
OpenMP Guide

OpenMP Guide

The purpose of this guide is to discuss a number of topics related to OpenMP. The topics include:

● Portability issues
● Discussion of thread scheduling and the effect of scheduling on timings
● Information on compiler invocation
● A collection of links to additional information
● Potential problems from the inmaturity of compilers

This guide is organized as a collection of articles. The titles are shown below. The collection of links is just what it says, a collection of
web links to useful pages dealing with OpenMP. These include documentation, user groups, tutorials, and vendor information. The
compiler invocation section discussed how OpenMP is invoked and controlled on various platforms.

The material included under "Examples and more obscure usages" is somewhat varied. It includes discussions on thread scheduling in
do/for loops, some advanced threadprivate code, coarse grained parallelism not using do/for loops, and some examples that are included
simply because they broke many early implementations of OpenMP.

The examples all have source code associated with them. Some of the articles have sections of the code imbedded. For consistency, there
is a link to the complete source at the beginning of each article.

1. Collection of links
2. Compiler invocation, information and environment variables
3. Examples and a little more obscure usages

❍ Portability and thread scheduling
❍ Effects of schedule types
❍ Parallel Sections
❍ Threadprivate, derived types, maintaining variables between parallel regions
❍ Single and operations on a subsection of an array without using a for loop
❍ Merge Sort, threadprivate with pointers to derived types

http://coherentcognition.com/projects/port/articles/openmp/guide/ (1 of 2) [6/11/2003 9:33:14 AM]

OpenMP Guide

■ Fortran version
■ C version

❍ Atomic operation to update an array index
❍ RUNTIME scheduling, FFTs and performance issues

http://coherentcognition.com/projects/port/articles/openmp/guide/ (2 of 2) [6/11/2003 9:33:14 AM]

Collection of links

Collection of links about OpenMP

Main OpenMP web pages. Contains links to many other OpenMP sites.

OpenMP Architecture Review Board
http://www.openmp.org/

Official OpenMP Specifications
http://www.openmp.org/specs/

User Group

cOMPunity, a community of OpenMP researchers and developers in academia and industry
http://www.compunity.org/

Good general link

Parallel Computing Group at La Laguna University
http://nereida.deioc.ull.es/html/openmp.html

Tutorials

Tutorials and a lot of other good information from La Laguna University
http://nereida.deioc.ull.es/html/openmpindex.html#tutorials

Nice short tutorial from NERSC
http://hpcf.nersc.gov/training/tutorials/openmp/

LLNL
http://www.llnl.gov/computing/tutorials/workshops/workshop/openMP/MAIN.html

http://coherentcognition.com/projects/port/articles/openmp/guide/links.html (1 of 3) [6/11/2003 9:33:16 AM]

http://www.openmp.org/
http://www.openmp.org/specs/
http://www.compunity.org/
http://nereida.deioc.ull.es/html/openmp.html
http://nereida.deioc.ull.es/html/openmpindex.html#tutorials
http://hpcf.nersc.gov/training/tutorials/openmp/
http://www.llnl.gov/computing/tutorials/workshops/workshop/openMP/MAIN.html

Collection of links

Free implementations of OpenMP

Intone OpenMP C/C++ compiler
http://odinmp.imit.kth.se/

Omni OpenMP Compiler Project
http://phase.etl.go.jp/Omni/

OpenMP benchmarks

EPCC microbenchmarks
http://www.epcc.ed.ac.uk/research/openmpbench/

EPCC microbenchmarks in Fortran90
http://coherentcognition.com/~tkaiser/articles/openmp/bull/port.html

NAS Parallel Benchmarks
http://phase.etl.go.jp/Omni/benchmarks/NPB/index.html

Vendor information

HP-KAP

Fortan
http://nf.apac.edu.au/facilities/sc/compaq_mirror3/progtool/kapc/kapc.html

C
http://nf.apac.edu.au/facilities/sc/compaq_mirror3/progtool/kapf/kapfu.htm

IBM AIX

Fortran
http://www-3.ibm.com/software/awdtools/fortran/xlfortran/support/ Then click on Product information

C

http://coherentcognition.com/projects/port/articles/openmp/guide/links.html (2 of 3) [6/11/2003 9:33:16 AM]

http://odinmp.imit.kth.se/
http://phase.etl.go.jp/Omni/
http://www.epcc.ed.ac.uk/research/openmpbench/
http://coherentcognition.com/~tkaiser/articles/openmp/bull/port.html
http://phase.etl.go.jp/Omni/benchmarks/NPB/index.html
http://nf.apac.edu.au/facilities/sc/compaq_mirror3/progtool/kapc/kapc.html
http://nf.apac.edu.au/facilities/sc/compaq_mirror3/progtool/kapf/kapfu.htm
http://www-3.ibm.com/software/awdtools/fortran/xlfortran/support/

Collection of links

http://www-3.ibm.com/software/awdtools/caix/support/ Then click on Product information

SUN

Fortran users Guide
ftp://docs-pdf.sun.com/806-7988/806-7988.pdf

Fortran Programmers Guide
ftp://docs-pdf.sun.com/805-4940/805-4940.pdf

For other Sun documents see
http://docs.sun.com/

Intel

Compiler pages
http://developer.intel.com/software/products/compilers

Fortran User guide
http://www.intel.com/software/products/compilers/techtopics/for_ug_lnx.htm

Fortran Reference
http://www.intel.com/software/products/compilers/techtopics/for_prg.htm

Intel C++ Compiler User's Guide
http://developer.intel.com/software/products/compilers/techtopics/c_ug_lnx.pdf

Intel C++ Compiler 7.0 for Linux* Getting Started Guide
ftp://download.intel.com/software/products/compilers/techtopics/C_Getting_Started_Guide1.pdf

For additional Intel documentation
Do an anonymous ftp to download.intel.com and look in the directory /software/products/compilers/techtopics

http://coherentcognition.com/projects/port/articles/openmp/guide/links.html (3 of 3) [6/11/2003 9:33:16 AM]

http://www-3.ibm.com/software/awdtools/caix/support/
ftp://docs-pdf.sun.com/806-7988/806-7988.pdf
ftp://docs-pdf.sun.com/805-4940/805-4940.pdf
http://docs.sun.com/
http://developer.intel.com/software/products/compilers
http://www.intel.com/software/products/compilers/techtopics/for_ug_lnx.htm
http://www.intel.com/software/products/compilers/techtopics/for_prg.htm
http://developer.intel.com/software/products/compilers/techtopics/c_ug_lnx.pdf
ftp://download.intel.com/software/products/compilers/techtopics/C_Getting_Started_Guide1.pdf

Compiler invocation, information and environment variables

Compiler invocation, information and environment variables

Cray SV1

To Enable OpenMP in the compiler

Fortran

OpenMP is on by default to turn it off specify

f90 -xOMP myprogram.f90

Notes on environment variables:

OMP_DYNAMIC
OMP_DYNAMIC is ignored. The dynamic adjustment of threads is always enabled and cannot be disabled.

OMP_NESTED
OMP_NESTED is ignored. Nested parallelism is not supported.

OMP_SCHEDULE
The default schedule type is DYNAMIC.

OMP_NUM_THREADS
Caution, the value of the NCPUS environment variable overrides the value of the OMP_NUM_THREADS environment variable.
That is, if NCPUS is set then it takes precedence over OMP_NUM_THREADS. If neither are defined then the default is 4 or the
number of CPUs on the system, whichever is less.

NCPUS
See OMP_NUM_THREADS

Other notes:

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (1 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

IBM AIX

To Enable OpenMP in the compiler

Fortran

Use the compilers xlf_r, xlf90_r, or xlf95_r and specify the -qsmp=omp compiler option. The "_r" extension in the compiler name
supplies thread safe library routines.

C

Use the compilers xlc_r or cc_r and specify the -qsmp=omp compiler option. The "_r" extension in the compiler name supplies thread
safe library routines.

You can also specify the schedule type for threads on the compile line using the syntax

xlf90_r myprogram.f -qsmp=omp,schedule=static

Where the schedule suboption takes subsuboptions.

● affinity[=n]
● dynamic[=n]
● guided[=n]
● runtime
● static[=n]
● threshold[=n]

For descriptions please see below or the Fortran User's Guide.

Notes on environment variables:

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (2 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

OMP_DYNAMIC
Defalut value is TRUE

OMP_NESTED
Defalut value is FALSE

OMP_SCHEDULE
The default schedule type is STATIC.

OMP_NUM_THREADS
Defalut value is the number of processors on a node

XLSMPOPTS
Can be used instead of the normal OMP environment varaialbes. See below. If you specify both the XLSMPOPTS environment
variable and an OpenMP environment variable, the OpenMP environment variable takes precedence.

Other notes:

If there is a routine say, my_fft, where my_fft does not contain OpenMP and it is called in a loop like:

!$omp parallel do
 do i=1,n
 call my_fft(x(i))
 enddo

Try compiling my_fft separately with OpenMP turned off and link it with the rest of your program. Compiling with OpenMP limits some
optimizations. Compiling separately might improve performance.

From the IBM XLF Users guide: The XLSMPOPTS Environment Variable

The XLSMPOPTS environment variable allows you to specify options that affect SMP execution. You can declare XLSMPOPTS by
using the following ksh command format:

XLSMPOPTS= runtime_option_name = option_setting

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (3 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

You can specify option names and settings in uppercase or lowercase. You can add blanks before and after the colons and equal signs to
improve readability. However, if the XLSMPOPTS option string contains imbedded blanks, you must enclose the entire option string in
double quotation marks ("). You can specify the following run-time options with the XLSMPOPTS environment variable:

schedule

Selects the scheduling type and chunk size to be used as the default at run time. The scheduling type that you specify will only be used
for loops that were not already marked with a scheduling type at compilation time. Work is assigned to threads in a different manner,
depending on the scheduling type and chunk size used. A brief description of the scheduling types and their influence on how work is
assigned follows:

dynamic or guided
The run-time library dynamically schedules parallel work for threads on a "first-come, first-do" basis. "Chunks" of the remaining
work are assigned to available threads until all work has been assigned. Work is not assigned to threads that are asleep.

static
Chunks of work are assigned to the threads in a "round-robin" fashion. Work is assigned to all threads, both active and asleep. The
system must activate sleeping threads in order for them to complete their assigned work.

affinity
The run-time library performs an initial division of the iterations into number_of_threads partitions. The number of iterations that
these partitions contain is:
CEILING(number_of_iterations / number_of_threads)
These partitions are then assigned to each of the threads. It is these partitions that are then subdivided into chunks of iterations. If
a thread is asleep, the threads that are active will complete their assigned partition of work.

Choosing chunking granularity is a tradeoff between overhead and load balancing. The syntax for this option is schedule=suboption,
where the suboptions are defined as follows:

affinity[=n]
As described previously, the iterations of a loop are initially divided into partitions, which are then preassigned to the threads.
Each of these partitions is then further subdivided into chunks that contain n iterations. If you have not specified n, a chunk
consists of

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (4 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

CEILING(number_of_iterations_remaining_in_local_partition / 2)
loop iterations. When a thread becomes available, it takes the next chunk from its preassigned partition. If there are no more
chunks in that partition, the thread takes the next available chunk from a partition preassigned to another thread.

dynamic[=n]
The iterations of a loop are divided into chunks that contain n iterations each. If you have not specified n,a chunk consists of
CEILING(number_of_iterations / number_of_threads)
iterations.

guided[=n]
The iterations of a loop are divided into progressively smaller chunks until a minimum chunk size of n loop iterations is reached.
If you have not specified n, the default value for n is 1 iteration. The first chunk contains
CEILING(number_of_iterations / number_of_threads)
iterations. Subsequent chunks consist of
CEILING(number_of_iterations_remaining / number_of_threads)
iterations.

static[=n]
The iterations of a loop are divided into chunks that contain n iterations. Threads are assigned chunks in a "round-robin" fashion.
This is known as block cyclic scheduling. If the value of n is 1, the scheduling type is specifically referred to as cyclic scheduling.
If you have not specified n, the chunks will contain
CEILING(number_of_iterations / number_of_threads)
iterations. Each thread is assigned one of these chunks. This is known as block scheduling. If you have not specified schedule, the
default is set to schedule=static, resulting in block scheduling.

Related Information: For more information, see the description of the SCHEDULE directive in the XL Fortran for AIX Language
Reference. 74 XL Fortran for AIX: User's Guide

Parallel execution options

The three parallel execution options, parthds, usrthds, and stack,areas follows:

parthds=num
Specifies the number of threads (num)to be used for parallel execution of code that you compiled with the -qsmp option. By
default, this is equal to the number of online processors. There are some applications that cannot use more than some maximum

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (5 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

number of processors. There are also some applications that can achieve performance gains if they use more threads than there are
processors. This option allows you full control over the number of execution threads. The default value for num is 1 if you did not
specify -qsmp. Otherwise, it is the number of online processors on the machine. For more information, see the NUM_PARTHDS
intrinsic function in the XL Fortran for AIX Language Reference.

usrthds=num
Specifies the maximum number of threads (num) that you expect your code will explicitly create if the code does explicit thread
creation. The default value for num is 0. For more information, see the NUM_USRTHDS intrinsic function in the XL Fortran for
AIX Language Reference.

stack=num
Specifies the largest amount of space in bytes (num) that a thread's stack will need. The default value for num is 4194304.

SGI

Fortran

To Enable OpenMP in the compiler

f90 -mp -MP:open_mp=ON myprog.f90

C

cc -mp -MP:open_mp=ON myprog.c

Notes on environment variables:

OMP_SCHEDULE
The default value for this environment variable is STATIC.

OMP_NUM_THREADS

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (6 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

The default value is the minimum of 8 and the number of CPUs on the system.
OMP_DYNAMIC

The default value is TRUE.
OMP_NESTED

The default is FALSE

Other notes:

You can specify default scheduling on the compile line. From the f90 man page we find:

 -mp_schedtype=mode
 Specifies a default mode for scheduling work among the
 participating tasks in loops. This option must be specified
 in conjunction with -mp. Specifying this option has the
 same effect as putting a !$MP_SCHEDTYPE=mode directive at
 the beginning of the file. Specify one of the following for
 mode:

 mode Action

 DYNAMIC Breaks the iterations into pieces, the size
 of which is specified by the -chunk=integer
 option. As each process finishes a piece, it
 enters a critical section and obtains the
 next available piece. For more information,
 see the -chunk=integer option.

 GSS Schedules pieces according to the sizes of
 the pieces awaiting execution.

 INTERLEAVE Breaks the iterations into pieces, this size
 of which is specified by the -chunk=integer
 option. Execution of the pieces is

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (7 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

 interleaved among the processes. For more
 information, see the -chunk=integer option.

 RUNTIME Schedules pieces according to information
 contained in the MP_SCHEDTYPE environment
 variable.

 SIMPLE Divides the iterations among processes by
 dividing them into contiguous pieces and
 assigning one piece to each process.
 Default.

Additional information can be obtain by running the following commands:

man 5 pe_environ

relnotes ftn90_fe

Sun Microsystems

To Enable OpenMP in the compiler

Fortran

f90 -explicitpar -stackvar -mp=openmp myprog.f90

or

f90 -openmp

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (8 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

This option is a macro for the combination of options:

 -mp=openmp -explicitpar -stackvar -D_OPENMP=2000011

-D_OPENMP=2000011 specifies the November 2000 version of OpenMP, that is version 2.0

f90 -xopenmp

-xopenmp is a synonym for -openmp

C

cc -xopenmp=parallel myprog.c

Notes on environment variables:

OMP_SCHEDULE
Default value of STATIC is used

OMP_NUM_THREADS
Default of 1 is used.

OMP_DYNAMIC
A default value of TRUE is used.

OMP_NESTED
Ignored. Nested parallelism is not supported.

Other notes:

Environment variables not part of the OpenMP Fortran API:

SUNW_MP_THR_IDLE

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (9 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

Controls the end-of-task status of each thread executing the parallel part of a program. You can set the value to spin, sleep ns, or
sleep nms. The default is SPIN: a thread should spin (or busy-wait) after completing a parallel task, until a new parallel task
arrives. Choosing SLEEP time specifies the amount of time a thread should spin-wait after completing a parallel task. If, while a
thread is spinning, a new task arrives for the thread, the tread executes the new task immediately. Otherwise, the thread goes to
sleep and is awakened when a new task arrives. time may be specified in seconds, (ns), or just (n), or milliseconds, (nms). SLEEP
with no argument puts the thread to sleep immediately after completing a parallel task. SLEEP, SLEEP (0), SLEEP (0s), and
SLEEP (0ms) are all equivalent. Example: setenv SUNW_MP_THR_IDLE (50ms)

HP Tru64 UNIX and Linux Alpha Systems

To Enable OpenMP in the KAP compiler

Fortran

kf90 -fkapargs='-noconc' myprogram.f -omp -pthread -call_shared

C

kcc -ckapargs='-noconc' myprogram.c -omp -pthread -call_shared

The option -fkapargs='-noconc' turns off automatic parallelization.

OMP_SCHEDULE
(static,dynamic,guided,runtime)

OMP_DYNAMIC
Default is false.

OMP_NESTED
Default is false.

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (10 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

OMP_NUM_THREADS
Default value is the number of processors on the current system.

Other notes:

IBM and HP_UX /Intel IA-32 and Itanium

To Enable OpenMP

Fortran

For IA-32

ifc -openmp myprogram.f90

For Itanium

efc -openmp myprogram.f90

Note: Specifing -openmp implies the -fpp option.

C

For IA-32

icc -openmp myprogram.c

For Itanium

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (11 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

ecc -openmp myprogram.c

OMP_SCHEDULE
Defalut static,no chunk sizespecified

OMP_NUM_THREADS
Defalut Number of processors

OMP_DYNAMIC
Default .false.

OMP_NESTED Enables
Default .false.

Other notes:

The user can specify the detail level of the report on OpenMP parallelization:

-openmp_report{0|1|2}
Controls the OpenMP parallelizers diagnostic levels. The default is 1

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (12 of 12) [6/11/2003 9:33:18 AM]

Portability and thread scheduling

Portability and thread scheduling

Link to example source.

There is a common misconception about OpenMP. Programmers often assume that there is a guarantee that a particular thread, or
collection of threads, will execute some block of code. In some cases there is no such guarantee provided by OpenMP. Programs that are
written assuming such a guarantee might produce different results on different machines and thus are not portable. They may also
produce different results on subsequent runs on the same machine.

