
Introduction to
penMP

Mobeen Ludin

Login Access

Username: gateway
Password: sleddog
Hostname: proto.cs.earlham.edu
On Mac/Linux: $ ssh gateway@proto.cs.earlham.edu

User Names: ncsi1-60
Passwords: sleddog
Hostname: hopper
On proto: $ ssh ncsi##@cluster.earlham.edu!

Once you are on hopper, you need to ssh into Al-salam cluster:
 $ ssh Al-salam!

OpenMP Tutorial Files:
 $ cp –r ~mmludin08/xsede14 . !

What we learned so far about OpenMP?

❖  A standard Application Programming Interface (API) for writing
shared memory parallel applications in C, C++, and Fortran

❖  Where to find more information, examples, exercises:
➢ OpenMP Web-page: http://www.openmp.org
➢  Lawrence Livermore NL:

https://computing.llnl.gov/tutorials/openMP/

Components of OpenMP

Directives:
❖  Parallel region
❖  work sharing

constructs
❖  Tasking
❖  Synchronization
❖  Data-sharing attributes

Library Routines:
❖  Number of threads
❖  Threads ID
❖  Dynamic thread

adjustment
❖  Nested Parallelism
❖  Schedule
❖  Active Levels
❖  Thread limit
❖  Nesting level
❖  Ancestor thread
❖  Team Size
❖  Wallclock timer
❖  Locking

Environment Variables:
❖  Number of threads
❖  Scheduling type
❖  Dynamic thread

adjustment
❖  Nested parallelism
❖  Stacksize
❖  Idle thread
❖  Active levels
❖  Thread limit

Difference between a process and a thread

Process and Thread are two unit of executions that are not the same in the sense of executing
environment.

❖  Compiled program requites CPU to execute its instructions
❖  Requires its own memory space for storing its execution environment

➢  Text segment: Storing program code
➢  Heap: Storing global data
➢  Stack: Storing local data Stack

Text

Data

Heap

OpenMP memory model

❖  All thread have access to the same
globally shared memory

❖  Data can be shared or private
❖  Shared data is accessible by all

threads
❖  Private data can only be accessed

by the thread that owns it
❖  Data transfer is transparent to the

programmer
❖  Synchronization takes place, but

its mostly implicit

Shared Memory /
Global Memory

T
Private

T
Private

T
Private

T
Private

OpenMP execution model
❖  Fork-Join Parallelism:

➢  Master thread spawns team of threads as needed
➢  Parallelism added incrementally until performance goals are met

Master
Thread

Sequential
Region

Parallel
Region

Parallel
Region

Sequential
Region

SR

Worker
Threads

Worker
Threads

penMP Core Elements

parallel control
structure

work sharing Data
Environment

Synchronization Runtime functions /
Environment variable

governs the flow
of control in the
program

parallel directive

distributes work
among threads

parallel for/do
and sections
directives

scopes
variables

shared and
private clauses

Coordinates threads
execution

critical and
atomic directives
barrier directive

runtime environment

omp_set_num_threads()
omp_get_thread_num()
OMP_NUM_THREADS
OMP_SCHEDULE

❖  The above categorized constructs are the core elements of OpenMP.
❖  All the categories and their elements are the same in C/C++ and Fortran

OpenMP programming model
❖  Directives: OpenMP directives in C/C++ are based on the #pragma compiler

directives. The directive itself consist of directive name followed by a clause
➢  #pragma omp directive_name [clause list]!
➢  Example: #pragma omp parallel

■  OpenMP programs execute serially until they encounter the parallel
directive.

■  This directive is responsible for creating group of threads.
■  The exact number of thread can be specified using environment variable or

at runtime using OpenMP functions, or clause.
■  The main thread that encounters the parallel directive becomes the

master thread of this group of threads and is assigned the thread id 0

Directive format:

❖  C/C++ directives are case sensitive, Fortran is case insensitive
❖  C/C++ Syntax:

➢  #pragma omp directive [clause [clause] ...]!
➢  Brake lines: use \

❖  Fortran Syntax:
➢  sentinel directive [clause [[,] clause]...]!
➢  The sentinel is one of the following:

■  !$OMP or C$OMP or *$OMP (fixed format)
■  !$OMP (free format)

➢  Brake lines: use the language syntax (&)

Parallel directive example:
#include <stdio.h>!
#include <omp.h>!
int main(){ !
#pragma omp parallel!
 printf("Hello from thread %d, of nthreads %d: \n",
omp_get_thread_num(), omp_get_num_threads()); !

