OpenMP Guide

OpenMP Guide

The purpose of this guide is to discuss a number of topics related to OpenMP. The topics include:

. Portability issues

. Discussion of thread scheduling and the effect of scheduling on timings
. Information on compiler invocation

.« A collection of links to additional information

. Potential problems from the inmaturity of compilers

This guideis organized as a collection of articles. Thetitles are shown below. The collection of linksisjust what it says, a collection of
web links to useful pages dealing with OpenMP. These include documentation, user groups, tutorials, and vendor information. The
compiler invocation section discussed how OpenMP isinvoked and controlled on various platforms.

The material included under "Examples and more obscure usages' is somewhat varied. It includes discussions on thread scheduling in
do/for loops, some advanced threadprivate code, coarse grained parallelism not using do/for loops, and some examples that are included
simply because they broke many early implementations of OpenMP.

The examples all have source code associated with them. Some of the articles have sections of the code imbedded. For consistency, there
iIsalink to the complete source at the beginning of each article.

1. Collection of links
2. Compiler invocation, information and environment variables

3. Examples and alittle more obscure usages
o Portability and thread scheduling

o Effects of schedule types

o Parallel Sections

o Threadprivate, derived types, maintaining variables between paralel regions
o Single and operations on a subsection of an array without using afor loop

o Merge Sort, threadprivate with pointers to derived types

http://coherentcognition.com/projects/port/articles/openmp/guide/ (1 of 2) [6/11/2003 9:33:14 AM]

OpenMP Guide

« Fortran version
« Cversion
o Atomic operation to update an array index
o RUNTIME scheduling, FFTs and performance issues

http://coherentcognition.com/projects/port/articles/openmp/guide/ (2 of 2) [6/11/2003 9:33:14 AM]

Collection of links

Collection of links about OpenMP

Main OpenMP web pages. Contains links to many other OpenMP sites.

OpenMP Architecture Review Board
http://www.openmp.org/

Official OpenM P Specifications
http://www.openmp.org/specs/

User Group

cOMPunity, acommunity of OpenMP researchers and developers in academia and industry
http://www.compunity.org/

Good general link

Parallel Computing Group at La Laguna University
http://nereida.dei oc.ull.es/html/openmp.html

Tutorials

Tutorials and alot of other good information from La Laguna University
http://nereida.dei oc.ull.es/html/openmpindex.html#tutorials

Nice short tutorial from NERSC
http://hpcf.nersc.gov/training/tutorial 'openmp/

LLNL
http://www.lInl.gov/computing/tutoria s'workshops/workshop/openM P/M AIN.html

http://coherentcognition.com/projects/port/articles/openmp/guide/links.html (1 of 3) [6/11/2003 9:33:16 AM]

http://www.openmp.org/
http://www.openmp.org/specs/
http://www.compunity.org/
http://nereida.deioc.ull.es/html/openmp.html
http://nereida.deioc.ull.es/html/openmpindex.html#tutorials
http://hpcf.nersc.gov/training/tutorials/openmp/
http://www.llnl.gov/computing/tutorials/workshops/workshop/openMP/MAIN.html

Collection of links

Free implementations of OpenMP

Intone OpenMP C/C++ compiler
http://odinmp.imit.kth.se/

Omni OpenM P Compiler Project
http://phase.etl.go.jp/Omni/

OpenMP benchmarks

EPCC microbenchmarks
http://www.epcc.ed.ac.uk/research/openmpbench/
EPCC microbenchmarks in Fortran90
http://coherentcognition.com/~tkai ser/arti cles/openmp/bull/port.html
NAS Parallel Benchmarks
http://phase.etl.go.jp/Omni/benchmarks/NPB/index.html

Vendor information
HP-KAP

Fortan
http://nf.apac.edu.au/facilities/sc/compag mirror3/progtool/kapc/kapc.html

C
http://nf.apac.edu.au/facilities/sc/compag mirror3/progtool/kapf/kapfu.htm

IBM AIX

Fortran
http://www-3.ibm.com/software/awdtool s/fortran/xIfortran/support/ Then click on Product information

C

http://coherentcognition.com/projects/port/articles/openmp/guide/links.html (2 of 3) [6/11/2003 9:33:16 AM]

http://odinmp.imit.kth.se/
http://phase.etl.go.jp/Omni/
http://www.epcc.ed.ac.uk/research/openmpbench/
http://coherentcognition.com/~tkaiser/articles/openmp/bull/port.html
http://phase.etl.go.jp/Omni/benchmarks/NPB/index.html
http://nf.apac.edu.au/facilities/sc/compaq_mirror3/progtool/kapc/kapc.html
http://nf.apac.edu.au/facilities/sc/compaq_mirror3/progtool/kapf/kapfu.htm
http://www-3.ibm.com/software/awdtools/fortran/xlfortran/support/

Collection of links

http://www-3.ibm.com/software/awdtool s/cai x/support/ Then click on Product information

SUN

Fortran users Guide
ftp://docs-pdf.sun.com/806-7988/806-7988.pdf
Fortran Programmers Guide
ftp://docs-pdf.sun.com/805-4940/805-4940.pdf
For other Sun documents see
http://docs.sun.com/

Intel

Compiler pages
http://devel oper.intel.com/software/products/compilers
Fortran User guide
http://www.intel .com/software/products/compilers/techtopics/for _ug Inx.htm
Fortran Reference
http://www.intel .com/software/products/compil ers/techtopics/for prg.htm
Intel C++ Compiler User's Guide
http://devel oper.intel.com/software/products/compilers/techtopics/c ug_Inx.pdf
Intel C++ Compiler 7.0 for Linux* Getting Started Guide
ftp://downl oad.intel .com/software/products/compil ers/techtopics/C Getting Started Guidel. pdf
For additional Intel documentation
Do an anonymous ftp to download.intel.com and look in the directory /software/products/compilers/techtopics

http://coherentcognition.com/projects/port/articles/openmp/guide/links.html (3 of 3) [6/11/2003 9:33:16 AM]

http://www-3.ibm.com/software/awdtools/caix/support/
ftp://docs-pdf.sun.com/806-7988/806-7988.pdf
ftp://docs-pdf.sun.com/805-4940/805-4940.pdf
http://docs.sun.com/
http://developer.intel.com/software/products/compilers
http://www.intel.com/software/products/compilers/techtopics/for_ug_lnx.htm
http://www.intel.com/software/products/compilers/techtopics/for_prg.htm
http://developer.intel.com/software/products/compilers/techtopics/c_ug_lnx.pdf
ftp://download.intel.com/software/products/compilers/techtopics/C_Getting_Started_Guide1.pdf

Compiler invocation, information and environment variables

Compiler invocation, information and environment variables

Cray SV1

To Enable OpenMP in the compiler
Fortran

OpenMP ison by default to turn it off specify
f90 -xOWP nyprogram f 90

Notes on environment variables:

OMP_DYNAMIC
OMP_DYNAMIC isignored. The dynamic adjustment of threadsis always enabled and cannot be disabled.
OMP_NESTED
OMP_NESTED isignored. Nested parallelism is not supported.
OMP_SCHEDULE
The default schedule typeis DY NAMIC.
OMP_NUM_THREADS
Caution, the value of the NCPUS environment variable overrides the value of the OMP_NUM_THREADS environment variable.
That is, if NCPUS is set then it takes precedence over OMP_NUM_THREADS. If neither are defined then the default is 4 or the
number of CPUs on the system, whichever isless.
NCPUS
See OMP_NUM_THREADS

Other notes:

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (1 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

IBM AIX

To Enable OpenMP in the compiler
Fortran

Use the compilersxIf _r, xIf90 r, or xIf95 r and specify the -gsmp=omp compiler option. The" r" extension in the compiler name
supplies thread safe library routines.

C

Use the compilers xlc_r or cc_r and specify the -gsmp=omp compiler option. The"_r" extension in the compiler name supplies thread
safe library routines.

Y ou can also specify the schedule type for threads on the compile line using the syntax
xIf90_r myprogram.f -qsmp=omp,schedul e=static
Where the schedul e suboption takes subsuboptions.
. dfinity[=n]
. dynamic[=n]
. guided[=n]
. runtime
. static[=n]
. threshold[=n]
For descriptions please see below or the Fortran User's Guide.

Notes on environment variables:

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (2 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

OMP _DYNAMIC
Defalut valueis TRUE
OMP_NESTED
Defalut valueis FALSE
OMP_SCHEDULE
The default schedule typeis STATIC.
OMP_NUM_THREADS
Defalut value is the number of processors on anode
XLSMPOPTS
Can be used instead of the normal OMP environment varaialbes. See below. If you specify both the XL SMPOPTS environment
variable and an OpenMP environment variable, the OpenM P environment variable takes precedence.

Other notes:
If thereisaroutine say, my_fft, where my_fft does not contain OpenMP and it is called in aloop like:
' $onp parallel do
do i=1,n
call nmy_fft(x(i))

enddo

Try compiling my_fft separately with OpenMP turned off and link it with the rest of your program. Compiling with OpenMP limits some
optimizations. Compiling separately might improve performance.

From the IBM XLF Users guide: The XL SMPOPT S Environment Variable

The XLSMPOPTS environment variable allows you to specify options that affect SMP execution. Y ou can declare XLSMPOPTS by
using the following ksh command format:

XLSMPOPTS= runti ne_option_nane = option_setting

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (3 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

Y ou can specify option names and settings in uppercase or lowercase. Y ou can add blanks before and after the colons and equal signsto
improve readability. However, if the XLSMPOPTS option string contains imbedded blanks, you must enclose the entire option string in
double quotation marks (). Y ou can specify the following run-time options with the XL SMPOPTS environment variable:

schedule

Selects the scheduling type and chunk size to be used as the default at run time. The scheduling type that you specify will only be used
for loops that were not already marked with a scheduling type at compilation time. Work is assigned to threads in a different manner,
depending on the scheduling type and chunk size used. A brief description of the scheduling types and their influence on how work is
assigned follows:

dynamic or guided
The run-time library dynamically schedules parallel work for threads on a "first-come, first-do" basis. "Chunks' of the remaining
work are assigned to available threads until all work has been assigned. Work is not assigned to threads that are asleep.

static
Chunks of work are assigned to the threads in a "round-robin" fashion. Work is assigned to all threads, both active and asleep. The
system must activate sleeping threads in order for them to complete their assigned work.

affinity
The run-time library performs an initial division of the iterations into number_of threads partitions. The number of iterations that
these partitions contain is:
CEILING(number_of _iterations/ number_of threads)
These partitions are then assigned to each of the threads. It is these partitions that are then subdivided into chunks of iterations. If
athread is asleep, the threads that are active will complete their assigned partition of work.

Choosing chunking granularity is a tradeoff between overhead and load balancing. The syntax for this option is schedule=suboption,
where the suboptions are defined as follows:

affinity[=n]
As described previoudly, the iterations of aloop are initially divided into partitions, which are then preassigned to the threads.
Each of these partitionsis then further subdivided into chunks that contain n iterations. If you have not specified n, a chunk
consists of

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (4 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

CEILING(number_of iterations remaining_in_local_partition / 2)
loop iterations. When a thread becomes available, it takes the next chunk from its preassigned partition. If there are no more
chunksin that partition, the thread takes the next available chunk from a partition preassigned to another thread.

dynamic[=n]
The iterations of aloop are divided into chunks that contain n iterations each. If you have not specified n,a chunk consists of
CEILING(number_of iterations/ number_of threads)
iterations.

guided[=n]
The iterations of aloop are divided into progressively smaller chunks until a minimum chunk size of n loop iterations is reached.
If you have not specified n, the default value for nis 1 iteration. The first chunk contains
CEILING(number_of iterations/ number_of threads)
iterations. Subsequent chunks consist of
CEILING(number_of iterations remaining / number_of _threads)
iterations.

static[=n]
The iterations of aloop are divided into chunks that contain n iterations. Threads are assigned chunksin a"round-robin" fashion.
Thisis known as block cyclic scheduling. If the value of nis 1, the scheduling typeis specifically referred to as cyclic scheduling.
If you have not specified n, the chunks will contain
CEILING(number_of iterations/ number_of threads)
iterations. Each thread is assigned one of these chunks. Thisis known as block scheduling. If you have not specified schedule, the
default is set to schedule=static, resulting in block scheduling.

Related Information: For more information, see the description of the SCHEDULE directive in the XL Fortran for A1X Language
Reference. 74 XL Fortran for AIX: User's Guide

Parallel execution options
The three parallel execution options, parthds, usrthds, and stack,areas follows:
parthds=num
Specifies the number of threads (num)to be used for parallel execution of code that you compiled with the -gsmp option. By

default, thisis equal to the number of online processors. There are some applications that cannot use more than some maximum

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (5 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

number of processors. There are also some applications that can achieve performance gainsif they use more threads than there are
processors. This option allows you full control over the number of execution threads. The default value for numis 1 if you did not
specify -gsmp. Otherwisg, it is the number of online processors on the machine. For more information, seethe NUM_PARTHDS
intrinsic function in the XL Fortran for AlX Language Reference.

usrthds=num
Specifies the maximum number of threads (num) that you expect your code will explicitly create if the code does explicit thread
creation. The default value for num is 0. For more information, see the NUM_USRTHDS intrinsic function in the XL Fortran for
AlX Language Reference.

stack=num
Specifies the largest amount of space in bytes (num) that athread's stack will need. The default value for num is 4194304.

SGl

Fortran

To Enable OpenMP in the compiler

f90 -np - MP: open_np=0ON nyprog. f 90
C

cc -np - MP: open_np=0ON nyprog.c
Notes on environment variables:

OMP_SCHEDULE
The default value for this environment variable is STATIC.
OMP_NUM_THREADS

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (6 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

The default value is the minimum of 8 and the number of CPUs on the system.
OMP_DYNAMIC

The default valueis TRUE.
OMP_NESTED

The default isFALSE

Other notes:
Y ou can specify default scheduling on the compile line. From the f90 man page we find:

- np_schedt ype=node
Specifies a default node for scheduling work anong the
participating tasks in |oops. This option nust be specified
I n conjunction with -np. Specifying this option has the
sane effect as putting a ! $MP_SCHEDTYPE=npde directive at
t he beginning of the file. Specify one of the follow ng for

node:

node Action

DYNAM C Breaks the iterations into pieces, the size
of which is specified by the -chunk=integer
option. As each process finishes a piece, it
enters a critical section and obtains the
next avail able piece. For nore informtion,
see the -chunk=i nteger option.

GSS Schedul es pi eces according to the sizes of
the pieces awaiting execution.

| NTERLEAVE Breaks the iterations into pieces, this size

of which is specified by the -chunk=i nteger
option. Execution of the pieces is

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (7 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

i nterl eaved anong the processes. For nore
I nformati on, see the -chunk=integer option.

RUNTI ME Schedul es pieces according to information
contained in the MP_SCHEDTYPE environnent
vari abl e.

SI MPLE Divides the iterations anong processes by

di viding theminto contiguous pieces and
assi gni ng one piece to each process.
Def aul t.

Additional information can be obtain by running the following commands:

man 5 pe_environ

relnotes ftn90 fe

Sun Microsystems

To Enable OpenMP in the compiler

Fortran

f90 -explicitpar -stackvar -np=opennp nyprog.f90
or

f90 - opennp

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (8 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

This option isamacro for the combination of options:

- np=opennp -explicitpar -stackvar -D OPENVP=2000011
-D_OPENMP=2000011 specifies the November 2000 version of OpenMP, that is version 2.0
f90 - Xxopennp
-xopenmp is a synonym for -openmp
C
cc -xopennp=parallel nyprog.c
Notes on environment variables:

OMP_SCHEDULE

Default value of STATIC isused
OMP_NUM_THREADS

Default of 1 isused.
OMP _DYNAMIC

A default value of TRUE is used.
OMP_NESTED

Ignored. Nested parallelism is not supported.