We will look at two examples. The first deals with do loops the second with parallel regions outside of do loops. Assume we are running
the examples using 4 threads.

Programmers will often write something like

!$OMP parallel do
do n=1,4
 if(omp_get_thread_num() .eq. 2)then
 call some_func(n)
 else
 call another_func(n)
 endif
enddo

A programmer might write this block of code assuming that some_func will be called with n=2. There are three possibilities for this
program: some_func is called with n=2, some_func is called with n not equal to 2, and sume_func is not called at all.

In the case given above, the programmer has not specified a schedule type for the do loop. Thus the implementors of the OpenMP
compiler is free to chose a schedule for this loop. In an exstream, the schedule could be such that all work is given to the first thread and
none to the others. (This would actually make sense if the overhead of handling threads was high and the amount of work for each
iteration was small.) If all of the work was given to the first thread then the function some_func would never be called.

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (1 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

Programmer writers are free to specify schedules. For example, you could specify a STATIC schedule with a chunk size of 1, like

!$OMP parallel do schedule(static,1)

The static schedule has the following meaning:

STATIC
When schedule (static, chunk_size) is specified, iterations are divided into chunks of size specified by chunk_size. The chunks are
statically assigned to threads in the team in a round-robin fashion in the order of the thread number.

Will this guarantee that some_func is called with n=4. No. We read in the OpenMP standard at the end of section 2.4.1. "An OpenMP-
compliant program should not rely on a particular schedule for correct execution. A program should not rely on a schedule kind
conforming precisely to the description given above, because it is possible to have variations in the implementation of the same schedule
kind across different compilers. The description can be used to select the schedule that is appropriate for a particular situation."

In other words, programmers should use the schedule clause to suggest to the compiler how the work should be distributed. For some
reason, maybe known only to them, the compiler writer is free to, ignore the schedule clause.

Here is a slight variation on the example given above.

!$OMP end parallel
!$OMP parallel do
 do n=1,8
 if(n .eq. 1)then
 call my_wait(x)
 endif
 write(*,*)n,omp_get_thread_num()
 enddo

Here we specify that a statement, the call to my_wait, be executed with n=1. The function my_wait is designed to pause for a given
number of seconds. In this case, the value of x can effect the thread that executes the write statement. For a machine that uses dynamic

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (2 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

scheduling as the default, you might get the following if x=0.

 1, 0
 2, 1
 3, 2
 4, 3
 5, 0
 6, 1
 7, 2
 8, 3

Or,if x=1 you could get

 2, 1
 3, 1
 4, 2
 5, 3
 6, 1
 7, 2
 8, 3
 1, 0

so that thread 0 only gets one iteration of the do loop. Or we could even get

 2, 1
 3, 1
 4, 1
 5, 1
 6, 1
 7, 1
 8, 1
 1, 0

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (3 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

Let's look at another example.

!$OMP parallel
 myt=omp_get_thread_num()
 write(*,*)"thread= ",myt," of ",OMP_GET_NUM_THREADS()
!$OMP end parallel

Clearly, the ordering of the output from the write statement is non deterministic so the programmer might expect something like

 thread= 2 of 4
 thread= 1 of 4
 thread= 0 of 4
 thread= 3 of 4

But you might get

 thread= 3 of 4
 thread= 3 of 4
 thread= 3 of 4
 thread= 3 of 4

Both of these are actual results produced on different machines. Both sets of results are legal. From the OpenMP version 2.0
specification, page 3 line 224 we have: "When a parallel construct is encountered, the master thread creates a team of threads, and the
master thread becomes the master of the team. The statements in the program that are enclosed by the parallel construct, including
routines called from within the enclosed statements, are executed in parallel by each thread in the team."

For this simple section of code, every thread executes every statement but the ordering of the statement execution, is not fixed. In the first
case, thread 2 set the value of myt to 2 and then printed the value. Then thread 1 did the same and so on. In the second case all of the
threads set the value of myt. Thread 3 was the final thread to set the value. Thus, when each thread took a turn at printing the value of
myt it printed the final value 3.

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (4 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

With a slight modification of this program, it will always produce an enumeration of all of the threads.

!$OMP parallel
!$OMP critical
 myt=omp_get_thread_num()
 write(*,*)"critical thread= ",myt
!$OMP end critical
!$OMP end parallel

In this case, the critical directive causes each thread to call omp_get_thread_num then to do the write before another thread can change
the value. The ordering of the output from each thread is still non deterministic so we might get

 critical thread= 0
 critical thread= 2
 critical thread= 3
 critical thread= 1

The program combines these examples. It was run twice on a collection of machines with the results reported below.

Program listing

program ompf
 integer OMP_GET_THREAD_NUM,OMP_GET_NUM_THREADS
 logical wt(0:3)
!$OMP parallel
 myt=omp_get_thread_num()
 write(*,*)"myt= ",myt," of ",OMP_GET_NUM_THREADS()
!$OMP end parallel
!$OMP parallel
!$OMP critical

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (5 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

 myt=omp_get_thread_num()
 write(*,*)"inside critical myt= ",myt
!$OMP end critical
!$OMP end parallel
 x=0.0
!$OMP parallel do
 do n=1,8
 if(n .eq. 1)then
 call my_wait(x)
 endif
!$OMP critical
 write(*,*)n,omp_get_thread_num()
!$OMP end critical
 enddo
 write (*,*)"*********"
 x=10.0
!$OMP parallel do
 do n=1,8
 if(n .eq. 1)then
 call my_wait(x)
 endif
!$OMP critical
 write(*,*)n,omp_get_thread_num()
!$OMP end critical
 enddo
end
subroutine my_wait(x)
 real x
 integer ct1,ct2,cr,cm,cend
 if(x .le. 0.0)return
 call system_clock(ct1,cr,cm)
 cend=ct1+nint(x*float(cr))

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (6 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

 do
 call system_clock(ct2)
 if(ct2 .lt. ct1)ct2=ct1+cm
 if(ct2 .ge. cend)return
 enddo
end subroutine

Results

IBM SP xlf90 version 7.x

Run 1 Run 2

% ./a.out
 myt= 0 of 4
 myt= 0 of 4
 myt= 0 of 4
 myt= 0 of 4
 inside critical myt= 1
 inside critical myt= 3
 inside critical myt= 0
 inside critical myt= 2
 3 1
 4 1
 5 2
 6 2
 7 3
 8 3
 1 0

% ./a.out
 myt= 2 of 4
 myt= 2 of 4
 myt= 2 of 4
 myt= 2 of 4
 inside critical myt= 0
 inside critical myt= 1
 inside critical myt= 3
 inside critical myt= 2
 7 3
 8 3
 3 1
 4 1
 5 2
 6 2
 1 0

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (7 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

 2 0

 3 1
 4 1
 5 2
 6 2
 7 3
 8 3
 1 0
 2 0
%

 2 0

 7 3
 8 3
 5 2
 6 2
 3 1
 4 1
 1 0
 2 0
%

Cray Sv1 Fortran: Version 3.5.0.4

Run 1 Run 2

% ./a.out
 myt= 3 of 4
 myt= 3 of 4
 myt= 3 of 4
 myt= 3 of 4
 inside critical myt= 0
 inside critical myt= 1
 inside critical myt= 2
 inside critical myt= 3
 1, 0
 2, 1
 3, 2
 4, 0
 5, 3

% ./a.out
 myt= 3 of 4
 myt= 3 of 4
 myt= 3 of 4
 myt= 3 of 4
 inside critical myt= 0
 inside critical myt= 1
 inside critical myt= 2
 inside critical myt= 3
 1, 0
 2, 1
 3, 2
 4, 3
 5, 0

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (8 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

 6, 1
 7, 2
 8, 0

 2, 3
 2*3
 4, 1
 5, 2
 6, 3
 7, 1
 8, 2
 1, 0
%

 6, 1
 7, 2
 8, 0

 2, 3
 2*3
 4, 3
 5, 3
 6, 3
 7, 3
 8, 3
 1, 0
%

Intel Fortran Itanium(R) compiler version 7.0

Run 1 Run 2

% ./a.out
 myt= 0 of 4
 myt= 2 of 4
 myt= 3 of 4
 myt= 1 of 4
 inside critical myt= 0
 inside critical myt= 1
 inside critical myt= 2
 inside critical myt= 3
 1 0
 5 2
 7 3

%./a.out
 myt= 1 of 4
 myt= 0 of 4
 myt= 2 of 4
 myt= 3 of 4
 inside critical myt= 1
 inside critical myt= 2
 inside critical myt= 0
 inside critical myt= 3
 5 2
 3 1
 7 3

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (9 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

 2 0
 6 2
 8 3
 3 1
 4 1

 3 1
 5 2
 4 1
 6 2
 7 3
 8 3
 1 0
 2 0
%

 1 0
 6 2
 4 1
 8 3
 2 0

 3 1
 5 2
 4 1
 6 2
 7 3
 8 3
 1 0
 2 0
%

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (10 of 10) [6/11/2003 9:33:19 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/ompf.f90

program ompf
 integer OMP_GET_THREAD_NUM,OMP_GET_NUM_THREADS
 logical wt(0:3)
!$OMP parallel
 myt=omp_get_thread_num()
 write(*,*)"myt= ",myt," of ",OMP_GET_NUM_THREADS()
!$OMP end parallel
!$OMP parallel
!$OMP critical
 myt=omp_get_thread_num()
 write(*,*)"inside critical myt= ",myt
!$OMP end critical
!$OMP end parallel
 x=0.0
!$OMP parallel do
 do n=1,8
 if(n .eq. 1)then
 call my_wait(x)
 endif
!$OMP critical
 write(*,*)n,omp_get_thread_num()
!$OMP end critical
 enddo
 write (*,*)"*********"
 x=10.0
!$OMP parallel do
 do n=1,8
 if(n .eq. 1)then
 call my_wait(x)
 endif
!$OMP critical
 write(*,*)n,omp_get_thread_num()
!$OMP end critical
 enddo
end
subroutine my_wait(x)
 real x
 integer ct1,ct2,cr,cm,cend
 if(x .le. 0.0)return
 call system_clock(ct1,cr,cm)
 cend=ct1+nint(x*float(cr))
 do
 call system_clock(ct2)
 if(ct2 .lt. ct1)ct2=ct1+cm
 if(ct2 .ge. cend)return
 enddo

http://coherentcognition.com/projects/port/articles/openmp/guide/ompf.f90 (1 of 2) [6/11/2003 9:33:20 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/ompf.f90

end subroutine

http://coherentcognition.com/projects/port/articles/openmp/guide/ompf.f90 (2 of 2) [6/11/2003 9:33:20 AM]

Effects of schedule types

Effects of schedule types

Link to example source.

The purpose of this article is to show that loop schedule type can dramatically effect run time. We present three simple routines. These
routines are called in a loop using various schedules. The run times vary depending on schedule type and in some cases the results are not
what is expected. In particular, the thread that performs a specific iteration count of a loop is not always the one implied by the schedule.

Consider the following three routines

1. all_fast

void all_fast() {
 int k;
 k=omp_get_thread_num();
 dist[k]++;
}

2. zero_slow

void zero_slow() {
 int k;
 FLT x,y;
 k=omp_get_thread_num();
 dist[k]++;
 if(k == 0) {
 x=system_clock((FLT*)0);
 y=x+1;
 while(x < y) {
 x=system_clock((FLT*)0);
 }

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (1 of 9) [6/11/2003 9:33:21 AM]

Effects of schedule types

 }
}

3. imbalance

void imbalance (int i) {
 int k;
 FLT x,y;
 k=omp_get_thread_num();
 dist[k]++;
 if(i == 1) {
 idid=k;
 x=system_clock((FLT*)0);
 y=x+1;
 while(x < y) {
 x=system_clock((FLT*)0);
 }
 }
 else {
 x=system_clock((FLT*)0);
 y=x+0.01;
 while(x < y) {
 x=system_clock((FLT*)0);
 }
 }
}

The first routine, all_fast, does no real work. It just increments a counter dist[k], where k is the thread number calling the routine.

The second routine addes a block of code that spins for one second if the thread calling the routine is thread 0.

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (2 of 9) [6/11/2003 9:33:21 AM]

Effects of schedule types

The third routine, imbalance, runs for 1 second if the input value is 1 and 0.01 seconds for other input values.

We are interested in seeing what will happen if these routines are called in a for loop using different types of scheduling. Why? Even if
you manually specify scheduling, some implementations of openmp have slightly differnt scheduling algorithms. That is, different
threads than would be expected from the specified scheduling, run individual iterations of a for loop. This illustrates that uses sould not
rely on specific threads running specific iterations of a loop. We also see that different scheduling algorithms can lead to dramaticily
different run times.

We call these routine in a wrapper program that reports the type of scheduling, the routine called, the total number of iterations, and the
precent of the iterations that are performmed by each thread. For the imbalance routine we also report which thread ran the slow iteration.
We compare the results to what might be expected.

Output Expected

****** default scheduling
****** for a subroutine with little work
0 25.00 %
1 25.00 %
2 25.00 %
3 25.00 %
 total iterations: 400 time 0.00

Each thread does an equal number of iterations as expected. The
total time is less than 0.01 seconds.

Output Expected

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (3 of 9) [6/11/2003 9:33:21 AM]

Effects of schedule types

****** default scheduling
****** for a subroutine with thread 0 given 1 second of work
0 25.00 %
1 25.00 %
2 25.00 %
3 25.00 %
 total iterations: 16 time 4.00

It looks like this machine is doing
static scheduling. It is giving thread 0
4 iterations each taking 1 second. It
would be faster if thread 0 was not
given as much work, say using
dynamic scheduling.

Output Expected

****** schedule(static,1)
****** for a subroutine with thread 0 given 1 second of work
0 25.00 %
1 25.00 %
2 25.00 %
3 25.00 %
 total iterations: 16 time 4.00

The results are 25% for each thread as
expected. It would be faster if thread 0
was not given as much work, say
using dynamic scheduling.

Output Expected

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (4 of 9) [6/11/2003 9:33:21 AM]

Effects of schedule types

****** schedule(static,2)
****** for a subroutine with thread 0 given 1 second of work
0 25.00 %
1 25.00 %
2 25.00 %
3 25.00 %
 total iterations: 16 time 4.00

The results are 25% for each thread as
expected. It would be faster if thread 0
was not given as much work, say
using dynamic scheduling.

Output Expected

****** schedule(dynamic,1)
****** for a subroutine with thread 0 given 1 second of work
0 6.25 %
1 87.50 %
2 0.00 %
3 6.25 %
 total iterations: 16 time 1.00

Dynamic scheduling allows thread 0
to be given a single iteration. The time
for the loop is still dominated by the
time used by thread 0. This is
expected. The suprize in this case is
that the rest of the iterations are not
distributed to the remaining threads
evenly.

Output Expected

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (5 of 9) [6/11/2003 9:33:21 AM]

Effects of schedule types

****** schedule(dynamic,2)
****** for a subroutine with thread 0 given 1 second of work
0 0.00 %
1 0.00 %
2 12.50 %
3 87.50 %
 total iterations: 16 time 0.00

It is expected that thread 0 be given an
iteration. It is not so the loop runs
very fast. The other suprize in this
case is that the rest of the iterations
are not distributed to the remaining
threads evenly.

Output Expected

****** schedule(dynamic,4)
****** for a subroutine with thread 0 given 1 second of work
0 0.00 %
1 100.00 %
2 0.00 %
3 0.00 %
 total iterations: 16 time 0.00

It is expected that thread 0 be given an
iteration. It is not so the loop runs
very fast. The other suprize in this
case is that the rest of the iterations
are not distributed to the remaining
threads evenly.

Output Expected

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (6 of 9) [6/11/2003 9:33:21 AM]

Effects of schedule types

****** default scheduling
****** for an imbalanced subroutine
0 25.00 %
1 25.00 %
2 25.00 %
3 25.00 %
 total iterations: 400 time 1.99
 thread 0 did the slow iteration

As said above, this machine used static scheduling by default. Each
thread gets 25% of the iterations. The run time is determined by thread 0
that doing the slow iteration, 1 second, followed by 99 iterations of 0.01
seconds. The other threads are idle while it is doing the 99 iterations.

Output Expected

****** schedule(static,1)
****** for an imbalanced subroutine
0 25.00 %
1 25.00 %
2 25.00 %
3 25.00 %
 total iterations: 400 time 1.99
 thread 0 did the slow iteration

Each thread gets 25% of the iterations. The run time is determined by
thread 0 that doing the slow iteration, 1 second, followed by 99
iterations of 0.01 seconds. The other threads are idle while it is doing the
99 iterations.

Output Expected

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (7 of 9) [6/11/2003 9:33:21 AM]

Effects of schedule types

****** schedule(static,2)
****** for an imbalanced subroutine
0 25.00 %
1 25.00 %
2 25.00 %
3 25.00 %
 total iterations: 400 time 1.99
 thread 0 did the slow iteration

Each thread gets 25% of the iterations. The run time is determined by
thread 0 that doing the slow iteration, 1 second, followed by 99
iterations of 0.01 seconds. The other threads are idle while it is doing the
99 iterations.

Output Expected

****** schedule(dynamic,1)
****** for an imbalanced subroutine
0 31.00 %
1 31.25 %
2 6.50 %
3 31.25 %
 total iterations: 400 time 1.25
 thread 2 did the slow iteration

It might be expected that thread 1 would get the slow iteration.
However, the performance for this loop is good, 1.25 seconds, compared
to static scheduling, 1.99 seconds. Thread 2 does the slow iteration, 1
second, while the other threads do 100 iterations in 1 second for a total
of 301 iterations. The remaining 99 iterations are distributed amongst the
4 threads for about 0.25 seconds. This is the optimum solution.

Output Expected

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (8 of 9) [6/11/2003 9:33:21 AM]

Effects of schedule types

****** schedule(dynamic,2)
****** for an imbalanced subroutine
0 31.50 %
1 6.50 %
2 31.00 %
3 31.00 %
 total iterations: 400 time 1.26
 thread 1 did the slow iteration

It might be expected that thread 1 would get the slow iteration.
However, the performance for this loop is good, 1.25 seconds, compared
to static scheduling, 1.99 seconds. Thread 2 does the slow iteration, 1
second, while the other threads do 100 iterations in 1 second for a total
of 301 iterations. The remaining 99 iterations are distributed amongst the
4 threads for about 0.25 seconds. This is a near optimum solution.