}!

Compile: $ gcc -fopenmp omp_hello_world_omp.c –o omp_helloworld!

Run: $ export OMP_NUM_THREADS=4 && ./omp_hello_world!
Output:
Hello from thread 3, of nthreads 4:
Hello from thread 2, of nthreads 4:
Hello from thread 0, of nthreads 4:
Hello from thread 1, of nthreads 4:

What are OpenMP Clauses for?

❖  The clause [list] is used to specify conditional parallelization, number of
threads, and data handling

➢  Conditional parallelization: The clause if(scalar expression)
determines whether the parallel construct results in creation of threads. Only
one if clause can be used with a parallel directive.

➢  Degree of concurrency: The clause num_threads(integer
expression) specifies the number of threads that are created by the
parallel directive.

The “if()” clause and “num_threads() clause example:

int i; double area = 0.0;
 // Serial segment of the code is here
#pragma omp parallel if (n > 100) num_threads(16)
{ // Start of parallel region
 for (i=0; i<n; i++)
 x[i] += y[i];
} // End of parallel region

❖  This program will only execute in parallel when if expression evaluates to true. Otherwise
it will just run in serial

❖  Overhead of fork/join is high
❖  If a loop is small, you don't want to parallelize.
❖  12 threads each gets 1 block, but last four threads gets each 2 blocks

➢  doing more work than some other threads. (make the blocks smaller for equal work
load)

Specifying concurrent tasks in OpenMP

The parallel directive can be used in conjunction with other directives to specify
concurrency across iterations and tasks.

OpenMP provides two directives (for and sections) to specify concurrent iterations

The for directive:
#pragma omp parallel for
{
 for(i=1; i<n; i++)
 b[i]=(a[i]+a[i-1])/2.0
}
Assigning Iterations to Threads

Parallel loop in C/C++ and Fortran:

// C/C++ OpenMP code:
void example(int n, float *a,
float *b)

{
 int i;
#pragma omp parallel for
 for(i=1; i<n; i++)
 b[i]=(a[i]+a[i-1])/2.0
}

!Fortran OpenMP code:
SUBROUTINE EXAMPLE(N, A, B)

 INTEGER I, N
REAL B(N), A(N)

!$OMP PARALLEL DO
 DO I=2,N
 B(I) = (A(I) + A(I-1))/2.0
 ENDDO

!$OMP END PARALLEL DO
 END SUBROUTINE EXAMPLE

Assigning iterations to threads: using schedule clause
❖  The schedule clause of the for directive deals with the assignment of the iterations to the threads. Syntax:

schedule(scheduling_class [, parameter])
➢  schedule(static [, chunk-size])

■  Distribute the work evenly or in chunk size units specified
■  Pre-determined and predictable amount of work between each iterations
■  compile time

➢  schedule(dynamic [, chunk-size])
■  Distribute the work on available threads in chunk size specified
■  When no idea how long each iterations will take.
■  most work is done runtime

➢  schedule(guided [, chunk-size])
■  Variation of dynamic starting from large chunks sizes and exponentially going down to chunk

size
➢  schedule(auto)

■  Compiler do whatever the heck you thinks is best to get some performance
■  supported only in the newer version of OpenMP

➢  schedule(runtime)
■  the environment variable OMP_SCHEDULE which is one of the static, dynamic, guided or an

appropriate pair like:
●  export OMP_SCHEDULE=”static,500”

How OpenMP threads interact with each other?