Other notes:
Environment variables not part of the OpenMP Fortran API:

SUNW_MP _THR_IDLE

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (9 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

Controls the end-of-task status of each thread executing the parallel part of a program. Y ou can set the value to spin, sleep ns, or
sleep nms. The default is SPIN: athread should spin (or busy-wait) after completing a parallel task, until a new parallel task
arrives. Choosing SLEEP time specifies the amount of time athread should spin-wait after completing a parallel task. If, while a
thread is spinning, anew task arrives for the thread, the tread executes the new task immediately. Otherwise, the thread goes to
sleep and is awakened when a new task arrives. time may be specified in seconds, (ns), or just (n), or milliseconds, (nms). SLEEP
with no argument puts the thread to sleep immediately after completing a parallel task. SLEEP, SLEEP (0), SLEEP (0s), and
SLEEP (Oms) are al equivalent. Example: setenv SUNW_MP_THR_IDLE (50ms)

HP Tru64 UNIX and Linux Alpha Systems

To Enable OpenMP in the KAP compiler
Fortran
kf 90 -f kapargs='-noconc' nyprogramf -onp -pthread -call _shared
C
kcc -ckapargs='-noconc' nyprogramc -onp -pthread -call _shared
The option -fkapargs="-noconc' turns off automatic parallelization.
OMP_SCHEDULE
(static,dynamic,guided,runtime)
OMP _DYNAMIC
Default isfalse.

OMP_NESTED
Default isfalse.

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (10 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

OMP_NUM_THREADS
Default value is the number of processors on the current system.

Other notes:

IBM and HP_UX /Intel IA-32 and Itanium

To Enable OpenMP

Fortran

For 1A-32

i fc -opennp mypr ogram f 90
For Itanium

efc -opennp nyprogram f90
Note: Specifing -openmp implies the -fpp option.
C

For 1A-32

i cc -opennp myprogramc
For Itanium

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (11 of 12) [6/11/2003 9:33:18 AM]

Compiler invocation, information and environment variables

ecc -opennp nyprogramc

OMP_SCHEDULE

Defalut static,no chunk sizespecified
OMP_NUM_THREADS

Defalut Number of processors
OMP_DYNAMIC

Default .false.
OMP_NESTED Enables

Default .false.

Other notes:
The user can specify the detail level of the report on OpenMP parallelization:

-openmp_report{ 0|1|2}
Controls the OpenMP parallelizers diagnostic levels. The default is 1

http://coherentcognition.com/projects/port/articles/openmp/guide/compiler.html (12 of 12) [6/11/2003 9:33:18 AM]

Portability and thread scheduling

Portability and thread scheduling

Link to example source.

There is a common misconception about OpenM P. Programmers often assume that there is a guarantee that a particular thread, or
collection of threads, will execute some block of code. In some cases there is no such guarantee provided by OpenMP. Programs that are
written assuming such a guarantee might produce different results on different machines and thus are not portable. They may also
produce different results on subsequent runs on the same machine.

We will look at two examples. The first deals with do loops the second with parallel regions outside of do loops. Assume we are running
the examples using 4 threads.

Programmers will often write something like

I $OWP parallel do
do n=1,4

| f(onp_get _thread nunm() .eq. 2)then

call sonme_func(n)
el se
cal |l another func(n)

endi f

enddo

A programmer might write this block of code assuming that some_func will be called with n=2. There are three possibilities for this
program: some_func is called with n=2, some_func is called with n not equal to 2, and sume_func isnot called at all.

In the case given above, the programmer has not specified a schedule type for the do loop. Thus the implementors of the OpenMP
compiler isfree to chose a schedule for thisloop. In an exstream, the schedule could be such that all work is given to the first thread and
none to the others. (Thiswould actually make sense if the overhead of handling threads was high and the amount of work for each
iteration was small.) If all of the work was given to the first thread then the function some_func would never be called.

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (1 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

Programmer writers are free to specify schedules. For example, you could specify a STATIC schedule with achunk size of 1, like
' $OWP parall el do schedul e(static, 1)
The static schedule has the following meaning:

STATIC
When schedule (static, chunk_size) is specified, iterations are divided into chunks of size specified by chunk_size. The chunks are
statically assigned to threads in the team in a round-robin fashion in the order of the thread number.

Will this guarantee that some_func is called with n=4. No. We read in the OpenMP standard at the end of section 2.4.1. "An OpenMP-
compliant program should not rely on a particular schedule for correct execution. A program should not rely on a schedule kind
conforming precisely to the description given above, because it is possible to have variations in the implementation of the same schedule
kind across different compilers. The description can be used to select the schedule that is appropriate for a particular situation."

In other words, programmers should use the schedule clause to suggest to the compiler how the work should be distributed. For some
reason, maybe known only to them, the compiler writer isfree to, ignore the schedule clause.

Hereisasdlight variation on the example given above.

I $OVWP end parall el
I $OWP parallel do
do n=1, 8
1f(n .eqg. 1)then
call nmy_wait (x)
endi f
wite(*,*)n,onp_get thread num()
enddo

Here we specify that a statement, the call to my_wait, be executed with n=1. The function my_wait is designed to pause for agiven
number of seconds. In this case, the value of x can effect the thread that executes the write statement. For a machine that uses dynamic

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (2 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

scheduling as the default, you might get the following if x=0.

O~NO O h~WDNBE
WNNPFPOWNEFO

Or,if x=1 you could get

OCWNEF WNPFPF

so that thread O only gets one iteration of the do loop. Or we could even get

P ONOUIAWN
ORRRRRRR

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (3 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

Let'slook at another example.

| $OVWP parall el

nyt =onp_get thread num()
wite(*,*)"thread= ", nyt," of ", OW_GET_NUM THREADS()
I $OVWP end parall el

Clearly, the ordering of the output from the write statement is non deterministic so the programmer might expect something like

thread= 2 of 4
thread= 1 of 4
thread= 0 of 4
thread= 3 of 4

But you might get

thread= 3 of
thread= 3 of
thread= 3 of
thread= 3 of

BN S SN N

Both of these are actual results produced on different machines. Both sets of results are legal. From the OpenMP version 2.0
specification, page 3 line 224 we have: "When a parallel construct is encountered, the master thread creates a team of threads, and the
master thread becomes the master of the team. The statements in the program that are enclosed by the parallel construct, including
routines called from within the enclosed statements, are executed in parallel by each thread in the team."

For this simple section of code, every thread executes every statement but the ordering of the statement execution, is not fixed. In the first
case, thread 2 set the value of myt to 2 and then printed the value. Then thread 1 did the same and so on. In the second case all of the
threads set the value of myt. Thread 3 was the final thread to set the value. Thus, when each thread took aturn at printing the value of
myt it printed the final value 3.

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (4 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

With a dlight modification of this program, it will always produce an enumeration of all of the threads.

| $OVWP parall el

' $OWP criti cal
nyt =onp_get thread num()
wite(*,*)"critical thread= ", nyt

' $OWP end critical
I $OWP end parall el

In this case, the critical directive causes each thread to call omp_get thread num then to do the write before another thread can change
the value. The ordering of the output from each thread is still non deterministic so we might get

critical thread= O
critical thread= 2
critical thread= 3
critical thread= 1

The program combines these examples. It was run twice on a collection of machines with the results reported below.

Program listing

pr ogr am onpf
i nt eger OVP_CGET_THREAD NUM OVP_GET_NUM THREADS
| ogi cal wt (0:3)
I $OVWP parall el
nyt =onp_get thread num()
wite(*,*)"nyt=",nyt," of ", OW_GET_NUM THREADS()
I $OWP end parall el
| $OVWP parall el
'$SOWP criti cal

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (5 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

nyt =onp_get thread num()
wite(*,*)"inside critical nyt=", nyt
I $OVMP end criti cal
| $OVP end parall el
x=0.0
| $OVP paral lel do
do n=1, 8
if(n .eq. 1)then
call ny_wait (x)
endi f
' $OWP criti cal
wite(*,*)n,onp_get thread _nunm()
I $OVMP end criti cal

enddo
er te (*, *)"*********u
x=10.0
| $OMP paral l el do
do n=1, 8

if(n .eq. 1)then
call ny_wait (x)
endi f
' $OWP criti cal
wite(*,*)n,onp_get thread _nunm()
I $OVP end criti cal
enddo
end
subroutine ny_wait (x)
real x
i nteger ctl,ct2,cr,cmcend
if(x .le. 0.0)return
call systemclock(ctl,cr,cm
cend=ct 1+ni nt (x*fl oat (cr))

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (6 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

do
call system cl ock(ct2)
if(ct2 .It. ctl)ct2=ctl+cm
if(ct2 .ge. cend)return
enddo
end subrouti ne

Results

IBM SP xIf90 version 7.x

Run 1 Run 2
% ./ a. out % ./ a. out

nyt= 0 of 4 nyt= 2 of 4

nyt= 0 of 4 nyt= 2 of 4

nyt= 0 of 4 nyt= 2 of 4

nyt= 0 of 4 nyt= 2 of 4

inside critical nyt= 1 pside critical nyt= 0
inside critical nyt= 3 pside critical nyt= 1
inside critical nyt= 0 pnside critical nyt= 3
inside critical nyt= 2 side critical nyt= 2
31 7 3

4 1 8 3

52 31

6 2 4 1

7 3 52

8 3 6 2

10 10

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (7 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

20 20
ER R IR I I S S ER R IR I I S S
31 7 3
4 1 8 3
5 2 5 2
6 2 6 2
7 3 31
8 3 4 1
10 10
20 20
% %

Cray Sv1 Fortran: Version 3.5.0.4

Run 1 Run 2

% ./ a. out % ./ a. out

myt= 3 of 4 myt= 3 of 4

myt= 3 of 4 myt= 3 of 4

myt= 3 of 4 myt= 3 of 4

myt= 3 of 4 myt= 3 of 4

inside critical nyt= 0 jnpside critical nyt= 0
inside critical nyt= 1 npside critical nyt= 1
inside critical nyt= 2 jnside critical nyt= 2
insige critical myt= 3 jnside critical nyt= 3
, 1, O

Ok~ WNPEF
WONPEF
OrwON
O WNPEF

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (8 of 10) [6/11/2003 9:33:19 AM]

Portability and thread scheduling

6, 1
7, 2
8, O
ER R IR I I S I
2, 3
2*3
4, 1
5, 2
6, 3
7, 1
8, 2
1, O
%

Intel Fortran Itanium(R) compiler version 7.0

Run 1
% ./ a. out
myt =
myt =
myt =
myt =
i nside critical
i nside critical
i nside critical
i nside critical
1
5
7

0 of
2 of
3 of
1 of
myt =
myt =
myt =
myt =

N O

6, 1
7, 2
8, O
* %

2, 3
2*3
4, 3
5, 3
6, 3
7, 3
8, 3
1 0

S

wWwN kO

R R I I S S

e

Run 2

I nsi de
I nsi de
I nsi de
I nsi de

critical
critical
critical
critical

5

3

7

1 of
0O of
2 of
3 of
myt = 1
myt = 2
myt = 0
myt = 3
2
1
3

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (9 of 10) [6/11/2003 9:33:19 AM]

e R

Portability and thread scheduling

2 0 1
6 2 6
8 3 4
3 1 8
4 1 2
ER R IR I I S I R R IR I S S S
3 1 3
S 2 S
4 1 4
6 2 6
7 3 7
8 3 8
1 0 1
2 0 2
% %

http://coherentcognition.com/projects/port/articles/openmp/guide/sched_port.html (10 of 10) [6/11/2003 9:33:19 AM]

OwkrrnNO

OO WWNEFEDNLEPE

http://coherentcognition.com/projects/port/articles/openmp/guide/ompf.f90

pr ogr am onpf
i nteger OMP_GET_THREAD NUM OVP_GET_NUM THREADS
| ogi cal wt (0:3)
! $OVP paral | el
myt =onp_get thread_num()
wite(*,*)"nyt=",nyt," of ", OMP_CGET_NUM THREADS()
! $OVP end paral | el
! $OVP paral | el
1$OWP critica
myt =onp_get thread_num()
wite(*,*)"inside critical nyt=
1$OWP end critica
! $OVP end paral | el
x=0.0
! $OWP paral l el do
do n=1,8
if(n .eq. 1)then
call nmy_wait(x)
endi f
1$OWP critica
wite(*,*)n,onp_get thread _num)
1$OWP end critica

1nyt

enddo
WI te (*1 *)"*********"
x=10.0
! $OWP paral l el do
do n=1,8

if(n .eq. 1)then
call nmy_wait(x)
endi f
I'$OWP critica
wite(*,*)n,onp_get thread _num)
!'$OWP end critica
enddo
end
subroutine my_wait (x)
real x
integer ctl,ct2,cr,cmcend
if(x .le. 0.0)return
call systemclock(ctl,cr,cm
cend=ct 1+ni nt (x*fl oat (cr))
do
call system cl ock(ct?2)
if(ct2 .It. ctl)ct2=ctl+cm
if(ct2 .ge. cend)return
enddo

http://coherentcognition.com/projects/port/articles/openmp/guide/ompf.f90 (1 of 2) [6/11/2003 9:33:20 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/ompf.f90

end subroutine

http://coherentcognition.com/projects/port/articles/openmp/guide/ompf.f90 (2 of 2) [6/11/2003 9:33:20 AM]

Effects of schedule types

Effects of schedule types

Link to example source.

The purpose of this article isto show that loop schedule type can dramatically effect run time. We present three simple routines. These
routines are called in aloop using various schedules. The run times vary depending on schedule type and in some cases the results are not
what is expected. In particular, the thread that performs a specific iteration count of aloop is not always the one implied by the schedule.

Consider the following three routines
1. all fast

void all _fast() {
I nt k;
k=onp_get thread nunm();
di st[k] ++;

}

2. zero_slow

void zero_slow) {
I nt k;
FLT x,vy;
k=onp_get thread num();
di st [k] ++;
if(k == 0) {
x=system cl ock((FLT*)O0);
y=X+1;
while(x <vy) {
x=system cl ock((FLT*)O0);

}

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (1 of 9) [6/11/2003 9:33:21 AM]

Effects of schedule types

}
}

3. imbalance

voi d i nbalance (int i) {

I nt k;
FLT x,vy;
k=onp _get thread num();
di st[k] ++;
f(i == 1) {
I di d=k;
x=system cl ock((FLT*)O0);
y=X+1;
while(x <vy) {
x=system cl ock((FLT*)O0);
}
}
el se {
x=system cl ock((FLT*)O0);
y=x+0. 01,
while(x <vy) {
x=system cl ock((FLT*)O0);
}
}

Thefirst routine, all_fast, does no real work. It just increments a counter dist[k], where k is the thread number calling the routine.

The second routine addes a block of code that spins for one second if the thread calling the routine is thread 0.

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (2 of 9) [6/11/2003 9:33:21 AM]

Effects of schedule types

The third routine, imbalance, runsfor 1 second if the input value is 1 and 0.01 seconds for other input values.