Output Expected

****** schedule(dynamic,4)
****** for an imbalanced subroutine
0 6.50 %
1 31.50 %
2 31.00 %
3 31.00 %
 total iterations: 400 time 1.26
 thread 0 did the slow iteration

It might be expected that thread 1 would get the slow iteration.
However, the performance for this loop is good, 1.25 seconds, compared
to static scheduling, 1.99 seconds. Thread 2 does the slow iteration, 1
second, while the other threads do 100 iterations in 1 second for a total
of 301 iterations. The remaining 99 iterations are distributed amongst the
4 threads for about 0.25 seconds. This is a near optimum solution.

t5.c

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (9 of 9) [6/11/2003 9:33:21 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c

/* cc -lm t4.c -qsmp */
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#include <math.h>
#include <sys/time.h>
#include <unistd.h>
#define FLT double

/* utility routines */
void my_bar();
void explain(char astr[]);
FLT system_clock(FLT *x);
void start_time();
FLT end_time();

/* array used to determine how much work each thread performs */
int *dist,idid;
FLT st;

/* routine to reset dist */
void zero(int j);

/* work routines */
void all_fast();
void zero_slow();
void a_slow(int i);

void all_fast() {
 int k;
 k=omp_get_thread_num();
 dist[k]++;
}

void zero_slow() {
 int k;
 FLT x,y;
 k=omp_get_thread_num();
 dist[k]++;
 if(k == 0) {
 x=system_clock((FLT*)0);
 y=x+1;
 while(x < y) {
 x=system_clock((FLT*)0);
 }
 }

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c (1 of 8) [6/11/2003 9:33:23 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c

}

void imbalance (int i) {
 int k;
 FLT x,y;
 k=omp_get_thread_num();
 dist[k]++;
 if(i == 1) {
 idid=k;
 x=system_clock((FLT*)0);
 y=x+1;
 while(x < y) {
 x=system_clock((FLT*)0);
 }
 }
 else {
 x=system_clock((FLT*)0);
 y=x+0.01;
 while(x < y) {
 x=system_clock((FLT*)0);
 }
 }
}

main() {
int i,k,max_threads,total;
max_threads=omp_get_max_threads();
printf("max threads = %d\n",max_threads);
dist=(int*)malloc(max_threads*sizeof(int));
zero(max_threads);
total=0;
explain("report the % of iterations for each thread");
explain("for a set of loops");
explain("******");
explain("default scheduling");
explain("for a subroutine with little work");
k=max_threads*100;
start_time();
#pragma omp parallel for
 for(i=1;i<=k;i++) {
 all_fast();
 }
my_bar();
for(i=0;i<max_threads;i++) {
 printf("%d %6.2f %%\n",i,100.0*(FLT)dist[i]/((FLT)k));
 total=total+dist[i];

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c (2 of 8) [6/11/2003 9:33:23 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c

 }
printf(" total iterations: %d time %10.2f\n\n",total, end_time());
total=0;
zero(max_threads);
explain("default scheduling");
explain("for a subroutine with thread 0 given 1 second of work");
k=max_threads*4;
start_time();
#pragma omp parallel for
 for(i=1;i<=k;i++) {
 zero_slow();
 }
my_bar();
for(i=0;i<max_threads;i++) {
 printf("%d %6.2f %%\n",i,100.0*(FLT)dist[i]/((FLT)k));
 total=total+dist[i];
 }
printf(" total iterations: %d time %10.2f\n\n",total, end_time());
total=0;
zero(max_threads);
explain("schedule(static,1)");
explain("for a subroutine with thread 0 given 1 second of work");
start_time();
#pragma omp parallel for schedule(static,1)
 for(i=1;i<=k;i++) {
 zero_slow();
 }
for(i=0;i<max_threads;i++) {
 printf("%d %6.2f %%\n",i,100.0*(FLT)dist[i]/((FLT)k));
 total=total+dist[i];
 }
printf(" total iterations: %d time %10.2f\n\n",total, end_time());
total=0;
zero(max_threads);
explain("schedule(static,2)");
explain("for a subroutine with thread 0 given 1 second of work");
start_time();
#pragma omp parallel for schedule(static,2)
 for(i=1;i<=k;i++) {
 zero_slow();
 }
for(i=0;i<max_threads;i++) {
 printf("%d %6.2f %%\n",i,100.0*(FLT)dist[i]/((FLT)k));
 total=total+dist[i];
 }
printf(" total iterations: %d time %10.2f\n\n",total, end_time());

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c (3 of 8) [6/11/2003 9:33:23 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c

total=0;
zero(max_threads);
explain("schedule(dynamic,1)");
explain("for a subroutine with thread 0 given 1 second of work");
start_time();
#pragma omp parallel for schedule(dynamic,1)
 for(i=1;i<=k;i++) {
 zero_slow();
 }
for(i=0;i<max_threads;i++) {
 printf("%d %6.2f %%\n",i,100.0*(FLT)dist[i]/((FLT)k));
 total=total+dist[i];
 }
printf(" total iterations: %d time %10.2f\n\n",total, end_time());
total=0;
zero(max_threads);
explain("schedule(dynamic,2)");
explain("for a subroutine with thread 0 given 1 second of work");
start_time();
#pragma omp parallel for schedule(dynamic,2)
 for(i=1;i<=k;i++) {
 zero_slow();
 }
for(i=0;i<max_threads;i++) {
 printf("%d %6.2f %%\n",i,100.0*(FLT)dist[i]/((FLT)k));
 total=total+dist[i];
 }
printf(" total iterations: %d time %10.2f\n\n",total, end_time());
total=0;
zero(max_threads);
explain("schedule(dynamic,4)");
explain("for a subroutine with thread 0 given 1 second of work");
start_time();
#pragma omp parallel for schedule(dynamic,2)
 for(i=1;i<=k;i++) {
 zero_slow();
 }
for(i=0;i<max_threads;i++) {
 printf("%d %6.2f %%\n",i,100.0*(FLT)dist[i]/((FLT)k));
 total=total+dist[i];
 }
printf(" total iterations: %d time %10.2f\n\n",total, end_time());
total=0;
zero(max_threads);

explain("default scheduling");

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c (4 of 8) [6/11/2003 9:33:23 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c

explain("for an imbalanced subroutine");
k=max_threads*100;
start_time();
#pragma omp parallel for
 for(i=1;i<=k;i++) {
 imbalance(i);
 }
my_bar();
for(i=0;i<max_threads;i++) {
 printf("%d %6.2f %%\n",i,100.0*(FLT)dist[i]/((FLT)k));
 total=total+dist[i];
 }
printf(" total iterations: %d time %10.2f\n",total, end_time());
printf(" thread %d did the slow iteration\n\n",idid);
total=0;
zero(max_threads);
explain("default scheduling");
explain("for an imbalanced subroutine");
start_time();
#pragma omp parallel for
 for(i=1;i<=k;i++) {
 imbalance(i);
 }
my_bar();
for(i=0;i<max_threads;i++) {
 printf("%d %6.2f %%\n",i,100.0*(FLT)dist[i]/((FLT)k));
 total=total+dist[i];
 }
printf(" total iterations: %d time %10.2f\n",total, end_time());
printf(" thread %d did the slow iteration\n\n",idid);
total=0;
zero(max_threads);
explain("schedule(static,1)");
explain("for an imbalanced subroutine");
start_time();
#pragma omp parallel for schedule(static,1)
 for(i=1;i<=k;i++) {
 imbalance(i);
 }
for(i=0;i<max_threads;i++) {
 printf("%d %6.2f %%\n",i,100.0*(FLT)dist[i]/((FLT)k));
 total=total+dist[i];
 }
printf(" total iterations: %d time %10.2f\n",total, end_time());
printf(" thread %d did the slow iteration\n\n",idid);

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c (5 of 8) [6/11/2003 9:33:23 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c

total=0;
zero(max_threads);
explain("schedule(static,2)");
explain("for an imbalanced subroutine");
start_time();
#pragma omp parallel for schedule(static,2)
 for(i=1;i<=k;i++) {
 imbalance(i);
 }
for(i=0;i<max_threads;i++) {
 printf("%d %6.2f %%\n",i,100.0*(FLT)dist[i]/((FLT)k));
 total=total+dist[i];
 }
printf(" total iterations: %d time %10.2f\n",total, end_time());
printf(" thread %d did the slow iteration\n\n",idid);
total=0;
zero(max_threads);
explain("schedule(dynamic,1)");
explain("for an imbalanced subroutine");
start_time();
#pragma omp parallel for schedule(dynamic,1)
 for(i=1;i<=k;i++) {
 imbalance(i);
 }
for(i=0;i<max_threads;i++) {
 printf("%d %6.2f %%\n",i,100.0*(FLT)dist[i]/((FLT)k));
 total=total+dist[i];
 }
printf(" total iterations: %d time %10.2f\n",total, end_time());
printf(" thread %d did the slow iteration\n\n",idid);
total=0;
zero(max_threads);
explain("schedule(dynamic,2)");
explain("for an imbalanced subroutine");
start_time();
#pragma omp parallel for schedule(dynamic,2)
 for(i=1;i<=k;i++) {
 imbalance(i);
 }
for(i=0;i<max_threads;i++) {
 printf("%d %6.2f %%\n",i,100.0*(FLT)dist[i]/((FLT)k));
 total=total+dist[i];
 }
printf(" total iterations: %d time %10.2f\n",total, end_time());
printf(" thread %d did the slow iteration\n\n",idid);
total=0;

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c (6 of 8) [6/11/2003 9:33:23 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c

zero(max_threads);
explain("schedule(dynamic,4)");
explain("for an imbalanced subroutine");
start_time();
#pragma omp parallel for schedule(dynamic,2)
 for(i=1;i<=k;i++) {
 imbalance(i);
 }
for(i=0;i<max_threads;i++) {
 printf("%d %6.2f %%\n",i,100.0*(FLT)dist[i]/((FLT)k));
 total=total+dist[i];
 }
printf(" total iterations: %d time %10.2f\n",total, end_time());
printf(" thread %d did the slow iteration\n\n",idid);
total=0;
my_bar();
}

void my_bar() {
#pragma omp barrier
 fflush(stdout);
#pragma omp barrier
}

void explain(char astr[]){
 printf("****** %s\n",astr);
}

FLT system_clock(FLT *x) {
 FLT t;
 FLT six=1.0e-6;
 struct timeval tb;
 struct timezone tz;
 gettimeofday(&tb,&tz);
 t=(FLT)tb.tv_sec+((FLT)tb.tv_usec)*six;
 if(x){
 *x=t;
 }
 return(t);
}

void zero(int j) {
int i;
 for(i=0;i<j;i++) {
 dist[i]=0;

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c (7 of 8) [6/11/2003 9:33:23 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c

 }
}

void start_time() {
 st=system_clock((FLT*)0);
}

FLT end_time() {
 return (system_clock((FLT*)0)-st);
}

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c (8 of 8) [6/11/2003 9:33:23 AM]

Parallel Sections

Parallel Sections

Link to example source.

Link to example source in Fortran.

The emphasis in most OpenMP examples and descriptions is on loop level parallelism. However, OpenMP also has a more coarse
grained parallelism construct, the parallel section. The syntax is

#pragma omp parallel sections
 {
#pragma omp section
 {
/*fist block of code */
 }

#pragma omp section
 {
/*second block of code */
 }

#pragma omp section
 {
/*third block of code */
 }

#pragma omp section
 {
/*fourth block of code */
 }
 }

http://coherentcognition.com/projects/port/articles/openmp/guide/sections.html (1 of 3) [6/11/2003 9:33:23 AM]

Parallel Sections

There can be an arbitrary number of code blocks or sections. The requirement is that the individual sections be independent. Since the
sections are independent they can be run in parallel. So if you have 4 sections and are running using 4 threads each thread should run a
block of code in a section in parallel with the others. If you have more threads than sections then some threads will be idle.

We give as an example a set of matrix inversions performed on four different matrices. We do the inversions twice and compare to the
original matrices. We have a routine mset that puts values in the matrices, a routine over that does an inversion and a routine mcheck that
checks the results and returns a difference form the original matrix. The routine system_clock is for timing. The routine mset is called
outside of the parallel section. Our parallel section then looks like:

#pragma omp section
 {
 system_clock(&t1_start);
 over(m1,n);
 over(m1,n);
 system_clock(&t1_end);
 e1=mcheck(m1,n,1);
 t1_start=t1_start-t0_start;
 t1_end=t1_end-t0_start;
}

After doing the parallel sections we print the time spent in each section.

The program run using 4 threads returned the following

[geight]% setenv OMP_NUM_THREADS 4
[geight]% ./a.out
section 1 start time= 0.00056601 end time= 2.6892 error= 3.43807e-07
section 2 start time= 0.011296 end time= 2.9498 error= 6.04424e-07
section 3 start time= 0.0071419 end time= 2.9925 error= 3.67327e-06
section 4 start time= 0.00054705 end time= 2.9233 error= 3.42406e-06
[geight] %

http://coherentcognition.com/projects/port/articles/openmp/guide/sections.html (2 of 3) [6/11/2003 9:33:23 AM]

Parallel Sections

This shows that the 4 threads did the matrix inversions in parallel.

Using two threads we get the following:

[geight]% setenv OMP_NUM_THREADS 2
[geight]% ./a.out
section 1 start time= 0.00039494 end time= 1.3827 error= 3.43807e-07
section 2 start time= 0.00038493 end time= 1.5283 error= 6.04424e-07
section 3 start time= 1.3862 end time= 2.8165 error= 3.67327e-06
section 4 start time= 1.5319 end time= 3.0124 error= 3.42406e-06
[geight]%

We have the first and section sections run in parallel and then the third and fourth sections run in parallel.

http://coherentcognition.com/projects/port/articles/openmp/guide/sections.html (3 of 3) [6/11/2003 9:33:23 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c

/* cc -lm t4.c -qsmp */
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#include <math.h>
#include <sys/time.h>
#include <unistd.h>
#define FLT double

/* utility routines */
FLT system_clock(FLT *x);
FLT **matrix(int nrl,int nrh,int ncl,int nch);

/* work routines */
void mset(FLT **m, int n, int in);
FLT mcheck(FLT **m, int n, int in);
void over(FLT ** mat,int size);

main() {
 FLT **m1,**m2,**m3,**m4;
 FLT t0_start;
 FLT t1_start,t1_end,e1;
 FLT t2_start,t2_end,e2;
 FLT t3_start,t3_end,e3;
 FLT t4_start,t4_end,e4;
 int n;
 n=200;
 m1=matrix(1,n,1,n);
 m2=matrix(1,n,1,n);
 m3=matrix(1,n,1,n);
 m4=matrix(1,n,1,n);
 mset(m1,n,1);
 mset(m2,n,2);
 mset(m3,n,3);
 mset(m4,n,4);

 system_clock(&t0_start);

#pragma omp parallel sections
 {
#pragma omp section
 {
 system_clock(&t1_start);
 over(m1,n);
 over(m1,n);
 system_clock(&t1_end);

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c (1 of 5) [6/11/2003 9:33:25 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c

 e1=mcheck(m1,n,1);
 t1_start=t1_start-t0_start;
 t1_end=t1_end-t0_start;
 }
#pragma omp section
 {
 system_clock(&t2_start);
 over(m2,n);
 over(m2,n);
 system_clock(&t2_end);
 e2=mcheck(m2,n,2);
 t2_start=t2_start-t0_start;
 t2_end=t2_end-t0_start;
 }
#pragma omp section
 {
 system_clock(&t3_start);
 over(m3,n);
 over(m3,n);
 system_clock(&t3_end);
 e3=mcheck(m3,n,3);
 t3_start=t3_start-t0_start;
 t3_end=t3_end-t0_start;
 }
#pragma omp section
 {
 system_clock(&t4_start);
 over(m4,n);
 over(m4,n);
 system_clock(&t4_end);
 e4=mcheck(m4,n,4);
 t4_start=t4_start-t0_start;
 t4_end=t4_end-t0_start;
 }
 }
 printf("section 1 start time= %10.5g end time= %10.5g error= %g\n",t1_start,t1_end,e1);
 printf("section 2 start time= %10.5g end time= %10.5g error= %g\n",t2_start,t2_end,e2);
 printf("section 3 start time= %10.5g end time= %10.5g error= %g\n",t3_start,t3_end,e3);
 printf("section 4 start time= %10.5g end time= %10.5g error= %g\n",t4_start,t4_end,e4);
}

void mset(FLT **m, int n, int in) {
 int i,j;
 for(i=1;i<=n;i++)
 for(j=1;j<=n;j++) {
 if(i == j) {

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c (2 of 5) [6/11/2003 9:33:25 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c

 m[i][j]=in;
 } else {
 m[i][j]=i+j;
 }
 }

}

FLT mcheck(FLT **m, int n, int in) {
 int i,j;
 FLT x;
 x=0.0;
 for(i=1;i<=n;i++)
 for(j=1;j<=n;j++) {
 if(i == j) {
 x=x+fabs(m[i][j]-in);
 } else {
 x=x+fabs(m[i][j]-(i+j));
 }
 }
 return x;
}

void over(FLT ** mat,int size)
{
 int k, jj, kp1, i, j, l, krow, irow;
 FLT pivot, temp;
 FLT sw[2000][2];
 for (k = 1 ;k<= size ; k++)
 {
 jj = k;
 if (k != size)
 {
 kp1 = k + 1;
 pivot = fabs(mat[k][k]);
 for(i = kp1;i<= size ;i++)
 {
 temp = fabs(mat[i][k]);
 if (pivot < temp)
 {
 pivot = temp;
 jj = i;
 }
 }
 }
 sw[k][0] =k;