❖  OpenMP is a multi-threading, shared address model
➢  Threads communicate by sharing variables

❖  Unintended sharing of data causes race condition
➢  Race condition: when the program’s outcome changes as the threads are

scheduled differently

❖  To control race condition:
➢  Use synchronization to protect data conflicts

❖  Synchronization is expensive so:
➢  Change how data is accessed to minimize the need for synchronization

Race Condition Exercise
#include <stdlib.h>!
#include <stdio.h>!
#include <omp.h> // For OpenMP!
int main(int argc, char **argv) {!
! int i, j, tID;!
 printf("There is something wrong with this example FIX IT\n”);!
#pragma omp parallel private(i, j)!
 {!
 for(i = 0; i < 1000; i++)!
 for(j = 0; j < 1000; j++)!
 tID = omp_get_thread_num();!
 printf("Thread %d : My value of tid (thread id) is %d \n",
omp_get_thread_num(), tID);!

 }!
 printf("\n Did you figure out what is wrong? \n");!
! printf("\nHint: do a # comparison\n”);!
}!

OpenMP clauses (cont.): Data handling/sharing
❖  In an OpenMP program data need to be labeled
❖  There are two ways one could label data in OpenMP

➢  Shared: There is only one instance of the data
■  All the threads can read and write the date

simultaneously, unless protected through a specific
OpenMP construct

■  All changes made are available to all threads
●  But not necessarily immediately, unless inforced

➢  Private: Each thread has its own copy of the data
■  No other threads can have R/W access to this data
■  Changes only visible to the thread that owns the data

private and shared clauses

❖  shared (list)!
➢ Data is accessible by all the threads in the team
➢ All threads access the same address space

❖  private (list)!
➢ No changes associated with the original object
➢ All references are to the local object
➢ Values are undefined on entry and exit

Variable Initialization

❖  firstprivate(list)!
All variables in the list are initialized with the value the original

object had before entering the parallel construct

❖  lastprivate(list)!
The thread that executes the sequentially last iteration or section

updates the value of the objects in the list

Initialization example:
#include <stdio.h>
#include <omp.h>
int main (void)
{
 int i = 10;
#pragma omp parallel firstprivate(i)
 {
 printf("thread %d: i = %d \n",
omp_get_thread_num(), i);

 i = 1000 +
omp_get_thread_num();

 }
 printf("i = %d \n", i);
 return 0;
}

Runtime Experiment:
Compile: $ gcc -fopenmp firstprivate.c -o
firstprivate
Output: $ export OMP_NUM_THREADS=4 && ./
firstprivate
thread 0: i = 0
thread 1: i = -1
thread 3: i = 0
thread 2: i = 0
i = 10

--

thread 1: i = 10
thread 3: i = 10
thread 0: i = 10
thread 2: i = 10
i = 10

Output when i is
used as private:

private(i)

Output when i is
initialized as
firstprivate:

firstprivate(i)

reduction(operator:list) clause

Reduction clause performs a reduction on the variables appear
in its list.

Syntax:!
!reduction ([operator | intrinsic]) : list) !

➢  Reduction variable(s) must be shared variables
➢ A reduction is defined as:

reduction (operator : list) !

A simple OpenMP example
#include <stdlib.h>!
#include <stdio.h>!
#include <omp.h> // For OpenMP!
#define NUM_THREADS 2!
static long num_steps = 100000;!
double step;!
void main (){!
!int i;!
 double x, pi, sum = 0.0;!
 step = 1.0/(double) num_steps;!
 omp_set_num_threads (NUM_THREADS);!
 #pragma omp parallel for reduction(+:sum) private(x)!
 for (i=1;i<= num_steps; i++){!
! !x = (i-0.5)*step;!
! !sum = sum + 4.0/(1.0+x*x);!
 }!
 pi = step * sum;!
 printf(" pi is %f \n",pi);!
}!

Sources:
http://www.cs.uiuc.edu/homes/snir/PPP/
https://computing.llnl.gov/tutorials/openMP/
MIT Course:

http://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-950-parallel-programming-for-multicore-machines-
using-openmp-and-mpi-january-iap-2010/

http://openmp.org/mp-documents/Intro_To_OpenMP_Mattson.pdf
http://openmp.org/wp/
https://www.cac.cornell.edu/VW/OpenMP/threads.aspx
https://source.ggy.bris.ac.uk/wiki/OpenMP