We are interested in seeing what will happen if these routines are called in afor loop using different types of scheduling. Why? Even if
you manually specify scheduling, some implementations of openmp have slightly differnt scheduling algorithms. That is, different
threads than would be expected from the specified scheduling, run individual iterations of afor loop. Thisillustrates that uses sould not
rely on specific threads running specific iterations of aloop. We also see that different scheduling algorithms can lead to dramaticily
different run times.

We call these routine in awrapper program that reports the type of scheduling, the routine called, the total number of iterations, and the
precent of the iterations that are performmed by each thread. For the imbalance routine we aso report which thread ran the slow iteration.
We compare the results to what might be expected.

Output Expected

***xxx*% default scheduling
**xkxxx for a subroutine with little work

0 25.00 %
1 25.00 2/0 Each thread does an equal number of iterations as expected. The
2 25.00 % total timeis less than 0.01 seconds.
3 25.00 %
total iterations: 400 tine 0. 00

Output Expected

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (3 of 9) [6/11/2003 9:33:21 AM]

Effects of schedule types

*xkkk k%

default schedul i ng
for a subroutine with thread 0 given 1 second of work
0 25.00 %

*xkkk k%

1 25.00 %
2 25.00 %
3 25.00 %
total iterations: 16 tinme 4. 00

It looks like this machine is doing
static scheduling. It is giving thread O
4 iterations each taking 1 second. It
would be faster if thread O was not
given as much work, say using
dynamic scheduling.

Output

Expected

*xkkk k%

schedul e(static, 1)
for a subroutine with thread 0 given 1 second of work
0 25.00 %

*kkk k%

1 25.00 %
2 25.00 %
3 25.00 %
total iterations: 16 tinme 4. 00

The results are 25% for each thread as
expected. It would be faster if thread O
was not given as much work, say
using dynamic scheduling.

Output

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (4 of 9) [6/11/2003 9:33:21 AM]

Expected

Effects of schedule types

*xkkk k%

schedul e(static, 2)
for a subroutine with thread 0 given 1 second of work
0 25.00 %

*xkkk k%

1 25.00 %
2 25.00 %
3 25.00 %
total iterations: 16 tinme 4. 00

The results are 25% for each thread as
expected. It would be faster if thread O
was not given as much work, say
using dynamic scheduling.

for a subroutine with thread 0 given 1 second of work
0 6.25 %

1 87.50 %
2 0.00 %
3 6.25 %
total iterations: 16 tine 1.00

Output Expected
:::::: schedul e(dynam c, 1) Dynamic scheduling allows thread O

to be given asingleiteration. The time
for the loop is still dominated by the
time used by thread 0. Thisis
expected. The suprizeinthiscaseis
that the rest of the iterations are not
distributed to the remaining threads
evenly.

Output

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (5 of 9) [6/11/2003 9:33:21 AM]

Expected

Effects of schedule types

*xkkk k%

schedul e(dynam c, 2)
for a subroutine with thread 0 given 1 second of work
0 0.00 %

*xkkk k%

1 0.00 %
2 12.50 %
3 87.50 %
total iterations: 16 tine 0. 00

It is expected that thread O be given an
iteration. It is not so the loop runs
very fast. The other suprizein this
case isthat therest of the iterations
are not distributed to the remaining
threads evenly.

Output

Expected

x* gschedul e(dynam c, 4)

for a subroutine with thread 0 given 1 second of work
0 0.00 %
1 100.00 %
2 0.00 %
3 0.00 %
total iterations:

kkkkk*

16 tinme 0. 00

It is expected that thread O be given an
iteration. It is not so the loop runs
very fast. The other suprizein this
caseisthat therest of the iterations
are not distributed to the remaining
threads evenly.

Output Expected

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (6 of 9) [6/11/2003 9:33:21 AM]

Effects of schedule types

**xxx%x default scheduling

**¥x*x*xx for an inbal anced subroutine

0 25.00 %

1 25 00 % As said above, this machine used static scheduling by default. Each

5 25 00 % thread gets 25% of the iterations. The run timeis determined by thread O

3 25 00 % that doing the slow iteration, 1 second, followed by 99 iterations of 0.01
total iterations: 400 tine 1. 99 | seconds. The other threads areidle while it is doing the 99 iterations.

thread O did the slow iteration

Output Expected

x* gchedul e(static, 1)

*xxxx% for an i nbal anced subroutine

0 25.00 %

1 25 00 % Each thread gets 25% of the iterations. The run time is determined by

5 25 00 % thread O that doing the slow iteration, 1 second, followed by 99

3 25 00 % iterations of 0.01 seconds. The other threads are idle whileit is doing the
total iterations: 400 tinme 1.99 | 9iterations.

thread O did the slow iteration

Output Expected

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (7 of 9) [6/11/2003 9:33:21 AM]

Effects of schedule types

*x¥*xx%x* gschedul e(static, 2)

***xx** for an iInbal anced subroutine

0 25.00 %

1 25.00 % Each thread gets 25% of the iterations. The run time is determined by

2 25.00 % thread O that doing the slow iteration, 1 second, followed by 99

3 25.00 % iterations of 0.01 seconds. The other threads are idle whileit is doing the
total iterations: 400 tine 1.99 | 9iterations.

thread O did the slow iteration

Output Expected

x* gschedul e(dynam c, 1)

**¥*x*xx*x for an inbal anced subroutine

0 31.00 % It might be expected that thread 1 would get the slow iteration.

1 31.25 % However, the performance for thisloop is good, 1.25 seconds, compared

2 6.50 % to static scheduling, 1.99 seconds. Thread 2 does the slow iteration, 1

3 31.25 % second, while the other threads do 100 iterationsin 1 second for atotal
total iterations: 400 tine 1. 25 | of 301 iterations. The remaining 99 iterations are distributed amongst the

4 threads for about 0.25 seconds. Thisis the optimum solution.

thread 2 did the slow iteration

Output Expected

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (8 of 9) [6/11/2003 9:33:21 AM]

Effects of schedule types

thread 1 did the slowiteration

1.

***xx** gchedul e(dynam c, 2)
**xxx% for an inbal anced subroutine
0 31.50 %
1 6.50 %
2 31.00 %
3 31.00 %
total iterations: 400 tine

26

It might be expected that thread 1 would get the slow iteration.

However, the performance for thisloop is good, 1.25 seconds, compared
to static scheduling, 1.99 seconds. Thread 2 does the slow iteration, 1
second, while the other threads do 100 iterationsin 1 second for atotal

of 301 iterations. The remaining 99 iterations are distributed amongst the
4 threads for about 0.25 seconds. Thisis anear optimum solution.

thread O did the slow iteration

Output Expected

x* gschedul e(dynam c, 4)

**¥*x*xx*x for an inbal anced subroutine

0 6.50 % It might be expected that thread 1 would get the slow iteration.

1 31.50 % However, the performance for thisloop is good, 1.25 seconds, compared

2 31.00 % to static scheduling, 1.99 seconds. Thread 2 does the slow iteration, 1

3 31.00 % second, while the other threads do 100 iterations in 1 second for atotal
total iterations: 400 tine 1. 26 | of 301 iterations. The remaining 99 iterations are distributed amongst the

4 threads for about 0.25 seconds. Thisis anear optimum solution.

http://coherentcognition.com/projects/port/articles/openmp/guide/schedule.html (9 of 9) [6/11/2003 9:33:21 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/ts.c

[* cc -Imtd.c -gsnp */

#i
#i
#i
#i
#i
#i

ncl ude <stdio. h>
ncl ude <stdlib. h>
ncl ude <onp. h>

ncl ude <mat h. h>

ncl ude <sys/tinme. h>
ncl ude <uni std. h>

#define FLT doubl e

[* utility routines */
void ny_bar();

voi d expl ain(char astr[]);
FLT system cl ock(FLT *Xx);
void start_tine();

FLT end_tine();

/* array used to determ ne how nmuch work each thread perforns */
int *dist,idid;
FLT st;

/* routine to reset dist */
void zero(int j);

/* work routines */
void all_fast();
void zero_slow();
void a_slow(int i);

void all _fast() {

}

int k;
k=onp_get _thread num();
di st[k] ++;

void zero_slow() {

int k;
FLT x,y;
k=onp_get _thread_num();
di st[k] ++;
if(k == 0) {
x=system cl ock((FLT*)0);
y=x+1,
while(x <vy) {
x=system cl ock((FLT*)0);
}

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c (1 of 8) [6/11/2003 9:33:23 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/ts.c

}
void inbalance (int i) {
int k;
FLT x,y;
k=onp_get _thread_num();
di st[k] ++;
if(i = 1) {
i di d=k;
x=system cl ock((FLT*)0);
y=x+1,
while(x <vy) {
x=system cl ock((FLT*)0);
}
}
el se {
x=system cl ock((FLT*)0);
y=x+0. 01;
while(x <vy) {
x=system cl ock((FLT*)0);
}
}
}
mai n() {
int i,k, max_threads,total;

max_t hreads=onp_get nax_t hreads();

printf("max threads = %\ n", nax_t hreads);

dist=(int*)mal | oc(nmax_t hreads*si zeof (int));

zer o(max_t hreads) ;

t ot al =0;

explain("report the %of iterations for each thread");

explain("for a set of |oops");

epr ai n("******");

expl ai n("default scheduling");

explain("for a subroutine with little work");

k=max_t hr eads*100;

start _tinme();

#pragma onp parallel for

for(i=1;i<=k;i++) {
all _fast();
}

ny_bar () ;

for(i=0;i<max_threads;i++) {
printf("od 96.2f 9%®ANn",i,100. 0*(FLT)dist[i]/((FLT)k));
total =total +dist[i];

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c (2 of 8) [6/11/2003 9:33:23 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/ts.c

}
printf(" total iterations: % tinme %40.2f\n\n",total, end tinme());

t ot al =0;
zer o(mex_t hreads);
expl ai n("default scheduling");
explain("for a subroutine with thread 0 given 1 second of work");
k=max_t hr eads*4;
start _tinme();
#pragma onp parallel for
for(i=1;i<=k;i++) {
zero_slow);
}
ny_bar () ;
for(i=0;i<max_threads;i++) {
printf("%d %.2f %®ANn",i,100.0*(FLT)dist[i]/((FLT)k));
total =total +dist[i];
}
printf(" total iterations: % tinme %40.2f\n\n",total, end tinme());
t ot al =0;
zer o(mex_t hreads);
expl ai n("schedul e(static,1)");
explain("for a subroutine with thread 0 given 1 second of work");
start _tinme();
#pragma onp parallel for schedul e(static,1)
for(i=1;i<=k;i++) {
zero_slow);
}
for(i=0;i<max_threads;i++) {
printf("%d %.2f %®ANn",i,100.0*(FLT)dist[i]/((FLT)k));
total =total +dist[i];
}
printf(" total iterations: % tinme %40.2f\n\n",total, end tinme());
t ot al =0;
zer o(mex_t hreads);
expl ai n("schedul e(static,2)");
explain("for a subroutine with thread 0 given 1 second of work");
start _tinme();
#pragma onp parallel for schedul e(static, 2)
for(i=1;i<=k;i++) {
zero_slow);
}
for(i=0;i<max_threads;i++) {
printf("%d %.2f %®ANn",i,100.0*(FLT)dist[i]/((FLT)k));
total =total +dist[i];

}
printf(" total iterations: % tinme %40.2f\n\n",total, end tinme());

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c (3 of 8) [6/11/2003 9:33:23 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/ts.c

t ot al =0;
zer o(max_t hreads) ;
expl ai n("schedul e(dynamic,1)");
explain("for a subroutine with thread 0 given 1 second of work");
start_time();
#pragma onp parallel for schedul e(dynam c, 1)
for(i=1;i<=k;i++) {
zero_slow);
}
for(i=0;i<max_threads;i++) {
printf("od 96.2f 9%®ANn",i,100. 0*(FLT)dist[i]/((FLT)k));
total =total +dist[i];
}
printf(" total iterations: % tinme %40.2f\n\n",total, end_ time());
t ot al =0;
zer o(max_t hreads) ;
expl ai n("schedul e(dynami ¢, 2)");
explain("for a subroutine with thread 0 given 1 second of work");
start _tinme();
#pragma onp parallel for schedul e(dynanic, 2)
for(i=1;i<=k;i++) {
zero_slow);
}
for(i=0;i<max_threads;i++) {
printf("od 96.2f 9%®ANn",i,100. 0*(FLT)dist[i]/((FLT)k));
total =total +dist[i];

printf(" total iterations: % tinme %40.2f\n\n",total, end_time());
t ot al =0;
zer o(max_t hreads) ;
expl ai n("schedul e(dynami c, 4)");
explain("for a subroutine with thread 0 given 1 second of work");
start _tinme();
#pragma onp parallel for schedul e(dynanic, 2)
for(i=1;i<=k;i++) {
zero_slow);
}
for(i=0;i<max_threads;i++) {
printf("od 96.2f 9%®ANn",i,100. 0*(FLT)dist[i]/((FLT)k));
total =total +dist[i];
}
printf(" total iterations: % tinme %40.2f\n\n",total, end_ time());
t ot al =0;
zer o(max_t hreads) ;

expl ai n("defaul t scheduling");

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c (4 of 8) [6/11/2003 9:33:23 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/ts.c

explain("for an inbal anced subroutine");
k=max_t hr eads*100;
start _tinme();
#pragma onp parallel for
for(i=1;i<=k;i++) {
i mbal ance(i);
}
ny_bar () ;
for(i=0;i<max_threads;i++) {
printf("od 96.2f 9%®ANn",i,100. 0*(FLT)dist[i]/((FLT)k));
total =total +dist[i];
}
printf(" total iterations: % tinme %0.2f\n",total, end tine());
printf(" thread % did the slowiteration\n\n",idid);
t ot al =0;
zer o(max_t hreads) ;
expl ai n("default scheduling");
explain("for an inbal anced subroutine");
start _tinme();
#pragma onp parallel for
for(i=1;i<=k;i++) {
i mbal ance(i);
}
ny_bar () ;
for(i=0;i<max_threads;i++) {
printf("od 96.2f 9%®ANn",i,100. 0*(FLT)dist[i]/((FLT)k));
total =total +dist[i];
}
printf(" total iterations: % tinme %0.2f\n",total, end tine());
printf(" thread % did the slowiteration\n\n",idid);
t ot al =0;
zer o(max_t hreads) ;
expl ai n("schedul e(static,1)");
explain("for an inbal anced subroutine");
start _tinme();
#pragma onp parallel for schedul e(static,1)
for(i=1;i<=k;i++) {
i mbal ance(i);
}
for(i=0;i<max_threads;i++) {
printf("od 96.2f 9%®ANn",i,100. 0*(FLT)dist[i]/((FLT)k));
total =total +dist[i];
}
printf(" total iterations: % tinme %0.2f\n",total, end tine());
printf(" thread % did the slowiteration\n\n",idid);