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c (3 of 5) [6/11/2003 9:33:25 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c

 sw[k][1] = jj;
 if (jj != k)
 for (j = 1 ;j<= size; j++)
 {
 temp = mat[jj][j];
 mat[jj][j] = mat[k][j];
 mat[k][j] = temp;
 }
 for (j = 1 ;j<= size; j++)
 if (j != k)
 mat[k][j] = mat[k][j] / mat[k][k];
 mat[k][k] = 1.0 / mat[k][k];
 for (i = 1; i<=size; i++)
 if (i != k)
 for (j = 1;j<=size; j++)
 if (j != k)
 mat[i][j] = mat[i][j] - mat[k][j] * mat[i][k];
 for (i = 1;i<=size;i++)
 if (i != k)
 mat[i][k] = -mat[i][k] * mat[k][k];
 }
 for (l = 1; l<=size; ++l)
 {
 k = size - l + 1;
 krow = sw[k][0];
 irow = sw[k][1];
 if (krow != irow)
 for (i = 1; i<= size; ++i)
 {
 temp = mat[i][krow];
 mat[i][krow] = mat[i][irow];
 mat[i][irow] = temp;
 }
 }
}

/*
The routine matrix was adapted from
Numerical Recipes in C The Art of Scientific Computing
Press, Flannery, Teukolsky, Vetting
Cambridge University Press, 1988.
*/
FLT **matrix(int nrl,int nrh,int ncl,int nch)
{
 int i;
 FLT **m;

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c (4 of 5) [6/11/2003 9:33:25 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c

 m=(FLT **) malloc((unsigned) (nrh-nrl+1)*sizeof(FLT*));
 if (!m){
 printf("allocation failure 1 in matrix()\n");
 exit(1);
 }
 m -= nrl;
 for(i=nrl;i<=nrh;i++) {
 if(i == nrl){
 m[i]=(FLT *) malloc((unsigned) (nrh-nrl+1)*(nch-ncl+1)*sizeof(FLT));
 if (!m[i]){
 printf("allocation failure 2 in matrix()\n");
 exit(1);
 }
 m[i] -= ncl;
 }
 else {
 m[i]=m[i-1]+(nch-ncl+1);
 }
 }
 return m;
}

FLT system_clock(FLT *x) {
 FLT t;
 FLT six=1.0e-6;
 struct timeval tb;
 struct timezone tz;
 gettimeofday(&tb,&tz);
 t=(FLT)tb.tv_sec+((FLT)tb.tv_usec)*six;
 if(x){
 *x=t;
 }
 return(t);
}

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c (5 of 5) [6/11/2003 9:33:25 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90

module ccm_numz
! basic real types
 integer, parameter:: b8 = selected_real_kind(10)
contains
 function ccm_time()
 implicit none
 integer i
 integer :: ccm_start_time(8) = (/(-100,i=1,8)/)
 real(b8) :: ccm_time,tmp
 integer,parameter :: norm(13)=(/ &
 0, 2678400, 5097600, 7776000,10368000,13046400,&
 15638400,18316800,20995200,23587200,26265600,28857600,31536000/)
 integer,parameter :: leap(13)=(/ &
 0, 2678400, 5184000, 7862400,10454400,13132800,&
 15724800,18403200,21081600,23673600,26352000,28944000,31622400/)
 integer :: values(8),m,sec
 save
 call date_and_time(values=values)
 if(mod(values(1),4) .eq. 0)then
 m=leap(values(2))
 else
 m=norm(values(2))
 endif
 sec=((values(3)*24+values(5))*60+values(6))*60+values(7)
 tmp=real(m,b8)+real(sec,b8)+real(values(8),b8)/1000.0_b8
 !write(*,*)"vals ",values
 if(values(1) .ne. ccm_start_time(1))then
 if(mod(ccm_start_time(1),4) .eq. 0)then
 tmp=tmp+real(leap(13),b8)
 else
 tmp=tmp+real(norm(13),b8)
 endif
 endif
 ccm_time=tmp
 end function

subroutine invert (matrix,size)
 implicit none
 real(b8) matrix(:,:)
 integer size
 integer switch,k, jj, kp1, i, j, l, krow, irow,nmax
 parameter (nmax=1000)
 dimension switch(nmax,2)
 real(b8) pivot,temp
 do k = 1,size
 jj = k

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90 (1 of 5) [6/11/2003 9:33:26 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90

 if (k .ne. size) then
 kp1 = k + 1
 pivot = (matrix(k, k))
 do i = kp1,size
 temp = (matrix(i, k))
 if (abs(pivot) .lt. abs(temp)) then
 pivot = temp
 jj = i
 endif
 enddo
 endif
 switch(k, 1) = k
 switch(k, 2) = jj
 if (jj .ne. k) then
 do j = 1 ,size
 temp = matrix(jj, j)
 matrix(jj, j) = matrix(k, j)
 matrix(k, j) = temp
 enddo
 endif
 do j = 1,size
 if (j .ne. k)matrix(k, j) = matrix(k, j) / matrix(k, k)
 enddo
 matrix(k, k) = 1.0_b8 / matrix(k, k)
 do i = 1,size
 if (i.ne.k) then
 do j = 1,size
 if(j.ne.k)matrix(i,j)=matrix(i,j)-matrix(k,j)*matrix(i,k)
 enddo
 endif
 enddo
 do i = 1, size
 if (i .ne. k)matrix(i, k) = -matrix(i, k) * matrix(k, k)
 enddo
 enddo
 do l = 1,size
 k = size - l + 1
 krow = switch(k, 1)
 irow = switch(k, 2)
 if (krow .ne. irow) then
 do i = 1,size
 temp = matrix(i, krow)
 matrix(i, krow) = matrix(i, irow)
 matrix(i, irow) = temp
 enddo
 endif

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90 (2 of 5) [6/11/2003 9:33:26 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90

 enddo
end subroutine

subroutine mset(m, n, in)
 real(b8) :: m(:,:)
 integer n,in
 integer i,j
 do i=1,n
 do j=1,n
 if(i .eq. j)then
 m(i,j)=in
 else
 m(i,j)=i+j
 endif
 enddo
 enddo
end subroutine

function mcheck(m, n, in)
 real(b8) :: m(:,:)
 real(b8) mcheck,x
 integer n,in
 integer i,j
 x=0
 do i=1,n
 do j=1,n
 if(i .eq. j)then
 x=x+abs(m(i,j)-in)
 else
 x=x+abs(m(i,J)-(i+j))
 endif
 enddo
 enddo
 mcheck=x
end function
end module ccm_numz

program tover
 use ccm_numz
 real(b8),allocatable :: m1(:,:),m2(:,:),m3(:,:),m4(:,:)
 integer n
 real(b8) t0_start;
 real(b8) t1_start,t1_end,e1;
 real(b8) t2_start,t2_end,e2;
 real(b8) t3_start,t3_end,e3;
 real(b8) t4_start,t4_end,e4;

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90 (3 of 5) [6/11/2003 9:33:26 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90

 n=200
 allocate(m1(n,n),m2(n,n),m3(n,n),m4(n,n))
 call mset(m1,n,1)
 call mset(m2,n,2)
 call mset(m3,n,3)
 call mset(m4,n,4)
 t0_start=ccm_time()
!$pragma omp parallel sections

!$pragma omp section
 t1_start=ccm_time()
 call invert(m1,n)
 call invert(m1,n)
 t1_end=ccm_time()
 e1=mcheck(m1,n,1)
 t1_start=t1_start-t0_start
 t1_end=t1_end-t0_start
!$pragma omp end section

!$pragma omp section
 t2_start=ccm_time()
 call invert(m2,n)
 call invert(m2,n)
 t2_end=ccm_time()
 e2=mcheck(m2,n,2)
 t2_start=t2_start-t0_start
 t2_end=t2_end-t0_start
!$pragma omp end section

!$pragma omp section
 t3_start=ccm_time()
 call invert(m3,n)
 call invert(m3,n)
 t3_end=ccm_time()
 e3=mcheck(m3,n,3)
 t3_start=t3_start-t0_start
 t3_end=t3_end-t0_start
!$pragma omp end section

!$pragma omp section
 t4_start=ccm_time()
 call invert(m4,n)
 call invert(m4,n)
 t4_end=ccm_time()
 e4=mcheck(m4,n,4)

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90 (4 of 5) [6/11/2003 9:33:26 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90

 t4_start=t4_start-t0_start
 t4_end=t4_end-t0_start
!$pragma omp end section

!$pragma omp end parallel sections

 write(*,1)1,t1_start,t1_end,e1
 write(*,1)2,t2_start,t2_end,e2
 write(*,1)3,t3_start,t3_end,e3
 write(*,1)4,t4_start,t4_end,e4
 1 format("section ",i4," start time= ",g10.5," end time= ",g10.5," error=",g10.5)
 end program

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90 (5 of 5) [6/11/2003 9:33:26 AM]

Threadprivate and derived types

Complex usages of Threadprivate

Link to example source.

There are two purposes for these examples. First, they illustrate a more complex usages of thread private. Also, the code is these
examples broke many early implementations of OpenMP. Thus, these examples provide a test of for compilers.

One common usages of derived types in scientific computing is to create a type that represents a vector. In 2d this corresponds to a
complex number. We could define such a type as:

#define FLT double
struct real_img {
 FLT xpart;
 FLT ypart;
};

Next we create an array of this data type and declare the array threadprivate.

struct real_img itype[9];
#pragma omp threadprivate(itype)

Recall that making a variable thread private implies that each thread gets its own copy of the variable.

In our main program we fill the array with values. If each element of the array is a point, then the collection of points describes an
octagon.

 itype[0].ypart=0;
 itype[0].xpart=1;
 pi4=pi/4.0;
 for(i=1;i<=8;i++) {

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (1 of 9) [6/11/2003 9:33:27 AM]

Threadprivate and derived types

 yvect=sin(i*pi4);
 xvect=cos(i*pi4);
 itype[i].ypart=yvect-itype[i-1].ypart;
 itype[i].xpart=xvect-itype[i-1].xpart;
 }

Now we call a subroutine, sub_1, that will work with the array of structures.

#pragma omp parallel for copyin(itype) schedule(static,1)
 for(i=1;i<=max_threads;i++) {
 sub_1();
 }

The copyin clause ensures that each thread gets a copy of the values entered into the array.

The routine sub_1 multiplies the values in itype by the (thread id + 1) and sums the values. Summing the values should bring you back to
the point x=(thread id + 1),y=0. The final sum is printed and compared to the thread id. The routine also checks to see that itype has been
allocated and it checks to see that values have been copied into the array.

The output from the program should look something like:

a complex test of thread private with a do loop
we pass in the array of structures
the structure is a 2d vector. we sum of all
the vectors to get us back to the real axis
we multiply the vectors times (thread+1)
from sub_1 thread 2, magnitude is thread+1= 3.00, angle is zero=0.00000000
from sub_1 thread 0, magnitude is thread+1= 1.00, angle is zero=0.00000000
from sub_1 thread 1, magnitude is thread+1= 2.00, angle is zero=0.00000000
from sub_1 thread 3, magnitude is thread+1= 4.00, angle is zero=0.00000000

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (2 of 9) [6/11/2003 9:33:27 AM]

Threadprivate and derived types

Another reason to make data global is to have an easy way to pass it between subroutines. In an openmp environment you may want to
make such data threadprivate. Can arrays be allocated inside of a subroutine for use in routines that are called by the subroutine?
OpenMP should be able to handle but this broke early compilers.

We start with an integer pointer that we will use as a vector.

int *ray2;
#pragma omp threadprivate(ray2)

We nullify ray2 and then call the routine sub_2 inside a for loop.

 j=max_threads*2;
 k=j/2;
 ray2=0;
#pragma omp parallel for copyin(ray2) schedule(static,1)
 for(i=1;i<=j;i++) {
 sub_2(i,k);
 }

Note that we expect that each thread will call sub_2 two times, one time with i <= k and the second time with i > k. The routine sub_2
was written for illustration purposes only. Its output will vary depending on thread scheduling. If each thread does not call sub_2 as
expected the routine will return different results than what are reported here. For a "real" program routines should not, in general, be
written so that the correct results depend on scheduling. Scheduling directives are only suggestions to the compiler. Most compilers, in
most instances, will follow the suggestions but there is no guarantee provided by the standard.

The routine sub_2 is shown below. If first checks to see if ray2 is allocated. If ray2 is null, it is allocated. Values are stuffed into the array
and then sub_3 is called and returns x. The routine sub_3 sums the elements of ray2 and returns the sum as x. Finally, x is printed.

If sub_2 is called with n <= nhalf then ray2 is set to the thread id +1. If n > nhalf then ray2 is incremented by nhalf.

Both routines, sub_2 and sub_3 access ray2 as a global. This illustrates that we can use global variables to pass values while also using

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (3 of 9) [6/11/2003 9:33:27 AM]

Threadprivate and derived types

OpenMP.

The first print statement in sub_2 shows that a thread is allocating ray2. The next print gives the address of ray2. Each thread should have
its own copy of ray2 so each thread should print a different address. The final print gives the thread number and the values of n and x.

The address of ray2 and the values held in the array ray2 and should be preserved between invocations of sub_2. Once a thread assigns
an address to ray2 that thread should have the same address. So each time a thread calls sub_2 it should print the same address. Also, the
values stored in the array should be preserved.

If sub_2 is called as suggested by the scheduling directive,

schedule(static,1)

then each thread will call sub_2 twice. The first time with the value of n <=nhalf. The second time with n > nhalf. If the values are
preserved between invocations, sub_2 will print the values 1 <= n <= max_threads*2 and x = n*10.

void sub_2(int n,int nhalf) {
 int i,k;
 FLT x;
 k=omp_get_thread_num();
 if(ray2 == 0) {
 ray2=(int *)malloc(10*sizeof(int));

 {
 printf("(a) thread %d allocating ray2\n",k);
 }
 }

 {
 printf("(b) thread %d ray2 is at %d\n",k,ray2);
 }

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (4 of 9) [6/11/2003 9:33:27 AM]

Threadprivate and derived types

 if(n <= nhalf) {
 for(i=0;i<10;i++) {
 ray2[i]=k+1;
 }
 }
 else {
 for(i=0;i<10;i++) {
 if(ray2[i] != k+1) {
 printf("value not preserved\n");
 }
 ray2[i]=ray2[i]+nhalf;
 }
 }

 x=sub_3(10);

 {
 printf("(c) thread %d ",k);
 printf("n= %d x= %g\n",n,x);
 }
}

Note that the print statements are given their own structured block. This is done so we could wrap them with a #pragma omp critical
directive and add a statement to flush the output. The critical directives give us cleaner output. They are there to prevent multiple threads
from trying to print at the same time. They do not effect the "real" output of this program, the value of x.

If we run using 4 threads and sort the output from sub_2 by thread number we get:

(a) thread 0 allocating ray2
(b) thread 0 ray2 is at 323312
(b) thread 0 ray2 is at 323312
(c) thread 0 n= 1 x= 10

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (5 of 9) [6/11/2003 9:33:27 AM]

Threadprivate and derived types

(c) thread 0 n= 5 x= 50
(a) thread 1 allocating ray2
(b) thread 1 ray2 is at 323456
(b) thread 1 ray2 is at 323456
(c) thread 1 n= 2 x= 20
(c) thread 1 n= 6 x= 60
(a) thread 2 allocating ray2
(b) thread 2 ray2 is at 323408
(b) thread 2 ray2 is at 323408
(c) thread 2 n= 3 x= 30
(c) thread 2 n= 7 x= 70
(a) thread 3 allocating ray2
(b) thread 3 ray2 is at 323360
(b) thread 3 ray2 is at 323360
(c) thread 3 n= 4 x= 40
(c) thread 3 n= 8 x= 80

Note that the address for ray2 is consistent in time for each thread but each thread has a different value and the values for x are correct.
This indicates that each thread had its own version of ray2 and its copy was preserved between thread invocations.

OpenMP also requires that thread private globals be preserved between parallel regions. This can be seen if we add another parallel
region that access ray2. We can add the following block of code to print the address of ray2 before deallocating it

#pragma omp parallel
 {
 if(ray2) {
 printf("thread %d deallocating ray2 at %d with
value=%d\n",omp_get_thread_num(),ray2,ray2[0]);
 free(ray2);
 ray2=0;
 }
 }

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (6 of 9) [6/11/2003 9:33:27 AM]

Threadprivate and derived types

}

The output, sorted by thread number, shows that ray2 is preserved between parallel regions.

thread 0 deallocating ray2 at 323312 with value=5
thread 1 deallocating ray2 at 323456 with value=6
thread 2 deallocating ray2 at 323408 with value=7
thread 3 deallocating ray2 at 323360 with value=8

Care should be taken when passing pointers to parallel regions. Consider a slight variation to the example given above. What would
happen if ray2 was allocated before the for loop? We could have something like:

 ray2=(int *)malloc(10*sizeof(int));
#pragma omp parallel for copyin(ray2) schedule(static,1)
 for(i=1;i<=j;i++) {
 sub_2(i,k);
 }

Ray2 is not allocated in sub_2 since we check for null before doing the allocation. In this case each thread has the same nonnull value for
ray2 so ray2 points to the same block of memory for each thread.

This is confusing because there a several levels of indirection. Ray2 is a pointer that points to the block of memory allocated by the
malloc. The pointer itself is held in some memory location. What gets duplicated by using the copyin clause is a pointer. That memory
location for the pointer is different for each thread but the pointer still points to the same location in memory.

Hopefully another example will clear this up. Consider

 ray2=(int *)malloc(10*sizeof(int));
#pragma omp parallel for copyin(ray2) schedule(static,1)
 for(i=1;i<=j;i++) {
 sub_4();

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (7 of 9) [6/11/2003 9:33:27 AM]

Threadprivate and derived types

 }

Where sub_4 will print

❍ The address of ray2:
● the address of a pointer

❍ The value held by ray2:
● address of where the pointer points to, obtained from the malloc

❍ ray2[0]:
● the value of the first element of an array

Sub_4 is:

void sub_4() {
 printf("address of pointer ray2 %d, address held in ray2 %d, value held in
ray2[0] %d\n",
 &ray2,ray2,ray2[0]);
}

The output from this block of code is:

address of pointer ray2 322592, address held in ray2 323312, value held in ray2[0]
1234
address of pointer ray2 39168, address held in ray2 323312, value held in ray2[0]
1234
address of pointer ray2 323296, address held in ray2 323312, value held in ray2[0]
1234
address of pointer ray2 323280, address held in ray2 323312, value held in ray2[0]
1234

Notice that for each thread ray2 points to the same memory location and thus ray2[0] is the same but each thread has a different address

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (8 of 9) [6/11/2003 9:33:27 AM]

Threadprivate and derived types

for the pointer.

