Optimization for the Cray XE6 Interlagos Architecture
http://www.erdc.hpc.mil/docs/Tips/optimizingForInterlagos.pdf

Using Cray Performance Measurement and Analysis Tools:
http://docs.cray.com/books/S-2376-622/S-2376-622.pdf

10

https://bluewaters.ncsa.illinois.edu/reveal-and-openmp
http://docs.cray.com/books/S-2179-83//S-2179-83.pdf
http://docs.cray.com/books/S-3901-83/S-3901-83.pdf
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=Show;q=id%3dcrayCC.1;f=man/xt_ccm/83/cat1/crayCC.1.html
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=Show;q=id%3dcrayCC.1;f=man/xt_ccm/83/cat1/crayCC.1.html
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=Show;q=id%3dcrayCC.1;f=man/xt_ccm/82/cat1/craycc.1.html
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=Show;q=id%3dcrayCC.1;f=man/xt_ccm/82/cat1/craycc.1.html
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=Show;q=id%3dcrayftn.1;f=man/xt_ftnm/83/cat1/crayftn.1.html
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=Show;q=id%3dcrayftn.1;f=man/xt_ftnm/83/cat1/crayftn.1.html
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/gcc-5.1.0/libgomp/
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=Show;q=;f=man/xe_mptm/72/cat3/intro_mpi.3.html
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=Show;q=;f=man/xe_mptm/72/cat3/intro_mpi.3.html
https://sdm.lbl.gov/~sbyna/research/papers/201504-CUG-VPICBW.pdf
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=SiteMap;f=xe_sitemap
http://www.erdc.hpc.mil/docs/Tips/optimizingForInterlagos.pdf
http://docs.cray.com/books/S-2376-622/S-2376-622.pdf

Overview of Gemini Hardware Counters: http://docs.cray.com/books/S-0025-10/S-0025-10.pdf

Cray Application Developer's Environment User's Guide:
http://docs.cray.com/books/S-2396-610/S-2396-610.pdf

11

http://docs.cray.com/books/S-0025-10/S-0025-10.pdf
http://docs.cray.com/books/S-2396-610/S-2396-610.pdf