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c (5 of 8) [6/11/2003 9:33:23 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/ts.c

t ot al =0;
zer o(mex_t hreads);
expl ai n("schedul e(static,2)");
explain("for an inbal anced subroutine");
start _tinme();
#pragma onp parallel for schedul e(static, 2)
for(i=1;i<=k;i++) {
i mbal ance(i);
}
for(i=0;i<max_threads;i++) {
printf("%d %.2f %®ANn",i,100.0*(FLT)dist[i]/((FLT)k));
total =total +dist[i];
}
printf(" total iterations: % tinme %0.2f\n",total, end tinme());
printf(" thread % did the slowiteration\n\in",idid);
t ot al =0;
zer o(mex_t hreads);
expl ai n("schedul e(dynamic,1)");
expl ain("for an inbal anced subroutine");
start _tinme();
#pragma onp parallel for schedul e(dynanic, 1)
for(i=1;i<=k;i++) {
i mbal ance(i);
}
for(i=0;i<max_threads;i++) {
printf("%d %.2f %®ANn",i,100.0*(FLT)dist[i]/((FLT)k));
total =total +dist[i];
}
printf(" total iterations: % time %0.2f\n",total, end tinme());
printf(" thread % did the slowiteration\n\in",idid);
t ot al =0;
zer o(mex_t hreads) ;
expl ai n("schedul e(dynanmic, 2)");
expl ain("for an inbal anced subroutine");
start _tinme();
#pragma onp parallel for schedul e(dynanic, 2)
for(i=1;i<=k;i++) {
i mbal ance(i);
}
for(i=0;i<max_threads;i++) {
printf("%d %.2f %®ANn",i,100.0*(FLT)dist[i]/((FLT)k));
total =total +dist[i];
}
printf(" total iterations: % tinme %0.2f\n",total, end tinme());
printf(" thread % did the slowiteration\n\in",idid);
t ot al =0;

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c (6 of 8) [6/11/2003 9:33:23 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/ts.c

zer o(max_t hreads) ;
expl ai n("schedul e(dynami ¢, 4)");
expl ain("for an inbal anced subroutine");
start _tinme();
#pragma onp parallel for schedul e(dynanic, 2)
for(i=1;i<=k;i++) {
i mbal ance(i);
}

for(i=0;i<max_threads;i++) {
printf("od 96.2f 9%®ANn",i,100. 0*(FLT)dist[i]/((FLT)k));
total =total +dist[i];
}
printf(" total iterations: % time %0.2f\n",total, end_tine());
printf(" thread % did the slowiteration\n\n",idid);

t ot al =0;
my_bar () ;
}

void nmy_bar() {

#pragma onp barrier
fflush(stdout);

#pragma onp barrier

voi d explain(char astr[]){
printf("**x**x* og\n", astr);

}

FLT system cl ock(FLT *x) {
FLT t;
FLT si x=1. Oe- 6;
struct tineval tb
struct tinezone tz;
gettinmeof day(&t b, & z);
t=(FLT)tb.tv_sec+((FLT)tb.tv_usec) *si x;
RECIR|

}

return(t);

*X=t;

}
void zero(int j) {
int i;
for(i=0;i<j;i++) {
dist[i]=0;

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c (7 of 8) [6/11/2003 9:33:23 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/ts.c

}
}

void start_tine() {
st =system cl ock((FLT*)0);
}

FLT end_tinme() {
return (systemcl ock((FLT*)0)-st);
}

http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c (8 of 8) [6/11/2003 9:33:23 AM]

Parallel Sections

Parallel Sections

Link to example source.

Link to example source in Fortran.

The emphasis in most OpenM P examples and descriptionsis on loop level parallelism. However, OpenMP also has a more coarse
grained parallelism construct, the parallel section. The syntax is

#pragma onp parallel sections

{
#pragma onp section
{
/*fist block of code */
}
#pragnma onp section
{
/| *second bl ock of code */
}
#pragnma onp section
{
/*third block of code */
}
#pragma onp section
{
[*fourth block of code */
}
}

http://coherentcognition.com/projects/port/articles/openmp/guide/sections.html (1 of 3) [6/11/2003 9:33:23 AM]

Parallel Sections

There can be an arbitrary number of code blocks or sections. The requirement is that the individual sections be independent. Since the
sections are independent they can be run in parallel. So if you have 4 sections and are running using 4 threads each thread should run a
block of code in asection in parallel with the others. If you have more threads than sections then some threads will beidle.

We give as an example a set of matrix inversions performed on four different matrices. We do the inversions twice and compare to the
original matrices. We have aroutine mset that puts values in the matrices, aroutine over that does an inversion and a routine mcheck that
checks the results and returns a difference form the original matrix. The routine system_clock isfor timing. The routine mset is called
outside of the parallel section. Our parallel section then looks like:

#pragma onp section
{

systemclock(& 1_start);
over (mi, n);
over (mi, n);
system cl ock(& 1_end);
el=nctheck(nl, n, 1);
tl start=t1l start-t0O_start;
tl end=t1 end-tO_start;

}

After doing the parallel sections we print the time spent in each section.
The program run using 4 threads returned the following

[gei ght] % set env OVP_NUM THREADS 4
[gei ght] % ./ a. out

section 1 start tine= 0.00056601 end time= 2.6892 error= 3.43807e-07
section 2 start tine= 0.011296 end tine= 2.9498 error= 6.04424e-07
section 3 start tine= 0.0071419 end tine= 2.9925 error= 3.67327e-06
section 4 start tinme= 0.00054705 end tine= 2.9233 error= 3.42406e-06

[geight] %

http://coherentcognition.com/projects/port/articles/openmp/guide/sections.html (2 of 3) [6/11/2003 9:33:23 AM]

Parallel Sections

This shows that the 4 threads did the matrix inversionsin parallel.

Using two threads we get the following:

[gei ght] % set env OVP_NUM THREADS 2
[gei ght] % ./ a. out

section 1 start tinme= 0.00039494
section 2 start tinme= 0.00038493
section 3 start tine= 1.3862
section 4 start tine= 1.5319

[gei ght] %

end time=
end time=
end time=
end time=

1. 3827
1.5283
2. 8165
3.0124

error= 3.43807e-07
error= 6.04424e-07
error= 3.67327e-06
error= 3.42406e- 06

We have the first and section sections run in parallel and then the third and fourth sections run in parallel.

http://coherentcognition.com/projects/port/articles/openmp/guide/sections.html (3 of 3) [6/11/2003 9:33:23 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c

[* cc -Imtd.c -gsnp */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <onp. h>

#i ncl ude <math. h>

#i ncl ude <sys/tine. h>

#i ncl ude <uni std. h>
#def i ne FLT doubl e

[* utility routines */
FLT system cl ock(FLT *Xx);
FLT **matrix(int nrl,int nrh,int ncl,int nch);

/* work routines */

void mset (FLT **m int n, int in);
FLT ncheck(FLT **m int n, int in);
void over (FLT ** mat,int size);

mai n() {
FLT **rm_’ **TTQ, **TTB, **rrn;
FLT tO_start;
FLT t1 start,t1 end, el;
FLT t2 start,t2 end, e2;
FLT t3 start,t3 end, e3;
FLT t4 start,t4 end, e4;
int n;
n=200;
mi=matrix(1,n,1,n);
m=matrix(1,n,1,n);
m3=matrix(1,n,1,n);
mi=matrix(1,n,1,n);

mset (i, n, 1) ;

nmset (n2, n, 2);
nmset (nB3, n, 3);
nmset (M4, n, 4) ;

system cl ock(& O _start);

#pragma onp parallel sections

{
#pragma onp section
{
systemcl ock(& 1 start);
over(mil, n);
over(mil, n);

system cl ock(& 1_end);

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c (1 of 5) [6/11/2003 9:33:25 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c

}

el=ncheck(nt, n, 1);
tl start=tl start-t0O_start;
tl end=t1l end-t0_start;

#pragma onp section

{

}

system cl ock(& 2 _start);
over(ng, n);

over(ng, n);
system cl ock(& 2_end);
e2=ntheck(n?, n, 2);
t2_start=t2_start-t0_start;
t2 end=t2 end-t0_start;

#pragma onp section

{

}

system cl ock(& 3 _start);
over (n8, n);

over (n8, n);
system cl ock(& 3_end);
e3=ntheck(nB, n, 3);
t3_start=t3_start-t0_start;
t3 _end=t3 end-t0_start;

#pragma onp section

{

}
}

printf("section 1 start tinme= %0.5¢g
printf("section 2 start tinme= %0.5¢g
printf("section 3 start tinme= %0.5¢g
printf("section 4 start tinme= %0.5¢g

}

void mset (FLT **m
i nt

systemcl ock(& 4 start);
over(m, n);

over(m, n);
system cl ock(& 4 _end);
ed=ntheck(m, n, 4);

t4 _start=t4_start-t0_start;
t4 end=t4_end-t0_start;

int n, int in) {
i

for(i=1;i<=n;i++)
for(j=1;j<=n;j++) {

it o==1j) {

end tinme= %940. 5g
end tinme= %940. 5g
end tinme= %940. 5g
end tinme= %940. 5g

error=
error=
error=
error=

%g\n",t1l start,t1_end, el);
%g\n",t2_start,t2_end, e2);
%g\n",t3 start,t3 end, e3);
%g\n",t4 start,t4 _end, ed);

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c (2 of 5) [6/11/2003 9:33:25 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c

nfillil=in;
} else {
nilli]=i+j;
}
}
}
FLT ncheck(FLT **m int n, int in) {
int i,j;
FLT x;
x=0. 0;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++) {
if o ==1j) {
x=x+fabs(mi][j]-in);
} else {
x=x+fabs(n{i][j]-(i+j));
}
}
return x;
}
voi d over (FLT ** mat,int size)
{

int k, jj, kpl, i, j, |, krow, irow,
FLT pivot, tenp;

FLT swf 2000][2];

for (k =1 ;k<= size ; k++)

{

=K

if (k !'= size)

{
kpl = k + 1;
pi vot = fabs(mat[k][K]);
for(i = kpl;i<= size ;i++)
{

temp = fabs(mat[i][Kk]);
if (pivot < tenp)

{
pi vot = tenp;

jio=i;

}
sw k][0] =k;

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c (3 of 5) [6/11/2003 9:33:25 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c

sw k][1] =jj;

if(=k
for (j =1 ;)<= size; j++)
{
tenp = mat[jj][j];
mat[jjl[j] = mat[K][jI;
} mat [K][j] = tenp;
for (j =1 ;)<= size; j++)
if (j '=k)

mat [K][j] = mat[k][j] / mat[Kk][K];
mat[k][k] = 1.0 / mat[K][K];

for (i =1; i<=size; i++)
if (i '=k)
for (j = 1;j<=size; j++)
if (j '=k)
mat[i][j] = mt[i][j] - mat[k][j] * mat[i][k];
for (i = 1;i<=size;i++)
if (i '=k)
mat[i][Kk] = -mat[i][k] * mat[k][Kk];
}
for (I =1; |<=size; ++l)
{
k =size - | + 1;
krow = swW k][0];
irow = swWKk][1];
if (krow!=irow
for (i =1; i<= size; ++i)
{
temp = mat[i][krow;
mat[i][krow] = mat[i][irow];
mat[i][irow] = tenp;
}
}
}
/*

The routine matrix was adapted from

Nunerical Recipes in C The Art of Scientific Conputing
Press, Flannery, Teukol sky, Vetting

Canbri dge University Press, 1988.

*/
FLT **matrix(int nrl,int nrh,int ncl,int nch)
{
int i;
FLT **m

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c (4 of 5) [6/11/2003 9:33:25 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c

m=(FLT **) rmal l oc((unsigned) (nrh-nrl+1)*sizeof (FLT*));
ifo(rm{
printf("allocation failure 1 in matrix()\n");
exit(1);
}
m-=nrl;
for(i=nrl;i<=nrh;i++) {
if(i == nrl){
mi]=(FLT *) malloc((unsigned) (nrh-nrl+1)*(nch-ncl+1)*sizeof (FLT));
ifornfi])A
printf("allocation failure 2 in matrix()\n");
exit(1);
}
ni] -= ncl;
}
el se {

ni]=nii-1]+(nch-ncl +1);
}
}

return m

}

FLT system cl ock(FLT *x) {
FLT t;
FLT si x=1. Oe- 6;
struct tineval tb;
struct tinezone tz;
getti meof day(&t b, &t z);
t=(FLT)tb.tv_sec+((FLT)tb.tv_usec) *si x;
() {

}

return(t);

*X=t;

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c (5 of 5) [6/11/2003 9:33:25 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90

nmodul e ccm nune

I basic

real types

i nteger, parameter:: b8 = selected real kind(10)

cont ai ns

function ccmtine()

end

subrouti

inmplicit none

i nteger i

integer :: ccmstart _tinme(8) = (/(-100,i=1,8)/)
real (b8) :: ccmtime, tnp

i nteger,paraneter :: norm(13)=(/ &

0, 2678400, 5097600, 7776000, 10368000, 13046400, &
15638400, 18316800, 20995200, 23587200, 26265600, 28857600, 31536000/)
i nteger,paraneter :: leap(1l3)=(/ &

0, 2678400, 5184000, 7862400, 10454400, 13132800, &
15724800, 18403200, 21081600, 23673600, 26352000, 28944000, 31622400/
i nteger :: values(8),msec
save
call date_and tine(val ues=val ues)

i f(nmod(val ues(1),4) .eq. 0O)then
mel eap(val ues(2))
el se
m=nor m(val ues(2))
endi f
sec=((val ues(3)*24+val ues(5))*60+val ues(6))*60+val ues(7)
t np=r eal (m b8) +real (sec, b8) +real (val ues(8), b8)/1000.0_h8
'wite(*,*)"vals ", val ues
if(values(1l) .ne. ccmstart tine(l))then
if(mod(ccmstart _tinme(l),4) .eq. 0)then
t mp=t np+real (| eap(13), b8)
el se
t mp=t np+r eal (nornm(13), b8)
endi f
endi f
ccmtine=tnp
function

ne invert (matrix, size)
inmplicit none
real (b8) matrix(:,:)
i nteger size
integer switch,k, jj, kpl, i, j, |, krow, irow nmax
par anet er (nnmax=1000)
di mensi on swit ch(nmax, 2)
real (b8) pivot,tenp
do k = 1,size
i =k

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90 (1 of 5) [6/11/2003 9:33:26 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90

if (k .ne. size) then

kpl = k + 1
pivot = (matrix(k, k))
do i = kpl,size

temp = (matrix(i, k))
if (abs(pivot) .It. abs(tenp)) then
pivot = tenp

jjo=i
endi f
enddo
endi f
switch(k, 1) =k
switch(k, 2) =jj
if (jj .ne. k) then

do j =1 ,size
temp = matrix(jj, j)
matrix(jj, j) = matrix(k, j)
matrix(k, j) = tenp

enddo
endi f
doj = 1,size
if (j .ne. Kymatrix(k, j) = matrix(k, j) / matrix(k, k)
enddo
matrix(k, k) = 1.0_b8 / matrix(k, k)
do i =1,size
if (i.ne.k) then
do j = 1,size
if(j.ne.k)matrix(i,j)=matrix(i,j)-matrix(k,j)*matrix(i,k)
enddo
endi f
enddo
doi =1, size
if (i .ne. Kymatrix(i, k) = -matrix(i, k) * matrix(k, k)
enddo
enddo
do | =1,size
k =size - | +1

krow = switch(k, 1)
irow = switch(k, 2)
if (krow .ne. irow) then
do i =1,size
temp = matrix(i, krow)
matrix(i, krow) = matrix(i, irow)
matrix(i, irow) = tenp
enddo
endi f