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (9 of 9) [6/11/2003 9:33:27 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#include <math.h>
#include <sys/time.h>
#include <unistd.h>

#define FLT double
struct real_img {
 FLT xpart;
 FLT ypart;
};

struct real_img itype[9];
#pragma omp threadprivate(itype)

int *ray2;
#pragma omp threadprivate(ray2)

#define pi 3.141592653589793238462643383
void sub_1();
void sub_2(int in, int in2);
FLT sub_3(int in);
void sub_4(int in, int in2);

void explain(char astr[]);

void sub_1() {
 int i,j;
 FLT r,theta,x,y;
 r=0;
 theta=0;
 j=omp_get_thread_num();
 if(! itype) {
 printf("itype not set for thread %d\n",j);
 }
 for(i=0;i<=8;i++) {
 if(itype[i].xpart == 0 && itype[i].ypart == 0) {
 printf("itype not copied for thread %d\n",j);
 }
 itype[i].xpart=itype[i].xpart*(j+1);
 itype[i].ypart=itype[i].ypart*(j+1);
 }
 x=itype[0].xpart;
 y=itype[0].ypart;

http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c (1 of 4) [6/11/2003 9:33:28 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c

 for(i=1;i<=8;i++) {
 x=x+itype[i].xpart;
 y=y+itype[i].ypart;
 }
 theta=atan2(y,x);
 r=sqrt(x*x+y*y);
#pragma omp critical
 {
 fflush(stdout);
 printf("from sub_1 thread %d, magnitude is thread+1= %4.2f, angle is zero=%10.8f\n",j,r,abs(theta));
 fflush(stdout);
 }
}

void sub_2(int n,int nhalf) {
 int i,k;
 FLT x;
 k=omp_get_thread_num();
 if(ray2 == 0) {
 ray2=(int *)malloc(10*sizeof(int));
#pragma omp critical
 {
 fflush(stdout);
 printf("(a) thread %d allocating ray2\n",k);
 }
 }
#pragma omp critical
 {
 fflush(stdout);
 printf("(b) thread %d ray2 is at %d\n",k,ray2);
 }

 if(n <= nhalf) {
 for(i=0;i<10;i++) {
 ray2[i]=k+1;
 }
 }
 else {
 for(i=0;i<10;i++) {
 if(ray2[i] != k+1) {
 printf("value not preserved\n");
 }
 ray2[i]=ray2[i]+nhalf;
 }
 }

http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c (2 of 4) [6/11/2003 9:33:28 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c

 x=sub_3(10);

#pragma omp critical
 {
 fflush(stdout);
 printf("(c) thread %d ",k);
 printf("n= %d x= %g\n",n,x);
 }
}

FLT sub_3(int in) {
 int i;
 FLT x;
 x=0.0;
 for(i=0;i<in;i++) {
 x=x+ray2[i];
 }
 return (x);
}

void sub_4() {
#pragma omp critical
 {
 fflush(stdout);
 printf("address of pointer ray2 %d, address held in ray2 %d, value held in ray2[0] %d\n",
 &ray2,ray2,ray2[0]);
 }
}
main() {
 int i,j,k,max_threads;
 FLT pi4,xvect,yvect;

 max_threads=omp_get_max_threads();

 explain("a complex test of thread private with a do loop");
 explain("we pass in the array of structures ");
 explain("the structure is a 2d vector. we sum of all ");
 explain("the vectors to get us back to the real axis ");
 explain("we multiply the vectors times (thread+1) ");
 j=-1;
 itype[0].ypart=0;
 itype[0].xpart=1;
 pi4=pi/4.0;
 for(i=1;i<=8;i++) {
 yvect=sin(i*pi4);
 xvect=cos(i*pi4);

http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c (3 of 4) [6/11/2003 9:33:28 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c

 itype[i].ypart=yvect-itype[i-1].ypart;
 itype[i].xpart=xvect-itype[i-1].xpart;
 }

#pragma omp parallel for copyin(itype) schedule(static,1)
 for(i=1;i<=max_threads;i++) {
 sub_1();
 }

 explain("a complex test of thread private with a do loop");
 explain("we access a threadprivate pointer allocated");
 explain("inside of the thread");

 j=max_threads*2;
 k=j/2;
 ray2=0;
#pragma omp parallel for copyin(ray2) schedule(static,1)
 for(i=1;i<=j;i++) {
 sub_2(i,k);
 }
#pragma omp parallel
 {
 if(ray2) {
 printf("thread %d deallocating ray2 at %d with value=%d\n",omp_get_thread_num(),ray2,ray2[0]);
 free(ray2);
 ray2=0;
 }
 }
 ray2=(int *)malloc(10*sizeof(int));
 ray2[0]=1234;
#pragma omp parallel for copyin(ray2) schedule(static,1)
 for(i=1;i<=k;i++) {
 sub_4();
 }

}

void explain(char astr[]){
 printf("%s\n",astr);
}

http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c (4 of 4) [6/11/2003 9:33:28 AM]

Single and operatations on a subsection of an array without using a for loop

Single and subsections

Link to example source.

Link to example source in Fortran.

This is a relatively simple example that shows how you might use OpenMP so that each thread operates on a subsection of an array
without using a for loop. It also shows a use for the single directive.

This prorgam allocates an array and calls two subroutines. The first subroutine puts values into the array and the second checks the
values. The array is allocated and values are put into the array inside of a parallel region. The subroutine that checks the values is called
from a serial region. The number of values in the array is npoints=2*3*4*5*7=850.

The allocation of the array is done inside a region protected by a single directive. This is done so that the allocation is only done one
time.

1 main () {
2 int i,iam,np,npoints,ipoints;
3 float *x;
4 x=0;
5 #pragma omp parallel shared(x,npoints,np) default(none) private(iam,ipoints)
6 {
7 npoints=2*3*4*5*7;
8 iam = omp_get_thread_num();
9 np = omp_get_num_threads();
10 #pragma omp single
11 {
12 if(x !=0)printf("single fails\n");
13 x=(float *)malloc((unsigned)npoints*sizeof(float));
14 x--; /* this line is used to set the starting point for our
array to x[1] */

http://coherentcognition.com/projects/port/articles/openmp/guide/single_subsection.html (1 of 3) [6/11/2003 9:33:29 AM]

Single and operatations on a subsection of an array without using a for loop

15 }
16 #pragma omp barrier
17 ipoints = npoints/np;
18 subdomain(x,iam,ipoints);
19 }
20
21 printf("outside of the parallel region\n");
22 for(i=0;i< np;i++) {
23 ipoints = npoints/np;
24 pdomain(x,i,ipoints);
25 }
26 }

The parallel region is from lines 7 to 18. X is null coming into this region. The allocation is done on line 13 and should only be done one
time because of the single directive. If for some reason, the allocation is done a second time, the test on line 12 will fail and an error
message will be printed. This would only happen if the single directive is not working correctly.

The barrier is used on line 16 to ensure that the array is allocated before it is used.

Line 17 gives the number of points that each thread will set in the routine subdomain. Subdomain is shown next.

void subdomain(float *x, int iam,int ipoints) {
 int ibot,itop,i;
 int sum;
 ibot=(iam)*ipoints+1;
 itop=ibot+ipoints-1;
 for(i=ibot;i<=itop;i++)
 x[i]=iam;
 sum=0;
 for(i=ibot;i<=itop;i++)
 sum=sum+x[i];
#pragma omp critical

http://coherentcognition.com/projects/port/articles/openmp/guide/single_subsection.html (2 of 3) [6/11/2003 9:33:29 AM]

Single and operatations on a subsection of an array without using a for loop

 printf(" iam= %d doing %d %d %d \n",iam,ibot,itop,sum/ipoints);
}

This routine is called with the array (x) , the thread id (iam), and the number of points a thread is to initialize (ipoints). It first calculates
the lower and upper bound of the threads region and then puts the thread id in to its poition of the array. Finally, it prints the average
value that is put into the array. This should be the thread id.

Back in the main program we call the routine pdomain in a for loop. Pdomain is called with the for loop counter as input, not thread id.
Pdomain checks that all of the elements in a particular subsection contains the same value. The value contained in each subsection is
printed. There should be a subsection that contains each thread id.

The following is output from this program run using 4 threads

 iam= 0 doing 1 210 0
 iam= 3 doing 631 840 3
 iam= 2 doing 421 630 2
 iam= 1 doing 211 420 1
outside of the parallel region
 section= 0 is from 1 to 210 and contains 0
 section= 1 is from 211 to 420 and contains 1
 section= 2 is from 421 to 630 and contains 2
 section= 3 is from 631 to 840 and contains 3

http://coherentcognition.com/projects/port/articles/openmp/guide/single_subsection.html (3 of 3) [6/11/2003 9:33:29 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t10.c

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
void subdomain(float *x, int iam,int ipoints);
void pdomain(float *x, int iam,int ipoints);

void subdomain(float *x, int iam,int ipoints) {
 int ibot,itop,i;
 int sum;
 ibot=(iam)*ipoints+1;
 itop=ibot+ipoints-1;
 for(i=ibot;i<=itop;i++)
 x[i]=iam;
 sum=0;
 for(i=ibot;i<=itop;i++)
 sum=sum+x[i];
#pragma omp critical
 printf(" iam= %d doing %d %d %d \n",iam,ibot,itop,sum/ipoints);
}

void pdomain(float *x, int iam,int ipoints) {
 int ibot,itop,i;
 float y;
 int sum;
 ibot=(iam)*ipoints+1;
 itop=ibot+ipoints-1;
 printf(" section= %d is from %d to %d",iam,ibot,itop);
 y=x[ibot];
 for(i=ibot;i<=itop;i++)
 if(y != x[i]){
 y=x[i];
 }
 if(y == x[ibot]) {
 printf(" and contains %g\n",y);
 }
 else
 printf(" failed\n");
}

main () {
 int i,iam,np,npoints,ipoints;
 float *x;
 x=0;
#pragma omp parallel shared(x,npoints,np) default(none) private(iam,ipoints)
 {

http://coherentcognition.com/projects/port/articles/openmp/guide/t10.c (1 of 2) [6/11/2003 9:33:29 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t10.c

 npoints=2*3*4*5*7;
 iam = omp_get_thread_num();
 np = omp_get_num_threads();
#pragma omp single
 {
 if(x !=0)printf("single fails\n");
 x=(float *)malloc((unsigned)npoints*sizeof(float));
 x--;
 }
#pragma omp barrier
 ipoints = npoints/np;
 subdomain(x,iam,ipoints);
 }
 printf("outside of the parallel region\n");
 for(i=0;i < np;i++) {
 ipoints = npoints/np;
 pdomain(x,i,ipoints);
 }
}

http://coherentcognition.com/projects/port/articles/openmp/guide/t10.c (2 of 2) [6/11/2003 9:33:29 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t10.f90

module stuff
 contains
 subroutine subdomain(x, iam, ipoints)
 real x(:)
 integer iam
 integer ipoints
 integer ibot,itop,i
 integer sum
 ibot=(iam)*ipoints+1
 itop=ibot+ipoints-1
 do i=ibot,itop
 x(i)=iam
 enddo
 sum=0
 do i=ibot,itop
 sum=sum+x(i)
 enddo
 !$omp critical
 write(*,*)" iam= ",iam," doing ",ibot,itop,sum/ipoints
 !$omp end critical
 end subroutine

 subroutine pdomain(x, iam, ipoints)
 real x(:)
 integer iam,ipoints
 integer ibot,itop,i
 real y
 ibot=(iam)*ipoints+1
 itop=ibot+ipoints-1
 write(*,*)" section= ",iam,"is from ",ibot," to ",itop
 y=x(ibot)
 do i=ibot,itop
 if(y .ne. x(i))y=x(i)
 enddo
 if(y .eq. x(ibot)) then
 write(*,*)" and contains",y
 else
 write(*,*)" failed"
 endif
 end subroutine
end module

program mymain
 use stuff
 integer omp_get_thread_num,omp_get_num_threads
 integer i,iam,np,npoints,ipoints

http://coherentcognition.com/projects/port/articles/openmp/guide/t10.f90 (1 of 2) [6/11/2003 9:33:30 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t10.f90

 real, allocatable :: x(:)
! x=0
!$omp parallel shared(x,npoints,np) default(none) private(iam,ipoints)
 npoints=2*3*4*5*7
 iam = omp_get_thread_num()
 np = omp_get_num_threads()
!$omp single
 if(allocated(x))write(*,*)"single fails"
 allocate(x(npoints))
!$omp end single
!$omp barrier
 ipoints = npoints/np
 write(*,*)ipoints,iam
 call subdomain(x,iam,ipoints)
!$omp end parallel
 write(*,*)"outside of the parallel region"
 do i=0,np-1
 ipoints = npoints/np
 call pdomain(x,i,ipoints)
 enddo
end program

http://coherentcognition.com/projects/port/articles/openmp/guide/t10.f90 (2 of 2) [6/11/2003 9:33:30 AM]

Merge Sort, threadprivate with pointers to derived types

Sorting, threadprivate with pointers to derived types

Link to example source.

This example shows how to do a recursive merge sort using OpenMP. Each thread is assigned a section of an array for which to perform
a recursive merge sort. The sorted subsections are then merged. It also shows how threadprivate can be used to pass values to
subroutines. This can be important for recursive routines.

The array being sorted is actually the derived type:

type thefit
 sequence
 real val
 integer index
end type thefit

We are sorting an array of type THEFIT using the key "val." Index will contain the original index of "val" in the array that is being
sorted.

The program is given here with line numbers for reference.

Our program starts on line 127. It allocates an array 32 elements long and fills it with random numbers (137-142).

We split the array into sections and use the !$omp sections directive to sort the sections (157-166). We then merge the sections and print
the final merged list (173-190).

The sorting routine is a standard Merge-Sort (8-126) and is described in in Moret and Shapiro, Algorithms from P to NP, Vol 1. The
routine SORT allocates a temporary work array (18) and there is a pointer to the input array (20). These are used by the routines
RecMergeSort and Merge. They are accessible to these routines because they are in common.

http://coherentcognition.com/projects/port/articles/openmp/guide/sortinf.html (1 of 3) [6/11/2003 9:33:31 AM]

Merge Sort, threadprivate with pointers to derived types

At first glance the sorting routine does not look like it contains any OpenMP. But if we look at the definition of "work" and "a" we see
that these two pointers to derived types are threadprivate (15,30,46,100). We have used the threadprivate pointer "a" to point to a
subsection of an array. Each thread gets its own pointer "a" so that it can access its own subsection of the derived type input array. Each
thread allocates its own copy of the work array for use in the rest of the algorithm.

We have shown that we can use threadprivate with pointers to arrays of derived types. These can be used to pass values between
subroutines, with each thread having its own copy.

The final output of this program is:

 ending list
 20 0.94798243
 16 0.93174280
 30 0.92679580
 28 0.88469052
 12 0.88409471
 31 0.86152124
 18 0.85193380
 25 0.76048082
 23 0.70104372
 11 0.69971883
 29 0.69236451
 1 0.67201113
 26 0.65388730
 3 0.63397812
 17 0.54539450
 13 0.53869861
 22 0.47838681
 7 0.47571510
 9 0.44888480
 5 0.43045502
 15 0.41719050

http://coherentcognition.com/projects/port/articles/openmp/guide/sortinf.html (2 of 3) [6/11/2003 9:33:31 AM]

Merge Sort, threadprivate with pointers to derived types

 32 0.41321742
 24 0.39106920
 14 0.37801930
 27 0.34327822
 4 0.23692870
 19 0.21749190
 21 0.20226842
 8 0.16754910
 2 0.13908743
 6 0.10045713
 10 0.02444941

http://coherentcognition.com/projects/port/articles/openmp/guide/sortinf.html (3 of 3) [6/11/2003 9:33:31 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90

module galapagos
 type thefit
 sequence
 real val
 integer index
 end type thefit
end module

module sort_mod

contains

 subroutine Sort(Ain, n)
 use galapagos
 type(thefit), pointer :: work(:)
 type(thefit), pointer :: a(:)
 common /bonk/ a,work
!$OMP THREADPRIVATE (/bonk/)
 integer n
 type(thefit), target:: ain(n)
 allocate(work(n))
 nullify(a)
 a=>ain
 call RecMergeSort(1,n)
 deallocate(work)
 return
 end subroutine Sort

 recursive subroutine RecMergeSort(left, right)
 use galapagos
 type(thefit), pointer :: work(:)
 type(thefit), pointer :: a(:)
 common /bonk/ a,work
!$OMP THREADPRIVATE (/bonk/)
 integer,intent(in):: left,right
 integer middle
 if (left < right) then
 middle = (left + right) / 2
 call RecMergeSort(left,middle)
 call RecMergeSort(middle+1,right)
 call Merge(left,middle-left+1,right-middle)
 endif
 return
 end subroutine RecMergeSort

 subroutine Merge(s, n, m)

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90 (1 of 5) [6/11/2003 9:33:32 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90

 use galapagos
 type(thefit), pointer :: work(:)
 type(thefit), pointer :: a(:)
 common /bonk/ a,work
!$OMP THREADPRIVATE (/bonk/)
 integer s,n,m
 integer i, j, k, t, u
 k = 1
 t = s + n
 u = t + m
 i = s
 j = t
 if ((i < t) .and. (j < u))then
 do while ((i < t) .and. (j < u))
 if (A(i)%val .ge. A(j)%val)then
 work(k) = A(i)
 i = i + 1
 k = k + 1
 else
 work(k) = A(j)
 j = j + 1
 k = k + 1
 endif
 enddo
 endif
 if(i < t)then
 do while (i < t)
 work(k) = A(i)
 i = i + 1
 k = k + 1
 enddo
 endif
 if(j < u)then
 do while (j < u)
 work(k) = A(j)
 j = j + 1
 k = k + 1
 enddo
 endif
 i = s
! the next line is not in moret & shapiro's book
 k=k-1
 do j = 1 , k
 A(i) = work(j)
 i = i + 1
 enddo

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90 (2 of 5) [6/11/2003 9:33:32 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90

 return
 end subroutine Merge

! this subroutine takes two sorted lists of type(thefit) and merges them
! input d1(n) , d2(m)
! output out(n+m)
subroutine merge2(d1,n,d2,m,out)
 use galapagos
 implicit none
 type(thefit), pointer :: work(:)
 type(thefit), pointer :: a(:)
 common /bonk/ a,work
!$OMP THREADPRIVATE (/bonk/)
 integer n,m
 type(thefit),intent (in):: d1(n),d2(m)
 type(thefit), intent (out):: out(n+m)
 integer i,j,k
 i=1
 j=1
 do k=1,n+m
 if(i.gt.n)then
 out(k)=d2(j)
 j=j+1
 elseif(j.gt.m)then
 out(k)=d1(i)
 i=i+1
 else
 if(d1(i)%val .gt. d2(j)%val)then
 out(k)=d1(i)
 i=i+1
 else
 out(k)=d2(j)
 j=j+1
 endif
 endif
 enddo
 return
 end subroutine merge2
end module sort_mod

program test
 use galapagos
 use sort_mod
 implicit none
 integer i,j,k,m,di,k1,k2

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90 (3 of 5) [6/11/2003 9:33:32 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90

 integer OMP_GET_MAX_THREADS
 integer, allocatable :: kstart(:),kend(:)
 type(thefit),allocatable :: data(:),output1(:),output2(:)
 write(*,*)"sort in fortran"
 i=32
 allocate(data(i))

 do j=1,i
 call random_number(data(j)%val)
 data(j)%index=j
 write(*,*)data(j)%index,data(j)%val
 enddo
 write(*,*)
!
 m=4
 di=i/m
 allocate(kstart(m),kend(m))
 kstart(1)=1
 kend(1)=di
 do j=2,m
 kstart(j)=kend(j-1)+1
 kend(j)=kstart(j)+di
 enddo
 kend(m)=i
 write(*,"(8i5)")kstart
 write(*,"(8i5)")kend
!$OMP PARALLEL SECTIONS
!$OMP SECTION
 call sort(data(kstart(1):kend(1)), kend(1)-kstart(1)+1)
!$OMP SECTION
 call sort(data(kstart(2):kend(2)), kend(2)-kstart(2)+1)
!$OMP SECTION
 call sort(data(kstart(3):kend(3)), kend(3)-kstart(3)+1)
!$OMP SECTION
 call sort(data(kstart(4):kend(4)), kend(4)-kstart(4)+1)
!$OMP END PARALLEL SECTIONS
 do k=1,m
 write(*,*)"start of section ",k
 do j=kstart(k),kend(k)
 write(*,"(i5,1x,f10.8)")data(j)%index,data(j)%val
 enddo
 enddo
!$OMP PARALLEL SECTIONS
!$OMP SECTION
 k1=kend(2)-kstart(1)+1
 allocate(output1(k1))

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90 (4 of 5) [6/11/2003 9:33:32 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90

 call merge2(data(kstart(1):kend(1)),kend(1)-kstart(1)+1, &
 data(kstart(2):kend(2)),kend(2)-kstart(2)+1,output1)
!$OMP SECTION
 k2=kend(4)-kstart(3)+1
 allocate(output2(k2))
 call merge2(data(kstart(3):kend(3)),kend(3)-kstart(3)+1, &
 data(kstart(4):kend(4)),kend(4)-kstart(4)+1,output2)
!$OMP END PARALLEL SECTIONS
 call merge2(output1,k1,output2,k2,data)

 write(*,*)"ending list "
 do j=1,i
 write(*,"(i5,1x,f10.8)")data(j)%index,data(j)%val
 enddo
end program

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90 (5 of 5) [6/11/2003 9:33:32 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt

1 module galapagos
2 type thefit
3 sequence
4 real val
5 integer index
6 end type thefit
7 end module

8 module sort_mod

9 contains

10 subroutine Sort(Ain, n)
11 use galapagos
12 type(thefit), pointer :: work(:)
13 type(thefit), pointer :: a(:)
14 common /bonk/ a,work
15 !$OMP THREADPRIVATE (/bonk/)
16 integer n
17 type(thefit), target:: ain(n)
18 allocate(work(n))
19 nullify(a)
20 a=>ain
21 call RecMergeSort(1,n)
22 deallocate(work)
23 return
24 end subroutine Sort

25 recursive subroutine RecMergeSort(left, right)
26 use galapagos
27 type(thefit), pointer :: work(:)
28 type(thefit), pointer :: a(:)
29 common /bonk/ a,work
30 !$OMP THREADPRIVATE (/bonk/)
31 integer,intent(in):: left,right
32 integer middle
33 if (left < right) then
34 middle = (left + right) / 2
35 call RecMergeSort(left,middle)
36 call RecMergeSort(middle+1,right)
37 call Merge(left,middle-left+1,right-middle)
38 endif
39 return
40 end subroutine RecMergeSort

41 subroutine Merge(s, n, m)

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt (1 of 5) [6/11/2003 9:33:33 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt

42 use galapagos
43 type(thefit), pointer :: work(:)
44 type(thefit), pointer :: a(:)
45 common /bonk/ a,work
46 !$OMP THREADPRIVATE (/bonk/)
47 integer s,n,m
48 integer i, j, k, t, u
49 k = 1
50 t = s + n
51 u = t + m
52 i = s
53 j = t
54 if ((i < t) .and. (j < u))then
55 do while ((i < t) .and. (j < u))
56 if (A(i)%val .ge. A(j)%val)then
57 work(k) = A(i)
58 i = i + 1
59 k = k + 1
60 else
61 work(k) = A(j)
62 j = j + 1
63 k = k + 1
64 endif
65 enddo
66 endif
67 if(i < t)then
68 do while (i < t)
69 work(k) = A(i)
70 i = i + 1
71 k = k + 1
72 enddo
73 endif
74 if(j < u)then
75 do while (j < u)
76 work(k) = A(j)
77 j = j + 1
78 k = k + 1
79 enddo
80 endif
81 i = s
82 ! the next line is not in moret & shapiro's book
83 k=k-1
84 do j = 1 , k
85 A(i) = work(j)
86 i = i + 1
87 enddo

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt (2 of 5) [6/11/2003 9:33:33 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt

88 return
89 end subroutine Merge
90
91 ! this subroutine takes two sorted lists of type(thefit) and merges them
92 ! input d1(n) , d2(m)
93 ! output out(n+m)
94 subroutine merge2(d1,n,d2,m,out)
95 use galapagos
96 implicit none
97 type(thefit), pointer :: work(:)
98 type(thefit), pointer :: a(:)
99 common /bonk/ a,work
100 !$OMP THREADPRIVATE (/bonk/)
101 integer n,m
102 type(thefit),intent (in):: d1(n),d2(m)
103 type(thefit), intent (out):: out(n+m)
104 integer i,j,k
105 i=1
106 j=1
107 do k=1,n+m
108 if(i.gt.n)then
109 out(k)=d2(j)
110 j=j+1
111 elseif(j.gt.m)then
112 out(k)=d1(i)
113 i=i+1
114 else
115 if(d1(i)%val .gt. d2(j)%val)then
116 out(k)=d1(i)
117 i=i+1
118 else
119 out(k)=d2(j)
120 j=j+1
121 endif
122 endif
123 enddo
124 return
125 end subroutine merge2
126 end module sort_mod

127 program test
128 use galapagos
129 use sort_mod
130 implicit none
131 integer i,j,k,m,di,k1,k2

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt (3 of 5) [6/11/2003 9:33:33 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt

132 integer OMP_GET_MAX_THREADS
133 integer, allocatable :: kstart(:),kend(:)
134 type(thefit),allocatable :: data(:),output1(:),output2(:)
135 write(*,*)"sort in fortran"
136 i=32
137 allocate(data(i))

138 do j=1,i
139 call random_number(data(j)%val)
140 data(j)%index=j
141 write(*,*)data(j)%index,data(j)%val
142 enddo
143 write(*,*)
144 !
145 m=4
146 di=i/m
147 allocate(kstart(m),kend(m))
148 kstart(1)=1
149 kend(1)=di
150 do j=2,m
151 kstart(j)=kend(j-1)+1
152 kend(j)=kstart(j)+di
153 enddo
154 kend(m)=i
155 write(*,"(8i5)")kstart
156 write(*,"(8i5)")kend
157 !$OMP PARALLEL SECTIONS
158 !$OMP SECTION
159 call sort(data(kstart(1):kend(1)), kend(1)-kstart(1)+1)
160 !$OMP SECTION
161 call sort(data(kstart(2):kend(2)), kend(2)-kstart(2)+1)
162 !$OMP SECTION
163 call sort(data(kstart(3):kend(3)), kend(3)-kstart(3)+1)
164 !$OMP SECTION
165 call sort(data(kstart(4):kend(4)), kend(4)-kstart(4)+1)
166 !$OMP END PARALLEL SECTIONS
167 do k=1,m
168 write(*,*)"start of section ",k
169 do j=kstart(k),kend(k)
170 write(*,"(i5,1x,f10.8)")data(j)%index,data(j)%val
171 enddo
172 enddo
173 !$OMP PARALLEL SECTIONS
174 !$OMP SECTION
175 k1=kend(2)-kstart(1)+1
176 allocate(output1(k1))

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt (4 of 5) [6/11/2003 9:33:33 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt

177 call merge2(data(kstart(1):kend(1)),kend(1)-kstart(1)+1, &
178 data(kstart(2):kend(2)),kend(2)-kstart(2)+1,output1)
179 !$OMP SECTION
180 k2=kend(4)-kstart(3)+1
181 allocate(output2(k2))
182 call merge2(data(kstart(3):kend(3)),kend(3)-kstart(3)+1, &
183 data(kstart(4):kend(4)),kend(4)-kstart(4)+1,output2)
184 !$OMP END PARALLEL SECTIONS
185 call merge2(output1,k1,output2,k2,data)
186
187 write(*,*)"ending list "
188 do j=1,i
189 write(*,"(i5,1x,f10.8)")data(j)%index,data(j)%val
190 enddo
191 end program

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt (5 of 5) [6/11/2003 9:33:33 AM]

Merge Sort, threadprivate with pointers to derived types

Sorting, threadprivate with pointers to derived types

Link to example source.

This example shows how to do a recursive merge sort using OpenMP. Each thread is assigned a section of an array for which to perform
a recursive merge sort. The sorted subsections are then merged. It also shows how threadprivate can be used to pass values to
subroutines. This can be important for recursive routines.

The array being sorted is actually the derived type:

typedef struct {
 float val;
 int index;
} THEFIT;

We are sorting an array of type THEFIT using the key "val." Index will contain the original index of "val" in the array that is being
sorted.

The program is given here with line numbers for reference.

The routine vector (141-150) allocates an array of type THEFIT and sets the first indices of the array equal to 1. The routine free_vector
(151-154) deallocates arrays of type THEFIT.

Our program allocates an array 32 elements long and fills it with random numbers (21-27).

We split the array into sections and use the #pragma omp sections directive to sort the sections (29-38). We then merge the sections and
print the final merged list (50-53).

The sorting routine is a standard Merge-Sort (56-111) and is described in Moret and Shapiro, Algorithms from P to NP, Vol 1. The

http://coherentcognition.com/projects/port/articles/openmp/guide/sortinc.html (1 of 3) [6/11/2003 9:33:34 AM]

Merge Sort, threadprivate with pointers to derived types

routine SORT allocates a temporary work array (57) and there is a pointer to the input array (58). These are used by the routines
RecMergeSort and Merge. They are accessible to these routines because they are global.

At first glance the sorting routine does not look like it contains any OpenMP. But if we look at the definition of "work" and "a" (8-10) we
see that these two pointers to derived types are threadprivate. We have used the threadprivate pointer "a" to point to a subsection of an
array. Each thread gets its own pointer "a" so that it can access its own subsection of the derived type input array. Each thread allocates
its own copy of the work array for use in the rest of the algorithm.

We have shown that we can use threadprivate with pointers to arrays of derived types. These can be used to pass values between
subroutines, with each thread having its own copy.

The final output of this program is:

15 0.9834372
 5 0.9476279
31 0.9315229
26 0.9172045
32 0.8699211
21 0.8229514
30 0.7854022
20 0.7802369
19 0.7671388
17 0.7656819
 7 0.7022312
18 0.6464732
23 0.6254767
29 0.6067584
16 0.5353979
 4 0.5345339
27 0.5197600
 1 0.5138701
 9 0.4947734

http://coherentcognition.com/projects/port/articles/openmp/guide/sortinc.html (2 of 3) [6/11/2003 9:33:34 AM]

Merge Sort, threadprivate with pointers to derived types

28 0.4011542
12 0.3896471
14 0.3680707
25 0.3469011
24 0.3146848
 3 0.3086515
13 0.2772258
 8 0.2264307
 2 0.1757413
 6 0.1717363
22 0.1519323
10 0.1247203
11 0.0838988

http://coherentcognition.com/projects/port/articles/openmp/guide/sortinc.html (3 of 3) [6/11/2003 9:33:34 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
typedef struct {
 float val;
 int index;
} THEFIT;

 THEFIT *work;
 THEFIT *a;
#pragma omp threadprivate (work,a)

void RecMergeSort(int left, int right);
void Sort(THEFIT *Ain, int n);
void Merge(int s, int n, int m);
void merge2(THEFIT *d1,int n,THEFIT *d2,int m,THEFIT *out);

THEFIT *vector(int nl, int nh);
void free_vector(THEFIT *v, int nl);

int main() {
 THEFIT *data,*output;
 int i,j,k,k1,k2,k3,k4;
 printf("sort in c\n");
 i=32;
 data=vector(1,i);
 for(j=1;j<=i;j++) {
 data[j].index=j;
 data[j].val=(float)rand()/(float)RAND_MAX;
 printf("%d %g\n",data[j].index,data[j].val);
 }
 printf("\n\n");
 k=i/2;
 k1=k+1;
 k2=(i-k1)+1;
#pragma omp sections
 {
#pragma omp section
 Sort(&data[1],k);
#pragma omp section
 Sort(&data[k1],k2);
 }
 for(j=1;j<=k;j++) {
 printf("%d %g\n",data[j].index,data[j].val);
 }

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c (1 of 4) [6/11/2003 9:33:34 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c

 printf("\n\n");
 printf("\n\n");
 for(j=k1;j<=i;j++) {
 printf("%d %g\n",data[j].index,data[j].val);
 }
 printf("\n\n");
 printf("\n\n");
 output=vector(1,i);
 merge2(&data[1],k,&data[k1],k2,&output[1]);
 for(j=1;j<=i;j++) {
 printf("%2d %10.7f\n",output[j].index,output[j].val);
 }
 return 0;
}

 void Sort(THEFIT *Ain, int n){
 work=vector(1,n);
 a=Ain-1;
 RecMergeSort(1,n);
 free_vector(work,1);
 }

 void RecMergeSort(int left, int right) {
 int middle;
 if (left < right) {
 middle = (left + right) / 2;
 RecMergeSort(left,middle);
 RecMergeSort(middle+1,right);
 Merge(left,middle-left+1,right-middle);
 }
 }

 void Merge(int s, int n, int m) {
 int i, j, k, t, u;
 k = 1;
 t = s + n;
 u = t + m;
 i = s;
 j = t;
 if ((i < t) && (j < u)){
 while ((i < t) && (j < u)){
 if (a[i].val >= a[j].val){
 work[k] = a[i];
 i = i + 1;
 k = k + 1;
 } else {

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c (2 of 4) [6/11/2003 9:33:34 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c

 work[k] = a[j];
 j = j + 1;
 k = k + 1;
 }
 }
 }
 if(i < t){
 while (i < t) {
 work[k] = a[i];
 i = i + 1;
 k = k + 1;
 }
 }
 if(j < u){
 while (j < u) {
 work[k] = a[j];
 j = j + 1;
 k = k + 1;
 }
 }
 i = s;
 k=k-1;
 for(j = 1; j<= k; j++) {
 a[i] = work[j];
 i = i + 1;
 }
 }

/*
! this subroutine takes two sorted lists of type(THEFIT) and merges them

! input d1(1:n) , d2(1:m)
! output out(1:n+m)
*/
void merge2(THEFIT *d1,int n,THEFIT *d2,int m,THEFIT *out) {
 int i,j,k;
 i=1;
 j=1;
 d1--; d2--; out--;
 for(k=1; k<=n+m;k++) {
 if(i > n){
 out[k]=d2[j];
 j=j+1;
 }
 else if(j > m){
 out[k]=d1[i];

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c (3 of 4) [6/11/2003 9:33:34 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c

 i=i+1;
 } else {
 if(d1[i].val > d2[j].val){
 out[k]=d1[i];
 i=i+1;
 } else {
 out[k]=d2[j];
 j=j+1;
 }
 }
 }
 }

THEFIT *vector(int nl, int nh)
{
 THEFIT *v;

 v=(THEFIT *)malloc((unsigned) (nh-nl+1)*sizeof(THEFIT));
 if (!v) {
 printf("allocation failure in ivector()\n");
 exit(1);
 }
 return v-nl;
}

void free_vector(THEFIT *v, int nl)

{

 free((char*) (v+nl));

}

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c (4 of 4) [6/11/2003 9:33:34 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <math.h>
4 typedef struct {
5 float val;
6 int index;
7 } THEFIT;

8 THEFIT *work;
9 THEFIT *a;
10 #pragma omp threadprivate (work,a)

11 void RecMergeSort(int left, int right);
12 void Sort(THEFIT *Ain, int n);
13 void Merge(int s, int n, int m);
14 void merge2(THEFIT *d1,int n,THEFIT *d2,int m,THEFIT *out);

15 THEFIT *vector(int nl, int nh);
16 void free_vector(THEFIT *v, int nl);

17 int main() {
18 THEFIT *data,*output;
19 int i,j,k,k1,k2,k3,k4;
20 printf("sort in c\n");
21 i=32;
22 data=vector(1,i);
23 for(j=1;j<=i;j++) {
24 data[j].index=j;
25 data[j].val=(float)rand()/(float)RAND_MAX;
26 printf("%d %g\n",data[j].index,data[j].val);
27 }
28 printf("\n\n");
29 k=i/2;
30 k1=k+1;
31 k2=(i-k1)+1;
32 #pragma omp sections
33 {
34 #pragma omp section
35 Sort(&data[1],k);
36 #pragma omp section
37 Sort(&data[k1],k2);
38 }
39 for(j=1;j<=k;j++) {
40 printf("%d %g\n",data[j].index,data[j].val);
41 }

http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt (1 of 4) [6/11/2003 9:33:35 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt