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90 (2 of 5) [6/11/2003 9:33:26 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90

enddo
end subroutine

subroutine mset(m n, in)
real (b8) :: m(:,:)

integer n,in

i nteger i,j
do i=1,n
do j=1,n
if(i .eq. j)then
m(i,j)=in
el se
(i, j) =i+
endi f
enddo
enddo
end subroutine
function ncheck(m n, in)

real (b8) :: nm(:,:)
real (b8) ntheck, x
integer n,in

integer i,j
x=0
do i=1,n
do j=1,n
if(i .eqg. j)then
x=x+abs(m(i,j)-in)
el se
x=x+abs(m(i,J)-(i+j))
endi f
enddo
enddo
nmcheck=x

end function
end nodul e ccm nune

program tover

use ccm.nune
real (b8),allocatable :: mi(:,:),nm2(:,:),nm8(:,:),m(:,:)
i nteger n
real (b8) t0 _start;

real (b8) t1l start,t1 end,el;

real (b8) t2 start,t2 end, e2;

real (b8) t3 start,t3 end,e3;

real (b8) t4 start,t4 _end, e4;

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90 (3 of 5) [6/11/2003 9:33:26 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90

n=200
al |l ocate(ni(n, n), n2(n, n), nB(n, n), m(n,n))
call nmset(mi, n, 1)
call mset(n2,n, 2)
call nset(nB,n, 3)
call nset(m, n, 4)
t0_start=ccmtime()
! $pragma onp parallel sections

! $pragma onp section
tl start=ccmtine()
call invert(mil,n)
call invert(mil,n)
t1l end=ccmtine()
el=ntheck(nmnt, n, 1)
tl start=t1_start-tO_start
tl end=t1l end-t0_start
! $pragma onp end section

! $pragma onp section
t2_start=ccmtime()
call invert(ng,n)
call invert(ng,n)
t2_end=ccmtine()
e2=ntheck(n?, n, 2)
t2_start=t2_start-t0_start
t2 _end=t2 end-t0_start

! $pragma onp end section

! $pragma onp section
t3_start=ccmtime()
call invert(nB,n)
call invert(nB,n)
t3_end=ccm tine()
e3=ntheck(nB, n, 3)
t3 _start=t3 start-t0_start
t3_end=t3 end-t0_start

! $pragma onp end section

! $pragma onp section
t4 _start=ccmtine()
call invert(nd,n)
call invert(nd,n)
t4_end=ccmtine()
ed=ntheck(md, n, 4)

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90 (4 of 5) [6/11/2003 9:33:26 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90

t4 start=t4_start-t0_start
t4 end=t4_end-t0_start
! $pragnma onp end section

! $pragma onp end parallel sections

wite(*,1)1,t1 start,t1 end, el

wite(*,1)2,t2 start,t2 end, e2

wite(*,1)3,t3 start,t3 end, e3

wite(*,1)4,t4 start,t4 _end, e4d

1 format("section ",i4," start time= ",g10.5," end tinme= ",gl0.5," error=", gl0.5)
end program

http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90 (5 of 5) [6/11/2003 9:33:26 AM]

Threadprivate and derived types

Complex usages of Threadprivate

Link to example source.

There are two purposes for these examples. First, they illustrate a more complex usages of thread private. Also, the code is these
examples broke many early implementations of OpenMP. Thus, these examples provide atest of for compilers.

One common usages of derived typesin scientific computing isto create atype that represents a vector. In 2d this corresponds to a
complex number. We could define such atype as:

#define FLT double
struct real ing {
FLT xpart;

FLT ypart;

};

Next we create an array of this datatype and declare the array threadprivate.

struct real _ing itype[9];
#pragma onp threadprivate(itype)

Recall that making a variable thread private implies that each thread gets its own copy of the variable.

In our main program we fill the array with values. If each element of the array is a point, then the collection of points describes an
octagon.

I type[O] . ypart =0;

| type[O] . xpart =1;

pi 4=pi / 4. 0;
for(i=1;i<=8;i++) {

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (1 of 9) [6/11/2003 9:33:27 AM]

Threadprivate and derived types

yvect =si n(i *pi 4);

xvect =cos(i *pi 4);

itype[i].ypart=yvect-itype[i-1].ypart;

Itype[i].xpart=xvect-itype[i-1].xpart;
}

Now we call asubroutine, sub_1, that will work with the array of structures.

#pragma onp parallel for copyin(itype) schedul e(static, 1)
for(i=1;i<=max_threads;i++) {
sub_1();
}

The copyin clause ensures that each thread gets a copy of the values entered into the array.

The routine sub_1 multipliesthe valuesin itype by the (thread id + 1) and sums the values. Summing the values should bring you back to
the point x=(thread id + 1),y=0. The final sum is printed and compared to the thread id. The routine also checks to see that itype has been
allocated and it checks to see that values have been copied into the array.

The output from the program should ook something like:

a conplex test of thread private wwth a do | oop

we pass in the array of structures

the structure is a 2d vector. we sum of all

the vectors to get us back to the real axis

we multiply the vectors tines (thread+1)

fromsub_1 thread 2, magnitude is thread+1l= 3.00, angle is zero=0. 00000000
fromsub_1 thread 0, magnitude is thread+1= 1.00, angle is zero=0. 00000000
fromsub_1 thread 1, magnitude is thread+1= 2.00, angle is zero=0. 00000000
fromsub_1 thread 3, magnitude is thread+1l= 4.00, angle is zero=0. 00000000

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (2 of 9) [6/11/2003 9:33:27 AM]

Threadprivate and derived types

Another reason to make data global is to have an easy way to pass it between subroutines. In an openmp environment you may want to
make such data threadprivate. Can arrays be allocated inside of a subroutine for use in routines that are called by the subroutine?
OpenMP should be able to handle but this broke early compilers.

We start with an integer pointer that we will use as a vector.

I nt *ray2;
#pragma onp threadprivate(ray2)

We nullify ray2 and then call the routine sub_2 inside afor loop.

] =max_t hr eads* 2;

k=j /2,

ray2=0;
#pragma onp parallel for copyin(ray2) schedul e(static, 1)

for(i=1;i<=);i++) {

sub_2(i, k);

}
Note that we expect that each thread will call sub_2 two times, one time with i <= k and the second time with i > k. The routine sub_2
was written for illustration purposes only. Its output will vary depending on thread scheduling. If each thread does not call sub 2 as
expected the routine will return different results than what are reported here. For a'rea™ program routines should not, in general, be

written so that the correct results depend on scheduling. Scheduling directives are only suggestions to the compiler. Most compilers, in
most instances, will follow the suggestions but there is no guarantee provided by the standard.

The routine sub_2 is shown below. If first checksto seeif ray2 isallocated. If ray2 isnull, it is allocated. Vaues are stuffed into the array
and then sub_3 is called and returns x. The routine sub_3 sums the elements of ray2 and returns the sum as x. Finaly, x is printed.

If sub_2 iscalled with n <= nhalf then ray2 is set to the thread id +1. If n > nhalf then ray2 isincremented by nhalf.

Both routines, sub_2 and sub_3 accessray2 as aglobal. Thisillustrates that we can use global variables to pass values while al'so using

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (3 of 9) [6/11/2003 9:33:27 AM]

Threadprivate and derived types

OpenMP.

Thefirst print statement in sub_2 shows that athread is allocating ray2. The next print gives the address of ray2. Each thread should have
its own copy of ray2 so each thread should print a different address. The final print gives the thread number and the values of n and x.

The address of ray2 and the values held in the array ray2 and should be preserved between invocations of sub_2. Once athread assigns
an address to ray2 that thread should have the same address. So each time athread calls sub_2 it should print the same address. Also, the
values stored in the array should be preserved.

If sub 2 iscalled as suggested by the scheduling directive,
schedule(static,1)

then each thread will call sub_2 twice. The first time with the value of n <=nhalf. The second time with n > nhalf. If the values are
preserved between invocations, sub 2 will print the values 1 <= n <= max_threads*2 and x = n*10.

void sub_2(int n,int nhalf) {
int i,Kk;
FLT x;
k=onp_get thread num();
if(ray2 == 0) {
ray2=(int *)mall oc(10*sizeof (int));

{
printf("(a) thread % allocating ray2\n", k);
}
}
{
printf("(b) thread %d ray2 is at %\ n", k,ray2);

}

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (4 of 9) [6/11/2003 9:33:27 AM]

Threadprivate and derived types

if(n <= nhal f) {
for(i=0;i<10;i++) {

ray2[i] =k+1;
}
}
el se {
for(i=0;i<10;i++) {
if(ray2[i] != k+1) {
printf("value not preserved\n");
}
ray2[i]=ray2[i] +nhal f;
}
}
x=sub_3(10);
{

printf("(c) thread % ", k);
printf("n= % x= %\n", n, x);
}

Note that the print statements are given their own structured block. Thisis done so we could wrap them with a #pragma omp critical
directive and add a statement to flush the output. The critical directives give us cleaner output. They are there to prevent multiple threads
from trying to print at the same time. They do not effect the "real” output of this program, the value of x.

If we run using 4 threads and sort the output from sub_2 by thread number we get:

(a) thread O allocating ray2
(b) thread O ray2 is at 323312
(b) thread O ray2 is at 323312
(c) thread 0 n=1 x= 10

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (5 of 9) [6/11/2003 9:33:27 AM]

Threadprivate and derived types

(c) thread 0 n=5 x= 50

(a) thread 1 allocating ray2
(b) thread 1 ray2 is at 323456
(b) thread 1 ray2 is at 323456
(c) thread 1 n= 2 x= 20

(c) thread 1 n= 6 x= 60

(a) thread 2 allocating ray2
(b) thread 2 ray2 is at 323408
(b) thread 2 ray2 is at 323408
(c) thread 2 n= 3 x= 30

(c) thread 2 n=7 x= 70

(a) thread 3 allocating ray2
(b) thread 3 ray2 is at 323360
(b) thread 3 ray2 is at 323360
(c) thread 3 n= 4 x= 40

(c) thread 3 n= 8 x= 80

Note that the address for ray2 is consistent in time for each thread but each thread has a different value and the values for x are correct.
Thisindicates that each thread had its own version of ray2 and its copy was preserved between thread invocations.

OpenMP also requires that thread private globals be preserved between parallel regions. This can be seen if we add another parallel
region that access ray2. We can add the following block of code to print the address of ray2 before deallocating it

#pragma onp parall el

{
i f(ray2) {
printf("thread % deal |l ocating ray2 at
val ue=%\ n", onp_get thread num(),ray2,ray2[0]);
free(ray2);
ray2=0;

% W th

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (6 of 9) [6/11/2003 9:33:27 AM]

Threadprivate and derived types

}

The output, sorted by thread number, shows that ray?2 is preserved between parallel regions.

thread O deal locating ray2 at 323312 with val ue=5
thread 1 deallocating ray2 at 323456 with val ue=6
thread 2 deal locating ray2 at 323408 with val ue=7
thread 3 deallocating ray2 at 323360 with val ue=8

Care should be taken when passing pointersto parallel regions. Consider a slight variation to the example given above. What would
happen if ray2 was allocated before the for loop? We could have something like:

ray2=(int *)mall oc(10*sizeof (int));
#pragma onp parallel for copyin(ray2) schedul e(static, 1)
for(i=1;i<sj;i++) {
sub_2(i, k);
}

Ray2 isnot allocated in sub_2 since we check for null before doing the allocation. In this case each thread has the same nonnull value for
ray2 so ray2 points to the same block of memory for each thread.

Thisis confusing because there a severa levels of indirection. Ray2 is a pointer that points to the block of memory allocated by the
malloc. The pointer itself is held in some memory location. What gets duplicated by using the copyin clause is a pointer. That memory
location for the pointer is different for each thread but the pointer still points to the same location in memory.

Hopefully another example will clear this up. Consider
ray2=(int *)mall oc(10*si zeof (int));
#pragma onp parallel for copyin(ray2) schedul e(static, 1)

for(i=1;i<=);i++) {
sub_4();

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (7 of 9) [6/11/2003 9:33:27 AM]

Threadprivate and derived types

}

Where sub_4 will print

o The address of ray2:

. the address of a pointer
o Thevalue held by ray2:

. address of where the pointer pointsto, obtained from the malloc
o ray2[0]:

. thevalue of thefirst element of an array

Sub 4is:

void sub_4() {
printf("address of pointer ray2 %l, address held in ray2 %, value held in
ray2[0] %\ n",
& ay2,ray2,ray2[0]);
}

The output from this block of codeis:

address of pointer ray2 322592, address held in ray2 323312, value held in ray2[0]
iégfess of pointer ray2 39168, address held in ray2 323312, value held in ray2[0]
iégfess of pointer ray2 323296, address held in ray2 323312, value held in ray2[0]
iégfess of pointer ray2 323280, address held in ray2 323312, value held in ray2[0]
1234

Notice that for each thread ray2 points to the same memory location and thus ray2[0] is the same but each thread has a different address

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (8 of 9) [6/11/2003 9:33:27 AM]

Threadprivate and derived types

for the pointer.

http://coherentcognition.com/projects/port/articles/openmp/guide/private.html (9 of 9) [6/11/2003 9:33:27 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>
#i ncl ude <onp. h>

#i ncl ude <mat h. h>

#i ncl ude <sys/tine. h>
#i ncl ude <unistd. h>

#define FLT doubl e
struct real _inmg {
FLT xpart;

FLT ypart;

b

struct real _ing itype[9];
#pragma onp threadprivate(itype)

int *ray2;
#pragma onp threadprivate(ray2)

#define pi 3.141592653589793238462643383
void sub_1();

void sub_2(int in, int in2);

FLT sub_3(int in);

void sub_4(int in, int in2);

voi d expl ai n(char astr[]);

voi d sub_1() {
int i,j;
FLT r,theta, x,y;
r=0;
t het a=0;
j =onmp_get thread num();
if(! itype) {
printf("itype not set for thread %@\n",j);
}

for(i=0;i<=8;i++) {
if(itype[i].xpart == 0 & itype[i].ypart == 0) {
printf("itype not copied for thread %\n",j);
}

itype[i].xpart=itype[i].xpart*(j+1);
itype[i].ypart=itype[i].ypart*(j+1);
}
x=i type[0] . xpart;

y=itype[0].ypart;

http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c (1 of 4) [6/11/2003 9:33:28 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c

for(i=1;i<=8;i++) {
X=X+i type[i].xpart;
y=y+itype[i].ypart;
}
t het a=at an2(y, x) ;
r=sqrt(x*x+y*y);
#pragma onp critica

fflush(stdout);
printf("fromsub 1 thread %, magnitude is thread+l= %l. 2f, angle is zero=%0.8f\n",j,r,abs(theta));
fflush(stdout);

}

}

void sub_2(int n,int nhalf) {
int i,Kk;
FLT x;

k=onp_get _thread num();
if(ray2 == 0) {
ray2=(int *)malloc(10*si zeof (int));
#pragma onp critica

fflush(stdout);
printf("(a) thread % allocating ray2\n", k);
}

}

#pragma onp critica

fflush(stdout);
printf("(b) thread % ray2 is at %\ n", k,ray2);
}

if(n <= nhalf) {
for(i=0;i<10;i++) {

ray2[i]=k+1;
}
}
el se {
for(i=0;i<10;i++) {
if(ray2[i] '= k+1) {
printf("val ue not preserved\n");
}
ray2[i]=ray2[i] +nhal f;
}
}

http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c (2 of 4) [6/11/2003 9:33:28 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c

x=sub_3(10);
#pragma onp critica
fflush(stdout);

printf("(c) thread % ", k);
printf("n= % x= %\n",n, x);

}

}

FLT sub_3(int in) {
int i;
FLT x;
x=0. 0;
for(i=0;i<in;i++) {

x=x+ray2[i];

}
return (x);

}

void sub_4() {
#pragma onp critica
{
fflush(stdout);
printf("address of pointer ray2 %, address held in ray2 %, value held in ray2[0] %\n",
&ray2,ray2,ray2[0]);
}

mai n() {
int i,j,k,mx_threads;
FLT pi 4, xvect, yvect;

max_t hreads=onp_get nax_t hreads();

explain("a conplex test of thread private with a do | oop");
expl ain("we pass in the array of structures ");
explain("the structure is a 2d vector. we sumof all ");
explain("the vectors to get us back to the real axis ");
explain("we nultiply the vectors tines (thread+1) ");
=1
itype[0].ypart =0;
itype[0].xpart=1
pi 4=pi /4. 0;
for(i=1;i<=8;i++) {

yvect =si n(i *pi 4);

xvect =cos(i *pi 4);

http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c (3 of 4) [6/11/2003 9:33:28 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c

itype[i].ypart=yvect-itype[i-1].ypart;
itype[i].xpart=xvect-itype[i-1].xpart;

}

#pragma onp parallel for copyin(itype) schedul e(static, 1)
for(i=1;i<=max_threads;i++) {
sub_1();
}

explain("a conplex test of thread private with a do | oop");
expl ain("we access a threadprivate pointer allocated");
explain("inside of the thread");

j =max_t hr eads* 2
k=j/2;
ray2=0;
#pragma onp parallel for copyin(ray2) schedul e(static,1)
for(i=1;i<=j;i++) {

sub_2(i, k);
}
#pragma onp parall el
{
if(ray2) {
printf("thread % deallocating ray2 at %l with val ue=%\n", onp_get thread num(),ray2,ray2[0]);
free(ray2);
ray2=0;
}
}

ray2=(int *)malloc(10*sizeof (int));
ray2[0] =1234;
#pragma onp parallel for copyin(ray2) schedul e(static,1)
for(i=1;i<=k;i++) {
sub_4();
}

}

voi d explain(char astr[]){
printf("%\n", astr);
}

http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c (4 of 4) [6/11/2003 9:33:28 AM]

Single and operatations on a subsection of an array without using afor loop

Single and subsections

Link to example source.

Link to example source in Fortran.

Thisisarelatively ssmple example that shows how you might use OpenMP so that each thread operates on a subsection of an array
without using afor loop. It also shows a use for the single directive.

This prorgam allocates an array and calls two subroutines. The first subroutine puts values into the array and the second checks the
values. The array is allocated and values are put into the array inside of aparallel region. The subroutine that checks the valuesis called
from a seria region. The number of valuesin the array is npoints=2* 3* 4* 5* 7=850.

The allocation of the array is done inside aregion protected by asingle directive. Thisis done so that the alocation is only done one
time.

1 main () {

2 int i,iamnp,npoints,ipoints;

3 fl oat *x;

4 x=0;

5 #pragma onp parall el shared(x, npoints,np) default(none) private(iamipoints)
6 {

7 npoi nt s=2*3*4*5* 7,

8 I am = onp_get _thread_num();

9 np = onp_get _num t hreads();

10 #pragnma onp single

11 {

12 I f(x '=0)printf("single fails\n");

13 x=(float *)mall oc((unsigned)npoints*sizeof (float));

14 X--; [* this line is used to set the starting point for our

array to x[1] */

http://coherentcognition.com/projects/port/articles/openmp/guide/single_subsection.html (1 of 3) [6/11/2003 9:33:29 AM]

Single and operatations on a subsection of an array without using afor loop

15 }

16 #pragma onp barrier

17 | poi nts = npoi nts/np;

18 subdomai n(x, i am i poi nts);
19 }

20

21 printf("outside of the parallel region\n");
22 for(i=0;i< np;i++) {

23 | poi nts = npoi nts/np;

24 pdonmai n(x, 1,1 points);

25 }

26 }

The parallel regionisfromlines7 to 18. X is null coming into this region. The allocation is done on line 13 and should only be done one
time because of the single directive. If for some reason, the allocation is done a second time, the test on line 12 will fail and an error
message will be printed. This would only happen if the single directive is not working correctly.

The barrier isused on line 16 to ensure that the array is allocated before it is used.
Line 17 givesthe number of pointsthat each thread will set in the routine subdomain. Subdomain is shown next.

voi d subdomain(float *x, int itamint ipoints) {
int ibot,itop,i;
I nt sum
| bot =(i am *i poi nt s+1;
| t op=i bot +i poi nt s-1;
for(i=ibot;i<=itop;i++)
X[1]=Iam
sunF0;
for(i=ibot;i<=itop;i++)
sumEsumex[i];
#pragma onp critical

http://coherentcognition.com/projects/port/articles/openmp/guide/single_subsection.html (2 of 3) [6/11/2003 9:33:29 AM]

Single and operatations on a subsection of an array without using afor loop

printf(" iame % doing %d % % \n",iamibot,itop, sumipoints);
}

Thisroutineis called with the array (X) , the thread id (iam), and the number of points athread isto initialize (ipoints). It first calculates
the lower and upper bound of the threads region and then puts the thread id in to its poition of the array. Finally, it prints the average
value that is put into the array. This should be the thread id.

Back in the main program we call the routine pdomain in afor loop. Pdomain is called with the for loop counter as input, not thread id.
Pdomain checksthat all of the elementsin a particular subsection contains the same value. The value contained in each subsection is
printed. There should be a subsection that contains each thread id.

The following is output from this program run using 4 threads

lam= O doing 1 210 O

iam= 3 doing 631 840 3

Il am= 2 doing 421 630 2

lam= 1 doing 211 420 1
outside of the parallel region

section= 0is from1l to 210 and contains O
section=1is from211 to 420 and contai ns
section= 2 is from421 to 630 and contai ns
section= 3 is from631 to 840 and contains 3

N -

http://coherentcognition.com/projects/port/articles/openmp/guide/single_subsection.html (3 of 3) [6/11/2003 9:33:29 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t10.c

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <onp. h>

voi d subdomai n(float *x, int iamint ipoints);
voi d pdomai n(float *x, int iamint ipoints);

voi d subdomai n(float *x, int iamint ipoints) {
int ibot,itop,i;
int sum
i bot =(i am *i poi nts+1
i t op=i bot +i poi nts-1;
for(i=ibot;i<=itop;i++)
x[i]=iam
sunm=0,
for(i=ibot;i<=itop;i++)
sumEsumex[i];
#pragma onp critica
printf(" iamr % doing %d % % \n",iamibot,itop,suniipoints);
}

void pdomain(float *x, int iamint ipoints) {
int ibot,itop,i;
float v;
int sum
i bot =(iam *i poi nts+1
i t op=i bot +i poi nts-1;
printf(" section= % is from% to %l",iamibot,itop);

y=x[ibot];
for(i=ibot;i<=itop;i++)
Pf(y = x[i]){

y=x[i];

}
if(y == x[ibot]) {
printf(" and contains %\n",y);

}
el se
printf(" failed\n");
}
main () {
int i,iamnp,npoints,ipoints;
float *x;
x=0;
#pragma onmp parall el shared(x,npoints,np) default(none) private(iamipoints)
{

http://coherentcognition.com/projects/port/articles/openmp/guide/t10.c (1 of 2) [6/11/2003 9:33:29 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t10.c

Nnpoi nt s=2*3*4*5*7;
iam = onp_get thread _num();
np = onp_get _num threads();
#pragma onp single
{
if(x '=0)printf("single fails\n");
x=(float *)mall oc((unsigned)npoints*sizeof (float));
X- -
}
#pragma onp barrier
i points = npoi nts/np;
subdonai n(x, i am i points);
}
printf("outside of the parallel region\n");
for(i=0;i < np;i++) {
i poi nts = npoi nts/np;
pdonai n(x, i, ipoints);

http://coherentcognition.com/projects/port/articles/openmp/guide/t10.c (2 of 2) [6/11/2003 9:33:29 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t10.f90

modul e stuff

contai ns
subrouti ne subdormai n(x, iam ipoints)
real x(:)

i nteger iam

i nteger ipoints

i nteger ibot,itop,i

i nteger sum

i bot =(iam *i poi nts+1

i top=i bot +i points-1

do i=ibot,itop
x(i) =i am

enddo

sum=0

do i=ibot,itop
sumesumex (i)

enddo
!'$onmp critica
wite(*,*)" iam= ",iam" doing ",ibot,itop,suniipoints

!'$onmp end critica
end subroutine

subroutine pdomain(x, iam ipoints)
real x(:)
i nteger iamipoints
i nteger ibot,itop,i
real vy
i bot =(iam *i poi nts+1
i t op=i bot +i poi nts-1
wite(*,*)" section=",iam"is from",ibot," to ",itop
y=x(i bot)
do i=ibot,itop
if(y .ne. x(i))y=x(i)
enddo
if(y .eq. x(ibot)) then
wite(*,*)" and contains",y
el se
wite(*,*)" failed"
endi f
end subroutine
end nodul e

program nmynai n

use stuff
i nteger onp_get thread _num onp_get numt hreads
i nteger i,iamnp, npoints,ipoints

http://coherentcognition.com/projects/port/articles/openmp/guide/t10.f90 (1 of 2) [6/11/2003 9:33:30 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/t10.f90

real, allocatable :: x(:)
! x=0
!'$omp parall el shared(x, npoints,np) default(none) private(iamipoints)
npoi nt s=2*3*4*5*7
i am = onp_get thread_num()
np = onp_get _numthreads()
!'$onp single
if(allocated(x))wite(*,*)"single fails"
al | ocat e(x(npoi nts))
!'$onp end single
!'$omp barrier
i points = npoints/np
wite(*,*)ipoints,iam
call subdomai n(x,iamipoints)
! $onp end parall el
wite(*,*)"outside of the parallel region"

do i=0,np-1

i points = npoints/np

call pdomain(x,i,ipoints)
enddo

end program

http://coherentcognition.com/projects/port/articles/openmp/guide/t10.f90 (2 of 2) [6/11/2003 9:33:30 AM]

Merge Sort, threadprivate with pointers to derived types

Sorting, threadprivate with pointers to derived types

Link to example source.

This example shows how to do arecursive merge sort using OpenMP. Each thread is assigned a section of an array for which to perform
arecursive merge sort. The sorted subsections are then merged. It also shows how threadprivate can be used to pass values to
subroutines. This can be important for recursive routines.

The array being sorted is actually the derived type:

type thefit
sequence
real val
| nt eger i ndex
end type thefit

We are sorting an array of type THEFIT using the key "val." Index will contain the original index of "val" in the array that is being
sorted.

The program is given here with line numbers for reference.

Our program startson line 127. It allocates an array 32 elements long and fills it with random numbers (137-142).

We split the array into sections and use the !$omp sections directive to sort the sections (157-166). We then merge the sections and print
the final merged list (173-190).

The sorting routine is a standard Merge-Sort (8-126) and is described in in Moret and Shapiro, Algorithms from P to NP, Vol 1. The
routine SORT allocates atemporary work array (18) and there is a pointer to the input array (20). These are used by the routines
RecMergeSort and Merge. They are accessible to these routines because they are in common.

http://coherentcognition.com/projects/port/articles/openmp/guide/sortinf.html (1 of 3) [6/11/2003 9:33:31 AM]

Merge Sort, threadprivate with pointers to derived types

At first glance the sorting routine does not ook like it contains any OpenMP. But if we look at the definition of "work™ and "a"' we see
that these two pointers to derived types are threadprivate (15,30,46,100). We have used the threadprivate pointer "a" to point to a
subsection of an array. Each thread getsits own pointer "a" so that it can access its own subsection of the derived type input array. Each
thread allocates its own copy of the work array for use in the rest of the algorithm.

We have shown that we can use threadprivate with pointers to arrays of derived types. These can be used to pass values between
subroutines, with each thread having its own copy.

Thefina output of this programis:

endi ng | i st

20 0.94798243
16 0.93174280
30 0.92679580
28 0. 88469052
12 0. 88409471
31 0.86152124
18 0. 85193380
25 0.76048082
23 0.70104372
11 0. 69971883
29 0.69236451

1 0.67201113
26 0.65388730
3 0.63397812
17 0. 54539450
13 0. 53869861
22 0.47838681

7 0.47571510
9 0.44888480
5 0.43045502
15 0. 41719050

http://coherentcognition.com/projects/port/articles/openmp/guide/sortinf.html (2 of 3) [6/11/2003 9:33:31 AM]

Merge Sort, threadprivate with pointers to derived types

32 0.41321742
24 0. 39106920
14 0. 37801930
27 0.34327822
4 0.23692870
19 0.21749190
21 0.20226842
8 0.16754910
2 0.13908743
6 0.10045713
10 0. 02444941

http://coherentcognition.com/projects/port/articles/openmp/guide/sortinf.html (3 of 3) [6/11/2003 9:33:31 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90

nmodul e gal apagos
type thefit
sequence
real val
i nt eger index
end type thefit
end nodul e

nmodul e sort _nod
cont ai ns

subroutine Sort (A n, n)
use gal apagos
type(thefit), pointer :: work(:)
type(thefit), pointer :: a(:)
conmon /bonk/ a, work

! $OMP THREADPRI VATE (/ bonk/)

i nteger n
type(thefit), target:: ain(n)
al | ocat e(work(n))
nul l'ify(a)
a=>ai n
call RecMergeSort(1,n)
deal | ocat e(wor k)
return

end subroutine Sort

recursive subroutine RecMergeSort(left, right)
use gal apagos
type(thefit), pointer :: work(:)
type(thefit), pointer :: a(:)
conmon /bonk/ a, wor k
! $OVP THREADPRI VATE (/ bonk/)
integer,intent(in):: left,right
integer mddle
if (left <right) then
mddle = (left + right) / 2
call RecMergeSort(left, m ddle)
call RecMergeSort(m ddl e+1,right)
call Merge(left,mddle-1eft+1,right-mddle)
endi f
return
end subroutine RecMergeSort

subroutine Merge(s, n, m

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90 (1 of 5) [6/11/2003 9:33:32 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90

use gal apagos
type(thefit), pointer :: work(:)
type(thefit), pointer :: a(:)
conmon /bonk/ a, work

! $OMP THREADPRI VATE (/ bonk/)
i nteger s,n, m

integer i, j, k, t, u
k =1

t =s +n

u=t +m

i =s

j =t

i

f ((i <t) .and. (j < u))then
do while ((i <t) .and. (j < u))

if (A(i)Wal .ge. A(j)%al)then
wor k(k) A(i)
i [
k k +

el se
wor k(k)
; i+

=l

A1)

=l

endi f
enddo
endi f
if(i <t)then
do while (i <
wor k(k) =
i i +1
k k +1
enddo
endi f
if(j < u)then
do while (j <
wor k(k) =
j =i +1
k k +1
enddo
endi f
i =s
! the next Iine is not in noret & shapiro's book
k=k-1
do j

=1, k

A(i) = work(j)
i =i +1
enddo

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90 (2 of 5) [6/11/2003 9:33:32 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90

return
end subroutine Merge

! this subroutine takes two sorted lists of type(thefit) and nmerges them
' input di(n) , d2(m
I out put out(n+m
subroutine nmerge2(di, n,d2, mout)
use gal apagos
inmplicit none
type(thefit), pointer :: work(:)
type(thefit), pointer :: a(:)
common / bonk/ a, work
! $OMP THREADPRI VATE (/ bonk/)
i nteger n, m
type(thefit),intent (in):: di(n),d2(m
type(thefit), intent (out):: out(n+m
integer i,j,k
i=1
j=1
do k=1, n+m
if(i.gt.n)then
out (k) =d2(j)
j=j+1
el seif(j.gt.mthen
out (k) =d1(i)
i=i+1
el se
if(di(i)%al .gt. d2(j)%al)then
out (k) =di1(i)
i=i+1
el se
out (k) =d2(j)
j=i+1
endi f
endi f
enddo
return
end subroutine merge2
end nodul e sort_nod

program t est
use gal apagos
use sort_nod
inmplicit none
integer i,j,k, mdi, k1, k2