42 printf("\n\n");
43 printf("\n\n");
44 for(j=k1;j<=i;j++) {
45 printf("%d %g\n",data[j].index,data[j].val);
46 }
47 printf("\n\n");
48 printf("\n\n");
49 output=vector(1,i);
50 merge2(&data[1],k,&data[k1],k2,&output[1]);
51 for(j=1;j<=i;j++) {
52 printf("%2d %10.7f\n",output[j].index,output[j].val);
53 }
54 return 0;
55 }

56 void Sort(THEFIT *Ain, int n){
57 work=vector(1,n);
58 a=Ain-1;
59 RecMergeSort(1,n);
60 free_vector(work,1);
61 }

62 void RecMergeSort(int left, int right) {
63 int middle;
64 if (left < right) {
65 middle = (left + right) / 2;
66 RecMergeSort(left,middle);
67 RecMergeSort(middle+1,right);
68 Merge(left,middle-left+1,right-middle);
69 }
70 }

71 void Merge(int s, int n, int m) {
72 int i, j, k, t, u;
73 k = 1;
74 t = s + n;
75 u = t + m;
76 i = s;
77 j = t;
78 if ((i < t) && (j < u)){
79 while ((i < t) && (j < u)){
80 if (a[i].val >= a[j].val){
81 work[k] = a[i];
82 i = i + 1;
83 k = k + 1;
84 } else {

http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt (2 of 4) [6/11/2003 9:33:35 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt

85 work[k] = a[j];
86 j = j + 1;
87 k = k + 1;
88 }
89 }
90 }
91 if(i < t){
92 while (i < t) {
93 work[k] = a[i];
94 i = i + 1;
95 k = k + 1;
96 }
97 }
98 if(j < u){
99 while (j < u) {
100 work[k] = a[j];
101 j = j + 1;
102 k = k + 1;
103 }
104 }
105 i = s;
106 k=k-1;
107 for(j = 1; j<= k; j++) {
108 a[i] = work[j];
109 i = i + 1;
110 }
111 }

112 /*
113 ! this subroutine takes two sorted lists of type(THEFIT) and merges them

114 ! input d1(1:n) , d2(1:m)
115 ! output out(1:n+m)
116 */
117 void merge2(THEFIT *d1,int n,THEFIT *d2,int m,THEFIT *out) {
118 int i,j,k;
119 i=1;
120 j=1;
121 d1--; d2--; out--;
122 for(k=1; k<=n+m;k++) {
123 if(i > n){
124 out[k]=d2[j];
125 j=j+1;
126 }
127 else if(j > m){
128 out[k]=d1[i];

http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt (3 of 4) [6/11/2003 9:33:35 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt

129 i=i+1;
130 } else {
131 if(d1[i].val > d2[j].val){
132 out[k]=d1[i];
133 i=i+1;
134 } else {
135 out[k]=d2[j];
136 j=j+1;
137 }
138 }
139 }
140 }

141 THEFIT *vector(int nl, int nh)
142 {
143 THEFIT *v;

144 v=(THEFIT *)malloc((unsigned) (nh-nl+1)*sizeof(THEFIT));
145 if (!v) {
146 printf("allocation failure in ivector()\n");
147 exit(1);
148 }
149 return v-nl;
150 }

151 void free_vector(THEFIT *v, int nl)

152 {

153 free((char*) (v+nl));

154 }

http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt (4 of 4) [6/11/2003 9:33:35 AM]

Atomic operation to update an array index

Atomic operation to update an array index

The following example is an expansion on example A.12 from the standards document, Using the atomic Directive. It is included here
because in some early implementations of OpenMP atomic did not work correctly on this example. The output from this program is:

0 9 0
1 8 1
2 7 4
3 6 9
4 5 16
5 4 25
6 3 36
7 2 49
8 1 64
9 0 81

The example avoids race conditions (simultaneous updates of an element of x) by multiple threads by using the atomic directive.

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
main() {
 float *x,*y,*work1,*work2;
 int *index;
 int n,i;
 n=10;
 x=(float*)malloc(n*sizeof(float));
 y=(float*)malloc(n*sizeof(float));
 work1=(float*)malloc(n*sizeof(float));
 work2=(float*)malloc(n*sizeof(float));
 index=(int*)malloc(10*sizeof(float));

http://coherentcognition.com/projects/port/articles/openmp/guide/atomic.html (1 of 2) [6/11/2003 9:33:36 AM]

Atomic operation to update an array index

 for(i=0;i < n;i++) {
 index[i]=(n-i)-1;
 x[i]=0.0;
 y[i]=0.0;
 work1[i]=i;
 work2[i]=i*i;
 }
#pragma omp parallel for shared(x,y,index,n)
 for(i=0;i< n;i++) {
#pragma omp atomic
 x[index[i]] += work1[i];
 y[i] += work2[i];
 }
 for(i=0;i < n;i++)
 printf("%d %g %g\n",i,x[i],y[i]);
}

The advantage of using the atomic directive in this example is that it allows updates of two different elements of x to occur in parallel. If
a critical directive were used instead, that all updates to elements of x would be executed serially (though not in any guaranteed order).

http://coherentcognition.com/projects/port/articles/openmp/guide/atomic.html (2 of 2) [6/11/2003 9:33:36 AM]

RUNTIME scheduling, FFTs, and performance issues

RUNTIME scheduling, FFTs and performance issues

Link to example source.

This example illustrates the usage of RUNTIME scheduling. It also shows the effects of different chunk sizes on static scheduling. It also
discusses some issues associated with OpenMP performance, that is, they way a program is compiled can effect run times. In particular,
it shows that compiling with the OpenMP compiler (when not absolutely required) can hurt performance. These illustrations are done in
the context of a kernel style program. That is, the example program performs the type of calculations that are done in a "real" program
but it does not contain all of the details of the original program.

This example is the kernel of an optical propagation program. It does a series of 2d Fourier transforms, ffts, followed by a multiplication.
It is modeled after the AFWL program HELP or High Energy Laser Propagation. It does the 2d fft by first doing a collection of 1d ffts,
one for each column of data, then a transpose, followed by a second collection of 1d ffts. After the 2d fft is performed the resulting array
is multiplied by a scaling factor.

The outline of our program is

For a matrix "a" size of "size"

do n=1,20
 do a collection of "size" 1d ffts on a column of "a"
 do a matrix transpose
 do a collection of "size" 1d ffts on a column of "a"
 multiply "a" by some factor
enddo

Each of the operations shown above is timed. We sum and report the times.

The timing routine used in this program, ccm_time, returns values with a precision of milliseconds. It returns time is seconds from the
beginning of the year in which the program was started. The routine is portable across Fortran 90. It was written as part of the software
delivered under High Performance Computing Modernization Program, Task Number: CE 019, Title: SPMD Collective Communication

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (1 of 16) [6/11/2003 9:33:39 AM]

RUNTIME scheduling, FFTs, and performance issues

Module.

Parallelism is obtained by applying OpenMP directives to the outer do loops.

For the FFTs we use the routine four1. Four1 does a fft on a column of data. We call four1 in a do loop, with each iteration calling four1
on a different column of data. The ffts for each column are independent so we can do them in parallel. Thus we use the, PARALLEL DO,
directive with, SCHEDULE (RUNTIME) clause.

!$OMP PARALLEL DO SCHEDULE (RUNTIME)
 do i=1,size
 call four1(a(:,i),size,isign)
 enddo

When the SCHEDULE (RUNTIME) clause is used the actual scheduling for the loop is determined by the setting of the environment
variable OMP_SCHEDULE. For example, run the loop using STATIC,64 scheduling we would do a:

setenv OMP_SCHEDULE "STATIC,64"

before the program is run.

We have a similar OpenMP directive for the transpose operation.

!$OMP PARALLEL DO SCHEDULE (RUNTIME) PRIVATE(i,j,k,tmp)
 do k=1,size
 i=k
 do j=i,size
 tmp=a(i,j)
 a(i,j)=a(j,i)
 a(j,i)=tmp
 enddo
 enddo

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (2 of 16) [6/11/2003 9:33:39 AM]

RUNTIME scheduling, FFTs, and performance issues

In the code, we next have a second do loop in which we call four1.

Finally, we have a OpenMP directive for the multiplication operation.

!$OMP PARALLEL DO SCHEDULE (RUNTIME)
 do j=1,size
 do i=1,size
 a(i,j)=factor*a(i,j)
 enddo
 enddo

The routines four1 was taken from the book "Numerical Recipes in Fortran, 1st addition." However, the authors of that book derived
their routine from the routine, fourn, that was in the AFWL program HELP. The original routine, fourn, contained many additional
options. The algorithm in four1 is a subset of the algorithm in fourn, down to the variable names.

Disclaimer:
For a production code you would most likely use a vendor supplied library to do the fft instead of a hand written one.

The program was run on three different machines, one "old" machine and two preproduction machines. One of the new machines had
only 2 shared memory processors so it was run using 2 threads. The other machines were run using up to 8 threads.

The program was compiled as a serial application called "one" and as a OpenMP application called "two". It was then run using a script
similar to:

#!/bin/csh
./one
setenv OMP_NUM_THREADS 2
setenv OMP_SCHEDULE "STATIC,2"
echo $OMP_NUM_THREADS" "$OMP_SCHEDULE
./two
setenv OMP_SCHEDULE "STATIC,4"

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (3 of 16) [6/11/2003 9:33:39 AM]

RUNTIME scheduling, FFTs, and performance issues

echo $OMP_NUM_THREADS" "$OMP_SCHEDULE
./two
setenv OMP_SCHEDULE "STATIC,8"
echo $OMP_NUM_THREADS" "$OMP_SCHEDULE
./two
setenv OMP_SCHEDULE "STATIC,16"
echo $OMP_NUM_THREADS" "$OMP_SCHEDULE
./two
setenv OMP_SCHEDULE "STATIC,32"
echo $OMP_NUM_THREADS" "$OMP_SCHEDULE
./two
setenv OMP_SCHEDULE "STATIC,63"
echo $OMP_NUM_THREADS" "$OMP_SCHEDULE
./two
setenv OMP_SCHEDULE "STATIC,64"
echo $OMP_NUM_THREADS" "$OMP_SCHEDULE
./two

The output from a single run was similar to the following:

4 STATIC,32
(0.9882567199 , 0.000000000)
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(0.9882567199 , 0.2382016198E-14)
 number of transforms 20
 fft1 time= 0.7480
 transpose time= 0.5350
 fft2 time= 0.7450
 scaling time= 0.0930
 total time = 2.1210 for matrix of size 1024
 THREADS = 4

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (4 of 16) [6/11/2003 9:33:39 AM]

RUNTIME scheduling, FFTs, and performance issues

The numbers in parentheses

(0.9882567199 , 0.000000000)

and

(0.9882567199 , 0.2382016198E-14)

are the first element, a complex number, of the input array and the same element after the calculation is completed. The scaling parameter
is set so that these two numbers should be the same.

We report the total number of 2d transforms, the total time spent in the first loop calling four1, the time spent in the loop performing the
transpose, the second fft time, and the time spent in the scaling loop.

The timings for the three machines are reported below with comments following.

Timings for the optics kernel
Machine A

OpenMP
parameters

TIMES

Threads Scheduling fft 1 transpose fft 2 scaling total

1 SERIAL 8.291 1.898 8.294 0.160 18.643

- - - - - - -

2 STATIC,2 4.463 2.319 4.495 0.182 11.459

2 STATIC,4 4.453 1.659 4.452 0.161 10.725

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (5 of 16) [6/11/2003 9:33:39 AM]

RUNTIME scheduling, FFTs, and performance issues

2 STATIC,8 4.451 1.599 4.449 0.154 10.653

2 STATIC,16 4.451 1.193 4.446 0.145 10.235

2 STATIC,32 4.455 1.123 4.443 0.143 10.164

2 STATIC,63 4.517 1.339 4.512 0.144 10.512

2 STATIC,64 4.452 1.294 4.454 0.141 10.341

2 STATIC,1024 8.870 1.902 8.863 0.160 19.795

Timings for the optics kernel
Machine B

OpenMP
parameters

TIMES

Threads Scheduling fft 1 transpose fft 2 scaling total

1 SERIAL 6.706 3.141 6.690 0.595 17.132

- - - - - - -

2 STATIC,2 4.177 5.270 4.219 0.234 13.900

2 STATIC,4 4.068 2.564 4.252 0.226 11.110

2 STATIC,8 4.076 2.551 4.203 0.230 11.060

2 STATIC,16 4.065 2.150 4.159 0.221 10.595

2 STATIC,32 4.062 2.016 4.163 0.220 10.461

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (6 of 16) [6/11/2003 9:33:39 AM]

RUNTIME scheduling, FFTs, and performance issues

2 STATIC,63 4.152 1.560 4.191 0.222 10.125

2 STATIC,64 4.067 1.998 4.145 0.228 10.438

2 STATIC,1024 8.432 3.266 8.412 0.591 20.701

- - - - - - -

4 STATIC,2 2.037 2.581 2.183 0.099 6.900

4 STATIC,4 1.974 2.452 2.158 0.080 6.664

4 STATIC,8 1.944 1.327 2.120 0.078 5.469

4 STATIC,16 1.974 1.175 2.108 0.076 5.333

4 STATIC,32 1.969 1.158 2.108 0.076 5.311

4 STATIC,63 2.049 1.215 2.170 0.081 5.515

4 STATIC,64 1.952 1.254 2.122 0.082 5.410

4 STATIC,1024 8.427 3.302 8.393 0.573 20.695

- - - - - - -

6 STATIC,2 1.391 1.791 1.463 0.084 4.729

6 STATIC,4 1.330 1.642 1.467 0.067 4.506

6 STATIC,8 1.351 0.969 1.508 0.079 3.907

6 STATIC,16 1.343 0.819 1.468 0.060 3.690

6 STATIC,32 1.479 0.821 1.608 0.069 3.977

6 STATIC,63 1.502 0.977 1.613 0.065 4.157

6 STATIC,64 1.447 0.960 1.612 0.054 4.073

6 STATIC,1024 8.433 3.236 8.409 0.577 20.655

- - - - - - -

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (7 of 16) [6/11/2003 9:33:39 AM]

RUNTIME scheduling, FFTs, and performance issues

8 STATIC,2 1.042 1.439 1.184 0.056 3.721

8 STATIC,4 0.996 1.251 1.124 0.050 3.421

8 STATIC,8 1.010 0.865 1.128 0.055 3.058

8 STATIC,16 0.971 0.669 1.078 0.031 2.749

8 STATIC,32 0.973 0.717 1.108 0.042 2.840

8 STATIC,63 1.065 0.858 1.177 0.057 3.157

8 STATIC,64 0.985 0.832 1.133 0.057 3.007

8 STATIC,1024 8.440 3.220 8.403 0.579 20.642

Timings for the optics kernel
Machine C

OpenMP
parameters

TIMES

Threads Scheduling fft 1 transpose fft 2 scaling total

1 SERIAL 2.576 1.817 2.585 0.334 7.312

- - - - - - -

2 STATIC,2 1.536 1.087 1.532 0.169 4.324

2 STATIC,4 1.508 1.290 1.518 0.160 4.476

2 STATIC,8 1.498 1.015 1.504 0.157 4.174

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (8 of 16) [6/11/2003 9:33:40 AM]

RUNTIME scheduling, FFTs, and performance issues

2 STATIC,16 1.504 0.962 1.509 0.152 4.127

2 STATIC,32 1.504 0.999 1.503 0.159 4.165

2 STATIC,63 1.531 1.009 1.529 0.167 4.236

2 STATIC,64 1.507 1.042 1.504 0.156 4.209

2 STATIC,1024 2.995 1.826 2.991 0.292 8.104

- - - - - - -

4 STATIC,2 0.769 0.810 0.779 0.096 2.454

4 STATIC,4 0.760 0.650 0.760 0.090 2.260

4 STATIC,8 0.793 0.621 0.751 0.089 2.254

4 STATIC,16 0.784 0.587 0.759 0.103 2.233

4 STATIC,32 0.758 0.532 0.789 0.090 2.169

4 STATIC,63 0.784 0.633 0.794 0.082 2.293

4 STATIC,64 0.751 0.602 0.743 0.085 2.181

4 STATIC,1024 3.048 1.936 3.031 0.353 8.368

- - - - - - -

6 STATIC,2 0.640 0.518 0.542 0.156 1.856

6 STATIC,4 0.607 0.481 0.505 0.114 1.707

6 STATIC,8 0.552 0.532 0.573 0.159 1.816

6 STATIC,16 0.619 0.424 0.631 0.104 1.778

6 STATIC,32 0.612 0.428 0.678 0.148 1.866

6 STATIC,63 0.641 0.549 0.623 0.100 1.913

6 STATIC,64 0.634 0.541 0.652 0.095 1.922

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (9 of 16) [6/11/2003 9:33:40 AM]

RUNTIME scheduling, FFTs, and performance issues

6 STATIC,1024 3.066 1.844 3.036 0.353 8.299

- - - - - - -

8 STATIC,2 0.528 0.506 0.409 0.181 1.624

8 STATIC,4 0.524 0.414 0.491 0.142 1.571

8 STATIC,8 0.539 0.380 0.465 0.114 1.498

8 STATIC,16 0.450 0.335 0.457 0.090 1.332

8 STATIC,32 0.460 0.350 0.422 0.082 1.314

8 STATIC,63 0.536 0.519 0.483 0.156 1.694

8 STATIC,64 0.547 0.478 0.525 0.118 1.668

8 STATIC,1024 3.069 1.936 3.080 0.375 8.460

OMP_SCHEDULE does effect timing

We first note that setting the environment variable OMP_SCHEDULE does effect timing for this program. That is, RUNTIME
scheduling does work.

Changing scheduling has the biggest effect on the transpose, particularly for machines A and B. For these, the biggest change in the
runtime is from the time spent in the transpose.