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90 (3 of 5) [6/11/2003 9:33:32 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90

i nteger OVWP_GET_MAX THREADS

integer, allocatable :: kstart(:), kend(:)
type(thefit),allocatable :: data(:),outputl(:), output2(:)
wite(*,*)"sort in fortran"

i =32

al |l ocate(data(i))

do j=1,i
call random nunber (data(j)%val)
dat a(j) % ndex=j
wite(*,*)data(j)% ndex, data(j)%a
enddo
wite(*,*)

m=4
di =i /m
al l ocate(kstart(m, kend(nm)
kstart(1)=1
kend(1) =di
do j=2, m
kstart(j)=kend(j-1)+1
kend(j)=kstart(j) +di
enddo
kend(nm =i
wite(*,"(8i5)")kstart
wite(*,"(8i5)")kend
! $OVP PARALLEL SECTI ONS
! $OVP SECTI ON
call sort(data(kstart(1):kend(1l)), kend(1l)-kstart(1)+1)
! $OVP SECTI ON
call sort(data(kstart(2):kend(2)), kend(2)-kstart(2)+1)
! $OVP SECTI ON
call sort(data(kstart(3):kend(3)), kend(3)-kstart(3)+1)
! $OVP SECTI ON
call sort(data(kstart(4):kend(4)), kend(4)-kstart(4)+1)
! $OVP END PARALLEL SECTI ONS
do k=1, m
wite(*,*)"start of section ",k
do j=kstart (k), kend(k)
wite(*,"(i5,1x,f10.8)")data(j)% ndex, data(j)%a
enddo
enddo
! $OVP PARALLEL SECTI ONS
! $OVP SECTI ON
kl=kend(2)-kstart(1)+1
al | ocat e(out put 1(k1))

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90 (4 of 5) [6/11/2003 9:33:32 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90

call merge2(data(kstart(1):kend(1)), kend(1)-kstart(1l)+1, &
data(kstart(2):kend(2)), kend(2)-kstart(2)+1, out put 1)
! $OVP SECTI ON
k2=kend(4)-kstart(3)+1
al | ocat e(out put 2(k2))
call merge2(data(kstart(3):kend(3)), kend(3)-kstart(3)+1, &
data(kstart(4):kend(4)), kend(4)-kstart (4)+1, out put 2)
1 $OMP END PARALLEL SECTI ONS
call merge2(outputl, kl, out put 2, k2, dat a)

wite(*,*)"ending list "
do j=1,i
wite(*,"(i5,1x,f10.8)")data(j)% ndex, data(j)%Wa
enddo
end program

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90 (5 of 5) [6/11/2003 9:33:32 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt

1 nodul e gal apagos
2 type thefit

3 sequence

4 real val

5 i nt eger index
6 end type thefit
7 end nodul e

8 nmodul e sort_nod
9 contains

10 subroutine Sort(Ain, n)

11 use gal apagos

12 type(thefit), pointer :: work(:)
13 type(thefit), pointer :: a(:)
14 conmon /bonk/ a, work

15 ! $OVP THREADPRI VATE (/ bonk/)

16 i nteger n

17 type(thefit), target:: ain(n)
18 al | ocat e(work(n))

19 nul l'ify(a)

20 a=>ain

21 call RecMergeSort(1,n)

22 deal | ocat e(wor k)

23 return

24 end subroutine Sort

25 recursive subroutine RecMergeSort(left, right)

26 use gal apagos

27 type(thefit), pointer :: work(:)

28 type(thefit), pointer :: a(:)

29 conmon /bonk/ a, wor k

30 ! $OWP THREADPRI VATE (/ bonk/)

31 integer,intent(in):: left,right

32 integer mddle

33 if (left <right) then

34 mddle = (left + right) / 2

35 call RecMergeSort(left, m ddle)

36 call RecMergeSort(m ddl e+1,right)
37 call Merge(left,mddle-1eft+1,right-mddle)
38 endi f

39 return

40 end subroutine RecMergeSort

41 subroutine Merge(s, n, m

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt (1 of 5) [6/11/2003 9:33:33 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt

42 use gal apagos

43 type(thefit), pointer :: work(:)
44 type(thefit), pointer :: a(:)
45 common / bonk/ a, work

46 ! $OMP THREADPRI VATE (/ bonk/)

47 i nteger s,n, m

48 integer i, j, k, t, u

49 k =1

50 t =s +n

51 u==t+m

52 i =s

53 j =1t

54 if ((i <t) .and. (j < u))then
55 do while ((i <t) .and. (j < u))
56 if (A(i)Wal .ge. A(j)%val)then
57 wor k(k) = A(i)

58 i =i +1

59 k =k +1

60 el se

61 work(k) = A(j)

62 i =j +1

63 k =k +1

64 endi f

65 enddo

66 endi f

67 if(i <t)then

68 do while (i <1t)

69 wor k(k) = A(i)

70 i =i +1

71 k =k +1

72 enddo

73 endi f

74 if(j < u)then

75 do while (j <u)

76 work(k) = A(j)

77 i =j +1

78 k =k +1

79 enddo

80 endi f

81 i =s

82 ! the next line is not in noret & shapiro's book
83 k=k-1

84 doj =1, k

85 A(i) = work(j)

86 i =i +1

87 enddo

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt (2 of 5) [6/11/2003 9:33:33 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt

88 return
89 end subroutine Merge
90

91 ! this subroutine takes two sorted lists of type(thefit) and nerges them
92 ! input di(n) , d2(m

93 ! output out(n+m

94 subroutine nmerge2(di, n,d2, mout)

95 use gal apagos

96 inmplicit none

97 type(thefit), pointer :: work(:)
98 type(thefit), pointer :: a(:)

99 common /bonk/ a, work

100 ! $OWP THREADPRI VATE (/ bonk/)

101 i nteger n, m

102 type(thefit),intent (in):: di(n),d2(m
103 type(thefit), intent (out):: out(n+m

104 integer i,j,k

105 i =1

106 j=1

107 do k=1, n+m

108 if(i.gt.n)then

109 out (k) =d2(j)

110 j=)+1

111 elseif(j.gt.mMthen
112 out (k) =d1(i)

113 i=i+1

114 el se

115 if(di(i)wal .gt. d2(j)%al)then
116 out (k) =d1(i)
117 i=i+1

118 el se

119 out (k) =d2(j)
120 j=)+1

121 endi f

122 endi f

123 enddo

124 return

125 end subroutine merge2
126 end nodul e sort_nod

127 programtest

128 use gal apagos

129 use sort_nod

130 inmplicit none

131 integer i,j,k, mdi,kl, k2

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt (3 of 5) [6/11/2003 9:33:33 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt

132 i nteger OVWP_GET_MAX THREADS

133 integer, allocatable :: kstart(:), kend(:)
134 type(thefit),allocatable :: data(:),outputl(:), output2(:)
135 wite(*,*)"sort in fortran"

136 i =32

137 al |l ocate(data(i))

138 do j=1,i

139 call random nunber (data(j)%val)
140 dat a(j) % ndex=j

141 wite(*,*)data(j)% ndex, data(j)%a
142 enddo

143 wite(*,*)

144 1

145 n=4

146 di =i /m

147 al l ocate(kstart(m, kend(nm)

148 kstart(1)=1

149 kend(1)=d

150 do j=2, m

151 kstart(j)=kend(j-1)+1

152 kend(j)=kstart(j)+d

153 enddo

154 kend(m =

155 wite(*,"(8i5)")kstart

156 wite(*,"(8i5)")kend

157 ! $OMP PARALLEL SECTI ONS
158 ! $OMP SECTI ON

159 call sort(data(kstart(1):kend(1l)), kend(1l)-kstart(1)+1)
160 ! $OMP SECTI ON

161 call sort(data(kstart(2):kend(2)), kend(2)-kstart(2)+1)
162 ! $OMP SECTI ON

163 call sort(data(kstart(3):kend(3)), kend(3)-kstart(3)+1)
164 ! $OMP SECTI ON

165 call sort(data(kstart(4):kend(4)), kend(4)-kstart(4)+1)
166 ! $OMP END PARALLEL SECTI ONS

167 do k=1, m

168 wite(*,*)"start of section ",k

169 do j=kstart (k), kend(k)

170 wite(*,"(i5,1x,f10.8)")data(j)% ndex, data(j)%a

171 enddo

172 enddo

173 ! $OWP PARALLEL SECTI ONS
174 | $OMP SECTI ON

175 kl=kend(2)-kstart(1)+1
176 al | ocat e(out put 1(k1))

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt (4 of 5) [6/11/2003 9:33:33 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt

177 call merge2(data(kstart(1):kend(1)), kend(1)-kstart(1l)+1, &

178 data(kstart(2):kend(2)), kend(2)-kstart(2)+1, out put 1)
179 ! $OWP SECTI ON

180 k2=kend(4)-kstart(3)+1

181 al | ocat e(out put 2(k2))

182 call merge2(data(kstart(3):kend(3)), kend(3)-kstart(3)+1, &

183 data(kstart(4):kend(4)), kend(4)-kstart (4)+1, out put 2)
184 ! $OVWP END PARALLEL SECTI ONS

185 call merge2(outputl, kl, out put 2, k2, dat a)

186

187 wite(*,*)"ending list "

188 do j=1,i

189 wite(*,"(i5,1x,f10.8)")data(j)% ndex, data(j)%Wa

190 enddo

191 end program

http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt (5 of 5) [6/11/2003 9:33:33 AM]

Merge Sort, threadprivate with pointers to derived types

Sorting, threadprivate with pointers to derived types

Link to example source.

This example shows how to do arecursive merge sort using OpenMP. Each thread is assigned a section of an array for which to perform
arecursive merge sort. The sorted subsections are then merged. It also shows how threadprivate can be used to pass values to
subroutines. This can be important for recursive routines.

The array being sorted is actually the derived type:

t ypedef struct {
float val;
i nt i ndex;

} THEFI T;

We are sorting an array of type THEFIT using the key "val." Index will contain the original index of "val" in the array that is being
sorted.

The program is given here with line numbers for reference.

The routine vector (141-150) allocates an array of type THEFIT and sets the first indices of the array equal to 1. The routine free_vector
(151-154) deallocates arrays of type THEFIT.

Our program allocates an array 32 elements long and fills it with random numbers (21-27).

We split the array into sections and use the #pragma omp sections directive to sort the sections (29-38). We then merge the sections and
print the final merged list (50-53).

The sorting routine is a standard Merge-Sort (56-111) and is described in Moret and Shapiro, Algorithms from P to NP, Vol 1. The

http://coherentcognition.com/projects/port/articles/openmp/guide/sortinc.html (1 of 3) [6/11/2003 9:33:34 AM]

Merge Sort, threadprivate with pointers to derived types

routine SORT allocates atemporary work array (57) and there is a pointer to the input array (58). These are used by the routines
RecMergeSort and Merge. They are accessible to these routines because they are global.

At first glance the sorting routine does not ook like it contains any OpenMP. But if we look at the definition of "work™ and "a" (8-10) we
see that these two pointers to derived types are threadprivate. We have used the threadprivate pointer "a" to point to a subsection of an
array. Each thread getsits own pointer "a" so that it can access its own subsection of the derived type input array. Each thread allocates
its own copy of the work array for use in the rest of the algorithm.

We have shown that we can use threadprivate with pointers to arrays of derived types. These can be used to pass values between
subroutines, with each thread having its own copy.

Thefinal output of this program is:

15 0.9834372
5 0.9476279
31 0.9315229
26 0.9172045
32 0.8699211
21 0.8229514
30 0.7854022
20 0.7802369
19 0.7671388
17 0.7656819
7 0.7022312
18 0.6464732
23 0.6254767
29 0.6067584
16 0.5353979
4 0.5345339
27 0.5197600
1 0.5138701
9 0.4947734

http://coherentcognition.com/projects/port/articles/openmp/guide/sortinc.html (2 of 3) [6/11/2003 9:33:34 AM]

Merge Sort, threadprivate with pointers to derived types

28 0.4011542
12 0.3896471
14 0.3680707
25 0.3469011
24 0.3146848
3 0.3086515
13 0.2772258
8 0.2264307
2 0.1757413
6 0.1717363
22 0.1519323
10 0.1247203
11 0. 0838988

http://coherentcognition.com/projects/port/articles/openmp/guide/sortinc.html (3 of 3) [6/11/2003 9:33:34 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>
typedef struct {
float val;
i nt index;
} THEFIT;

THEFI T *wor k;
THEFI T *a;
#pragma onp threadprivate (work, a)

void RecMergeSort(int left, int right);

void Sort(THEFIT *Ain, int n);

void Merge(int s, int n, int n;

void nmerge2(THEFI T *dl,int n, THEFI T *d2,int m THEFI T *out);

THEFI T *vector(int nl, int nh);
void free_vector(THEFIT *v, int nl);

int min() {
THEFI T *dat a, *out put ;
int i,j,k,k1,k2, k3, k4;
printf("sort in c\n");
i =32;
data=vector(1,i);
for(j=1j<=i;j++) {
data[j].index=sj;
data[j].val =(float)rand()/(fl oat) RAND_ MAX;
printf("%l %g\n",data[j].index,data[j].val);
}
printf("\n\n");
k=il 2;
kl=k+1;
k2=(i-kl)+1;
#pragma onp sections
{
#pragma onp section
Sort (&data[1], k) ;
#pragma onp section
Sort (&dat a[k1], k2);
}
for(j=1;j<=k;j++) {
printf("%l %\n",data[j].index,data[j].val);
}

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c (1 of 4) [6/11/2003 9:33:34 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c

printf("\n\n");
printf("\n\n");
for(j=kl;j<=i;j++) {
printf("%l %g\n",data[j].index,data[j].val);
}
printf("\n\in");
printf("\n\in");
out put =vector(1,i);
mer ge2(&at a[1], k, &dat a[k1], k2, &out put[1]);
for(j=1;j<=i;j++) {
printf("o%2d %0. 7f\n",output[j].index,output[j].val);
}

return O;

void Sort(THEFIT *Ain, int n){
wor k=vector (1, n);

a=Ai n- 1,

RecMer geSort (1, n);
free_vector(work,1);

void RecMergeSort(int left, int right) {
int mddle;
if (left <right) {
mddle = (left + right) / 2;
RecMergeSort (I eft, m ddl e);
RecMer geSort (m ddl e+1, ri ght);
Merge(l eft, mddle-left+1,right-nmiddle);
}
}

void Merge(int s, int n, int m {
int i, j, k, t, u
k

’

+ n,
+

n o0 PR

t;
f((<t) & (j < u)){
while ((i <t) & (j < u)){
if (a[i].val >= a[j].val){
a[i];

t
u
i
j
i

1;
1;

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c (2 of 4) [6/11/2003 9:33:34 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c

work[k] = a[j];
=i+
k =k + 1;
}
}
}
if(i <t){
while (i <t) {
work[Kk] = a[i];
i =i + 1;
k =k + 1;
}
}
if(< uf{
while (j <u) {
work[k] = a[j];
=i+
k =k + 1;
}
}
i = s;
k=k-1;
for(j =1; j<=k; j++) {
a[i] = work[j];
=1 + 1;
}
}
/*