Not all changes in timing are from OpenMP overhead

Consider machine, A, where the time for the transpose with STATIC,2 scheduling is 2.319 seconds and 1.659 seconds for STATIC,4.
The OpenMP microkernel benchmark was run on machine A. We find from that benchmark that the overhead associated with using
STATIC,2 scheduling is 2.05 microseconds and STATIC,4 is 1.67 microseconds. The difference in overhead is insufficient to explain the
differences in this program. It is possible that the poorer performance for the STATIC,2 case is from cache conflicts . The data being
accessed by two threads might be on the same cache line. For larger chunk sizes we might be seeing better performance because the two

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (10 of 16) [6/11/2003 9:33:40 AM]

RUNTIME scheduling, FFTs, and performance issues

processors are able to access the data on different cache lines.

OpenMP can decrease performance

For machines A and B the runtime of the transpose operation is actually longer using STATIC,2 scheduling than when the loop is run
using a single thread. There are some loops, on some machines, with some scheduling algorithms that will run slower. Sometimes this is
from cache conflicts as discussed above. For some of the first OpenMP compilers the slow down on some loops was dramatic. The slow
down exceeded what was cause by cache conflict. It was from the compiler just generating bad code. Fortunately the instances of
compliers generating bad code has decrease with newer compilers but it still does happen.

Running with a chunk size of 1024 exposes a compiler problem

The outer loops in this program have counts of 1024. So why run with a chunk size of 1024 when this forces all of the computation to run
using a single thread?

This exposes additional overhead that is introduced by the OpenMP compiler. For machine B we have a serial runtime of 17.132
seconds. With a chunk size of 1024 the runtime is 20.701 seconds or about 3.5 seconds more. Most of the extra time is in the doing the
loops that contains the routine four1. There should not be any significant synchronization associated with this loop. The other possibility
is that turning on OpenMP effects the efficiency of the code generated for the routine four1. To test this, the program was recompiled and
rerun. The routine four1 was split out into its own file and compiled with OpenMP turned off. The rest of the program was compiled with
OpenMP turned on and then linked with four1. The difference in results is dramatic. The runtime for the case where chunk size was 1024
dropped from 20.701 seconds to 17.623 seconds, over 3 seconds. All of the reduction was seen in the loop that performed the fft. All of
the cases showed speed up in four1 when the routine was compiled with OpenMP turned off. For one instance, 2 threads; STATIC,4, the
transpose took longer. See the new results for machines B and C below.

Apparently, some optimizations for the routine four1 were not performed when OpenMP was turned on. There is no reason, from the
standpoint of the language definition, that this should occur. As compilers mature this type of anomalous behavior should diminish.

Why 63?

One of the first machines that this program was run on was a Cray T90. The Cray T90 memory system did not do as well when multiple

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (11 of 16) [6/11/2003 9:33:40 AM]

RUNTIME scheduling, FFTs, and performance issues

processors tried to access data that was offset in memory by certain strides. This was well documented and it was recommended that
program writers avoid such simultaneous memory access. When this program was run with a chunk size of 64 the memory access
recommendation was violated. When run with a chunk size of 63 the performance was much better. The Cray T90 is not in wide use
today. However this example is included to point out again that OpenMP performance can be effected by the memory subsystem of a
machine.

Advice

Check the runtime of your loops. Check that your loops actually show speed up. If they don't show speed up it could be because of
memory conflicts. It pays to know the cache and memory subsystem of your machine. You may want to use RUNTIME scheduling. You
can then try different scheduling algorithms without recompiling your program. For some machines you may even be able to change the
scheduling on the fly by changing the environment variable while the program is running. (Some machines have library calls that allow
system calls to do such things.) For important subroutines, try compiling them separately with OpenMP turned off. This may lead to
additional optimizations being performed.

Timings for the optics kernel
Machine B
Routine four1 compiled separately.

OpenMP
parameters

TIMES

Threads Scheduling fft 1 transpose fft 2 scaling total

1 SERIAL 6.705 3.107 6.694 0.589 17.095

- - - - - - -

2 STATIC,2 3.378 5.341 3.529 0.251 12.499

2 STATIC,4 3.355 4.353 3.478 0.242 11.428

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (12 of 16) [6/11/2003 9:33:40 AM]

RUNTIME scheduling, FFTs, and performance issues

2 STATIC,8 3.365 2.513 3.477 0.245 9.600

2 STATIC,16 3.377 2.160 3.483 0.248 9.268

2 STATIC,32 3.330 1.999 3.417 0.221 8.967

2 STATIC,63 3.378 1.939 3.450 0.230 8.997

2 STATIC,64 3.332 1.936 3.409 0.220 8.897

2 STATIC,1024 6.986 3.113 6.938 0.586 17.623

- - - - - - -

4 STATIC,2 1.623 2.514 1.781 0.098 6.016

4 STATIC,4 1.597 2.454 1.783 0.103 5.937

4 STATIC,8 1.585 1.310 1.754 0.074 4.723

4 STATIC,16 1.582 1.155 1.745 0.089 4.571

4 STATIC,32 1.576 1.160 1.738 0.074 4.548

4 STATIC,63 1.672 1.192 1.791 0.093 4.748

4 STATIC,64 1.614 1.226 1.775 0.090 4.705

4 STATIC,1024 6.972 3.178 6.938 0.585 17.673

- - - - - - -

6 STATIC,2 1.143 1.982 1.235 0.079 4.439

6 STATIC,4 1.085 1.881 1.228 0.065 4.259

6 STATIC,8 1.125 0.835 1.254 0.047 3.261

6 STATIC,16 1.106 0.827 1.210 0.057 3.200

6 STATIC,32 1.178 0.852 1.316 0.063 3.409

6 STATIC,63 1.207 0.971 1.333 0.080 3.591

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (13 of 16) [6/11/2003 9:33:40 AM]

RUNTIME scheduling, FFTs, and performance issues

6 STATIC,64 1.197 0.947 1.341 0.069 3.554

6 STATIC,1024 6.960 3.272 6.925 0.579 17.736

- - - - - - -

8 STATIC,2 0.803 1.552 0.907 0.045 3.307

8 STATIC,4 0.801 1.389 0.908 0.046 3.144

8 STATIC,8 0.803 0.634 0.913 0.054 2.404

8 STATIC,16 0.786 0.653 0.912 0.041 2.392

8 STATIC,32 0.890 0.741 0.970 0.058 2.659

8 STATIC,63 0.876 0.825 0.937 0.043 2.681

8 STATIC,64 0.804 0.848 0.967 0.049 2.668

8 STATIC,1024 6.975 3.207 6.946 0.590 17.718

Timings for the optics kernel
Machine C
Routine four1 compiled separately.

OpenMP
parameters

TIMES

Threads Scheduling fft 1 transpose fft 2 scaling total

1 SERIAL 2.577 1.900 2.581 0.337 7.395

- - - - - - -

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (14 of 16) [6/11/2003 9:33:40 AM]

RUNTIME scheduling, FFTs, and performance issues

2 STATIC,2 1.329 1.372 1.338 0.162 4.201

2 STATIC,4 1.318 1.287 1.327 0.157 4.089

2 STATIC,8 1.298 1.098 1.308 0.156 3.860

2 STATIC,16 1.293 1.144 1.298 0.157 3.892

2 STATIC,32 1.306 0.973 1.307 0.159 3.745

2 STATIC,63 1.317 1.033 1.317 0.156 3.823

2 STATIC,64 1.309 1.052 1.306 0.160 3.827

2 STATIC,1024 2.602 1.856 2.606 0.297 7.361

- - - - - - -

4 STATIC,2 0.662 0.738 0.673 0.092 2.165

4 STATIC,4 0.659 0.714 0.680 0.095 2.148

4 STATIC,8 0.674 0.633 0.657 0.093 2.057

4 STATIC,16 0.658 0.607 0.653 0.090 2.008

4 STATIC,32 0.672 0.523 0.663 0.095 1.953

4 STATIC,63 0.740 0.621 0.673 0.094 2.128

4 STATIC,64 0.668 0.625 0.665 0.092 2.050

4 STATIC,1024 2.611 1.877 2.576 0.314 7.378

- - - - - - -

6 STATIC,2 0.516 0.634 0.479 0.162 1.791

6 STATIC,4 0.506 0.541 0.521 0.129 1.697

6 STATIC,8 0.552 0.461 0.486 0.147 1.646

6 STATIC,16 0.470 0.441 0.561 0.101 1.573

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (15 of 16) [6/11/2003 9:33:40 AM]

RUNTIME scheduling, FFTs, and performance issues

6 STATIC,32 0.571 0.491 0.541 0.178 1.781

6 STATIC,63 0.504 0.523 0.520 0.097 1.644

6 STATIC,64 0.505 0.562 0.546 0.070 1.683

6 STATIC,1024 2.598 1.825 2.603 0.381 7.407

- - - - - - -

8 STATIC,2 0.403 0.496 0.424 0.188 1.511

8 STATIC,4 0.425 0.454 0.450 0.230 1.559

8 STATIC,8 0.404 0.392 0.470 0.066 1.332

8 STATIC,16 0.505 0.363 0.427 0.083 1.378

8 STATIC,32 0.409 0.360 0.382 0.066 1.217

8 STATIC,63 0.392 0.488 0.394 0.134 1.408

8 STATIC,64 0.394 0.468 0.414 0.051 1.327

8 STATIC,1024 2.642 1.894 2.643 0.303 7.482

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (16 of 16) [6/11/2003 9:33:40 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90

!this program is the kernel for an optical propagation program.
!it does a series of 2d ffts followed by a multiplication.
!it is modeled after the AFWL program HELP or High Energy
!Laser Propagation.
!
!it does the 2d fft by first doing a collection of 1d ffts
!then a transpose followed by a second collection of 1d ffts.
!
!the sections of the program that are commented out represent
!different ways of doing the operations. the most interesting
!addition is using the using the subroutine shuff to generate
!a nonuniform ordering for accessing the array.

!the routines four1 was taken from the book
!"numerical recipes in fortran, 1st addition."
!however, the authors of that book derived their routine
!from the routine fourn that was in the AFWL program HELP.
!the original routine, fourn, contained many additional
!options

!disclaimer: for a production code you would most likely
!use a vendor supplied library to do the fft instead of a
!hand written one.

module ccm_numz
! basic real types
 integer, parameter:: b8 = selected_real_kind(10)
contains
 function ccm_time()
 implicit none
 integer i
 integer :: ccm_start_time(8) = (/(-100,i=1,8)/)
 real(b8) :: ccm_time,tmp
 integer,parameter :: norm(13)=(/ &
 0, 2678400, 5097600, 7776000,10368000,13046400,&
 15638400,18316800,20995200,23587200,26265600,28857600,31536000/)
 integer,parameter :: leap(13)=(/ &
 0, 2678400, 5184000, 7862400,10454400,13132800,&
 15724800,18403200,21081600,23673600,26352000,28944000,31622400/)
 integer :: values(8),m,sec
 save
 call date_and_time(values=values)
 if(mod(values(1),4) .eq. 0)then
 m=leap(values(2))

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90 (1 of 6) [6/11/2003 9:33:41 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90

 else
 m=norm(values(2))
 endif
 sec=((values(3)*24+values(5))*60+values(6))*60+values(7)
 tmp=real(m,b8)+real(sec,b8)+real(values(8),b8)/1000.0_b8
 !write(*,*)"vals ",values
 if(values(1) .ne. ccm_start_time(1))then
 if(mod(ccm_start_time(1),4) .eq. 0)then
 tmp=tmp+real(leap(13),b8)
 else
 tmp=tmp+real(norm(13),b8)
 endif
 endif
 ccm_time=tmp
 end function
end module ccm_numz

program two_d_fft
 use ccm_numz
 implicit none
! integer size
 integer,parameter:: size=1024
! integer omp_get_max_threads
 integer i,j,k,ijk,isign,iseed
 real(b8),allocatable:: x(:)
 integer, allocatable:: index(:)
 complex(b8), allocatable:: a(:,:)
! complex(b8) :: a(size,size)
! complex(b8), allocatable:: temp(:)
 complex(b8) tmp
 complex(b8) factor
 real(b8) gen,fft1,fft2,trans,totf,fact
 real(b8) t0,t1,t2,t3,t4,t5
 integer OMP_GET_MAX_THREADS
 interface
 subroutine shuff(index,m,n)
 dimension index(:)
 integer m,n
 end subroutine
 end interface
 factor=size
 factor=1.0_b8/(factor)
 iseed=-12345
 isign=1
 gen=0
 fft1=0

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90 (2 of 6) [6/11/2003 9:33:41 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90

 fft2=0
 trans=0
 totf=0
 fact=0
! read(12,*)size
 allocate(a(size,size))
 allocate(x(size),index(size))
 call shuff(index,size,8)
! dummy=ran1(iseed)
! write(*,*)"dummy=",dummy
 t0=ccm_time ()
 do j=1,size
 call random_number(x)
 do i=1,size
 a(i,j)=cmplx(x(i),0.0_b8)
 enddo
 enddo
 write(*,'(("(",g20.10,",",g20.10,")"))')a(size/2+1,size-2)

! do 10 ijk=1,20 ! change to 4 to run faster
 do 10 ijk=1,20
 t1=ccm_time ()
!$OMP PARALLEL DO SCHEDULE (RUNTIME)
 do i=1,size
 call four1(a(:,i),size,isign)
 !call four1(a(i,:),size,isign)
 enddo
!$OMP END PARALLEL DO
 t2=ccm_time ()
!$OMP PARALLEL DO SCHEDULE (RUNTIME) PRIVATE(i,j,k,tmp)
 do k=1,size
 i=k
! i=index(k)
 do j=i,size
! tmp=a(j,i)
! a(j,i)=a(i,j)
! a(i,j)=tmp
 tmp=a(i,j)
 a(i,j)=a(j,i)
 a(j,i)=tmp
 enddo
! j=i
! temp(j:size)=a(i,j:size)
! a(i,j:size)=a(j:size,i)
! a(j:size,i)=temp(j:size)
 enddo

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90 (3 of 6) [6/11/2003 9:33:41 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90

!$OMP END PARALLEL DO
 t3=ccm_time ()
!$OMP PARALLEL DO SCHEDULE (RUNTIME)
 do i=1,size
 call four1(a(:,i),size,isign)
 !call four1(a(i,:),size,isign)
 enddo
!$OMP END PARALLEL DO
 t4=ccm_time ()
!$OMP PARALLEL DO SCHEDULE (RUNTIME)
 do j=1,size
 do i=1,size
 a(i,j)=factor*a(i,j)
 enddo
 enddo
!$OMP END PARALLEL DO
 t5=ccm_time ()
 gen=gen+t1-t0
 fft1=fft1+t2-t1
 fft2=fft2+t4-t3
 trans=trans+t3-t2
 totf=totf+t5-t1
 fact=fact+t5-t4
 isign=isign*(-1)
 write(*,'(i3)',advance="no")ijk
 10 continue
 write(*,*)
 write(*,'(("(",g20.10,",",g20.10,")"))')a(size/2+1,size-2)
 write(*,*)"number of transforms",ijk-1
 !write(*,'("generation time= ",f7.1)')gen
 write(*,'(" fft1 time= ",f9.4)')fft1
 write(*,'(" transpose time= ",f9.4)')trans
 write(*,'(" fft2 time= ",f9.4)')fft2
 write(*,'(" scaling time= ",f9.4)')fact
 write(*,'(" total time = ",f9.4)',advance="no")totf
 write(*,'(" for matrix of size",i6)')size
 write(*,*)"THREADS = ",OMP_GET_MAX_THREADS()
 stop
end program two_d_fft

 subroutine four1(data,nn,isign)
 use ccm_numz
 implicit none
 integer i,j,isign,nn,n,m,mmax,istep
 real(b8), parameter :: two_pi = 6.283185307179586477_b8
 real(b8) wr,wi,wpr,wpi,wtemp,theta,tempr,tempi

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90 (4 of 6) [6/11/2003 9:33:41 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90

 real(b8) data(16384)
 n=2*nn
 j=1
 do 11 i=1,n,2
 if(j.gt.i)then
 tempr=data(j)
 tempi=data(j+1)
 data(j)=data(i)
 data(j+1)=data(i+1)
 data(i)=tempr
 data(i+1)=tempi
 endif
 m=n/2
1 if ((m.ge.2).and.(j.gt.m)) then
 j=j-m
 m=m/2
 go to 1
 endif
 j=j+m
11 continue
 mmax=2
2 if (n.gt.mmax) then
 istep=2*mmax
 theta=two_pi/(isign*mmax)
 wpr=-2.0_b8*sin(0.5_b8*theta)**2
 wpi=sin(theta)
 wr=1.0_b8
 wi=0.0_b8
 do 13 m=1,mmax,2
 do 12 i=m,n,istep
 j=i+mmax
 tempr=(wr)*data(j)-(wi)*data(j+1)
 tempi=(wr)*data(j+1)+(wi)*data(j)
 data(j)=data(i)-tempr
 data(j+1)=data(i+1)-tempi
 data(i)=data(i)+tempr
 data(i+1)=data(i+1)+tempi
12 continue
 wtemp=wr
 wr=wr*wpr-wi*wpi+wr
 wi=wi*wpr+wtemp*wpi+wi
13 continue
 mmax=istep
 go to 2
 endif
 return

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90 (5 of 6) [6/11/2003 9:33:41 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90

 end

subroutine shuff(index,m,n)
 integer tens,ones
 dimension index(:)
 tens=n
 ones=1
 j=0
 k=1
 do while (j < m)
 j=j+1
 if(k.gt. m)then
 write(*,*)k,m
 stop
 endif
 index(k)=j
 k=k+tens
 if(k .gt. m)then
 ones=ones+1
 k=ones
 endif
 enddo
end subroutine shuff

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90 (6 of 6) [6/11/2003 9:33:41 AM]

	coherentcognition.com
	OpenMP Guide
	Collection of links
	Compiler invocation, information and environment variables
	Portability and thread scheduling
	http://coherentcognition.com/projects/port/articles/openmp/guide/ompf.f90
	Effects of schedule types
	http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c
	Parallel Sections
	http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c
	http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90
	Threadprivate and derived types
	http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c
	Single and operatations on a subsection of an array without using a for loop
	http://coherentcognition.com/projects/port/articles/openmp/guide/t10.c
	http://coherentcognition.com/projects/port/articles/openmp/guide/t10.f90
	Merge Sort, threadprivate with pointers to derived types
	http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90
	http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt
	Merge Sort, threadprivate with pointers to derived types
	http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c
	http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt
	Atomic operation to update an array index
	RUNTIME scheduling, FFTs, and performance issues
	http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90