! this subroutine takes two sorted lists of type(THEFIT) and merges them

! input di(1:n) , d2(1:m
I output out(1l:n+m

*/

void nerge2(THEFI T *d1,int n, THEFIT *d2,int mTHEFI T *out) {
int i,j,k;
i =1;
=1

dil--; d2--; out--;
for(k=1; k<=n+m k++) {
if(i >n){
out [k] =d2[j];
j=i+1
}
else if(j > m{
out [k] =d1[i];

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c (3 of 4) [6/11/2003 9:33:34 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c

i=i+1;
} else {
if(di[i].val > d2[j].val){
out[k]=di[i];

i=i+1;
} else {
out [k]=d2[]];
=i+
}
}
}
}
THEFI T *vector(int nl, int nh)
{
THEFI T *v;
v=(THEFI T *)mal | oc((unsi gned) (nh-nl+1)*sizeof (THEFIT));
if ('v) {
printf("allocation failure in ivector()\n");
exit(1);
}
return v-nl;
}

void free vector(THEFIT *v, int nl)

{

free((char*) (v+nl));

http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c (4 of 4) [6/11/2003 9:33:34 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt

1 #include <stdlib. h>
2 #include <stdio. h>
3 #include <mat h. h>

4 typedef struct {

5 float val

6 i nt index;

7} THEFIT,

8 THEFI T *work;

9 THEFI T *a;

10 #pragma onp threadprivate (work, a)

11 void RecMergeSort(int left, int right);

12 void Sort(THEFIT *Ain, int n);

13 void Merge(int s, int n, int m;

14 void nerge2(THEFIT *dl,int n, THEFIT *d2,int m THEFI T *out);

15 THEFI T *vector(int nl, int nh);
16 void free vector(THEFIT *v, int nl);

17 int main() {

18 THEFI T *dat a, *out put ;

19 int i,j,k,kl, k2, k3, k4;

20 printf("sort in c\n");

21 i =32;

22 data=vector(1,i);

23 for(j=1j<=i;j++) {

24 data[j].index=sj;

25 data[j].val =(float)rand()/(fl oat) RAND_ MAX;
26 printf("%l %g\n",data[j].index,data[j].val);
27 }

28 printf("\n\n");

29 k=il 2;

30 k1=k+1;

31 k2=(i-k1) +1;

32 #pragma onp sections

33 {

34 #pragma onp section

35 Sort (&data[1], k) ;

36 #pragma onp section

37 Sort (&dat a[k1], k2);

38 }

39 for(j=1;j<=k;j++) {

40 printf("%l %g\n",data[j].index,data[j].val);
41 }

http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt (1 of 4) [6/11/2003 9:33:35 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt

42 printf("\n\n");

43 printf("\n\n");

44 for(j=kl1;j<=i;j++) {

45 printf("%l %g\n",data[j].index,data[j].val);
46 }

47 printf("\n\n");

48 printf("\n\n");

49 out put =vector(1,i);

50 mer ge2(&dat a[1] , k, &dat a[k1] , k2, &out put[1]);
51 for(j=1;j<=i;j++) {

52 printf("o%2d %0. 7f\n",output[j].index,output[j].val);
53 }

54 return O,

55}

56 void Sort(THEFIT *Ain, int n){

57 wor k=vector (1, n);

58 a=Ai n- 1,

59 RecMer geSort (1, n);

60 free_vector(work,1);

61 }

62 void RecMergeSort(int left, int right) {
63 int mddle;

64 if (left <right) {

65 mddle = (left + right) / 2;

66 RecMergeSort (I eft, m ddl e);

67 RecMer geSort (m ddl e+1, ri ght);

68 Merge(l eft, mddle-left+1,right-nmiddle);
69 }

70 }

71 void Merge(int s, int n, int m {

72 int i, j, k, t, u

73 k = 1;

74 t =s + n;

75 u=t +

76 i =s;

77 j = t;

78 if ((i <t) & (j < u)){

79 while ((i <t) & (j < u)){

80 if (a[i].val >= a[j].val){

81 wor k[k] = a[i];

82 i =i + 1;

83 k = k + 1;

84 } else {

http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt (2 of 4) [6/11/2003 9:33:35 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt

85 wor K[kK] =
86 i =j + 1
87 k =k +1
88 }

89 }

90 }

91 if(i <t){

92 while (i <t) {

93 wor k[k] =
94 i =i + 1;
95 k =k +1
96 }

97 }

98 if(j <u{

99 while (j <u)
100 wor k[k] =
101 i =i + 1
102 k =k +1
103 }

104 }
105 i
106 k ;
107 f j =
108 ali]
109 i =i + 1;
110 }

111}

112 /*
113 ! this subroutine takes two sorted lists of type(THEFIT) and nerges them

114 ! input di(1:n) , d2(1:m

115 ! out put out(1: n+m

116 */

117 void nmerge2(THEFI T *dl,int n, THEFI T *d2,int m THEFI T *out) {
118 int i,j,k;

119 i =1;

120 j=1;

121 dl--; d2--; out--;

122 for(k=1; k<=n+m k++) {

123 if(i >n){

124 out[k]=d2[j];
125 j =) +1;

126 }

127 else if(j > m{
128 out[k]=d1i[i];

http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt (3 of 4) [6/11/2003 9:33:35 AM]

http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt

129 i=i+1;

130 } else {

131 if(di[i].val > d2[j].val){
132 out [k] =d1[i];
133 i=i+1

134 } else {

135 out[k]=d2[j];
136 i = +1;

137 }

138 }

139 }

140 '}

141 THEFIT *vector(int nl, int nh)

142 {

143 THEFI T *v;

144 v=(THEFI T *)mal | oc((unsi gned) (nh-nl+1)*sizeof (THEFIT));
145 if (lv) {

146 printf("allocation failure in ivector()\n");

147 exit(1);

148 }

149 return v-nl;

150 }

151 void free vector(THEFIT *v, int nl)
152 {
153 free((char*) (v+nl));

154 }

http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt (4 of 4) [6/11/2003 9:33:35 AM]

Atomic operation to update an array index

Atomic operation to update an array index

The following example is an expansion on example A.12 from the standards document, Using the atomic Directive. It isincluded here
because in some early implementations of OpenMP atomic did not work correctly on this example. The output from this programis:

©CO~NOUDWNREO
ORPNWAOUOO~N®O
=
o

The example avoids race conditions (simultaneous updates of an element of x) by multiple threads by using the atomic directive.

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <onp. h>

mai n() {
float *x,*y, *workl, *work2;
I nt *i ndex;
int n,i;
n=10;
x=(fl oat*)mal | oc(n*si zeof (fl oat));
y=(fl oat*)mal | oc(n*si zeof (fl oat));
wor k1=(fl oat *) mal | oc(n*si zeof (fl oat));
wor k2=(fl oat *) mal | oc(n*si zeof (fl oat));
I ndex=(int*)mal | oc(10*si zeof (fl oat));

http://coherentcognition.com/projects/port/articles/openmp/guide/atomic.html (1 of 2) [6/11/2003 9:33:36 AM]

Atomic operation to update an array index

for(i=0;1 < n;i++) {
i ndex[i]=(n-i)-1;
x[1]=0.0;
y[i]=0.0;
wor k1[1] =i ;
wor K2[i]=i*i;
}
#pragma onp parallel for shared(x,y,index,n)
for(i=0;i< n;i++) {
#pragnma onp atom c
x[index[i]] += workl1l[i];
y[i] += work2[i];

for(i=0;1 < n;i++)

printf("%l % %\n",i,x[i],y[i]);
}

The advantage of using the atomic directive in this exampleisthat it allows updates of two different elements of x to occur in parallel. If
acritical directive were used instead, that all updates to elements of x would be executed serially (though not in any guaranteed order).

http://coherentcognition.com/projects/port/articles/openmp/guide/atomic.html (2 of 2) [6/11/2003 9:33:36 AM]

RUNTIME scheduling, FFTs, and performance issues

RUNTIME scheduling, FFTs and performance issues

Link to example source.

This example illustrates the usage of RUNTIME scheduling. It also shows the effects of different chunk sizes on static scheduling. It al'so
discusses some issues associated with OpenM P performance, that is, they way a program is compiled can effect run times. In particular,
it shows that compiling with the OpenM P compiler (when not absolutely required) can hurt performance. These illustrations are donein
the context of a kernel style program. That is, the example program performs the type of calculationsthat are donein a"real" program
but it does not contain all of the details of the original program.

This exampleisthe kernel of an optical propagation program. It does a series of 2d Fourier transforms, ffts, followed by a multiplication.
It is modeled after the AFWL program HEL P or High Energy Laser Propagation. It does the 2d fft by first doing a collection of 1d ffts,
one for each column of data, then atranspose, followed by a second collection of 1d ffts. After the 2d fft is performed the resulting array
Ismultiplied by a scaling factor.

The outline of our programis

For a matrix "a" size of "size"

do n=1, 20
do a collection of "size" 1d ffts on a colum of "a"
do a matri x transpose
do a collection of "size" 1d ffts on a colum of "a"

multiply "a" by sone factor
enddo

Each of the operations shown above is timed. We sum and report the times.

The timing routine used in this program, ccm_time, returns values with a precision of milliseconds. It returnstime is seconds from the
beginning of the year in which the program was started. The routine is portable across Fortran 90. It was written as part of the software
delivered under High Performance Computing Moder nization Program, Task Number: CE 019, Title: SPMD Collective Communication

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (1 of 16) [6/11/2003 9:33:39 AM]

RUNTIME scheduling, FFTs, and performance issues

Module.
Parallelism is obtained by applying OpenMP directives to the outer do loops.

For the FFTs we use the routine fourl. Fourl does a fft on a column of data. We call fourl in ado loop, with each iteration calling fourl
on adifferent column of data. The ffts for each column are independent so we can do them in parallel. Thus we use the, PARALLEL DO,
directive with, SCHEDULE (RUNTIME) clause.

' $OMP PARALLEL DO SCHEDULE (RUNTI ME)
do i =1, si ze
call fourl(a(:,i),size,isign)
enddo

When the SCHEDULE (RUNTIME) clause is used the actual scheduling for the loop is determined by the setting of the environment
variable OMP_SCHEDULE. For example, run the loop using STATIC,64 scheduling we would do a:

set env OVP_SCHEDULE " STATI C, 64"
before the program is run.
We have asimilar OpenMP directive for the transpose operation.

 $OVP PARALLEL DO SCHEDULE (RUNTI ME) PRI VATE(i, |, k,tnp)
do k=1, si ze

i =k

do j =i, size
tmp=a(i,|)
a(i,j)=a(j,i)
a(j,i)=tnp

enddo

enddo

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (2 of 16) [6/11/2003 9:33:39 AM]

RUNTIME scheduling, FFTs, and performance issues

In the code, we next have a second do loop in which we call fourl.
Finally, we have a OpenMP directive for the multiplication operation.

' $OVP PARALLEL DO SCHEDULE (RUNTI ME)
do j =1, si ze
do i =1, size
a(i,j)=factor*a(i,])
enddo
enddo

The routines fourl was taken from the book "Numerical Recipesin Fortran, 1st addition.” However, the authors of that book derived
their routine from the routine, fourn, that was in the AFWL program HELP. The original routine, fourn, contained many additional
options. The algorithm in fourl is a subset of the algorithm in fourn, down to the variable names.

Disclaimer:
For a production code you would most likely use a vendor supplied library to do the fft instead of a hand written one.

The program was run on three different machines, one "old" machine and two preproduction machines. One of the new machines had
only 2 shared memory processors so it was run using 2 threads. The other machines were run using up to 8 threads.

The program was compiled as a serial application called "one" and as a OpenMP application called "two". It was then run using a script
similar to:

#! / bi n/ csh

./ one

setenv OVP_NUM THREADS 2

set env OWP_SCHEDULE " STATI C, 2"

echo $OVP_NUM THREADS" " $OWP_SCHEDULE
./ two

set env OWP_SCHEDULE " STATI C, 4"

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (3 of 16) [6/11/2003 9:33:39 AM]

RUNTIME scheduling, FFTs, and performance issues

echo $OVP_NUM THREADS" " $OWP_SCHEDULE
./ two

set env OVWP_SCHEDULE " STATI C, 8"

echo $OVP_NUM THREADS" " $OWP_SCHEDULE
./ two

set env OVP_SCHEDULE " STATI C, 16"

echo $OVP_NUM THREADS" " $OWP_SCHEDULE
./ two

set env OVP_SCHEDULE " STATI C, 32"

echo $OVP_NUM THREADS" " $OWP_SCHEDULE
./ two

set env OVWP_SCHEDULE " STATI C, 63"

echo $OVP_NUM THREADS" " $OWP_SCHEDULE
./ two

set env OVP_SCHEDULE " STATI C, 64"

echo $OVP_NUM THREADS" " $OWP_SCHEDULE
./ two

The output from a single run was similar to the following:

4 STATIC, 32
(0. 9882567199 , 0. 000000000)
1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
(0. 9882567199 , 0. 2382016198E- 14)
nunber of transforns 20
fftl tine= 0. 7480
transpose tine= 0. 5350
fft2 tine= 0. 7450
scaling tine= 0. 0930
total tine = 2.1210 for matrix of size 1024

THREADS = 4

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (4 of 16) [6/11/2003 9:33:39 AM]

RUNTIME scheduling, FFTs, and performance issues

The numbers in parentheses

(0. 9882567199 , 0. 000000000)
and
(0. 9882567199 , 0. 2382016198E- 14)

are thefirst element, a complex number, of the input array and the same element after the calculation is completed. The scaling parameter
IS set so that these two numbers should be the same.

We report the total number of 2d transforms, the total time spent in the first loop calling fourl, the time spent in the loop performing the
transpose, the second fft time, and the time spent in the scaling loop.

The timings for the three machines are reported below with comments following.

Timings for the optics kernel
Machine A

OpenMP
parameters

Threads Scheduling fft 1 |transpose |fft 2 |scaling [total
SERIAL 8.291 1.898 8.294 0.160 18.643
STATIC,2 4.463 2.319 |4.495| 0.182 11.459
2 STATIC,4 4.453 1.659 4.452 0.161 10.725

TIMES

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (5 of 16) [6/11/2003 9:33:39 AM]

RUNTIME scheduling, FFTs, and performance issues

2
2
2
2
2
2

STATIC,8 |4.451
STATIC,16 4.451
STATIC,32 |4.455
STATIC,63 4.517
STATIC,64 4.452

STATIC,1024 8.870

1.599 4.449
1.193 4.446
1.123 4.443
1.339 4.512
1.294 |4.454
1.902 8.863

0.154 110.653
0.145 10.235
0.143 |10.164
0.144 /110.512
0.141 |10.341
0.160 |19.795

Timings for the optics kernel
Machine B

OpenMP
parameters

Threads | Scheduling

1

TIMES

fft 1
SERIAL 6.706

3.141 6.690

transpose |fft 2 |scaling |total

0.595 |17.132

2
2
2
2
2

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (6 of 16) [6/11/2003 9:33:39 AM]

STATIC,2 |4.177
STATIC,4 4.068
STATIC,8 |4.076
STATIC,16 4.065
STATIC,32 |4.062

5.270 |4.219
2.564 4.252
2.551 4.203
2.150 4.159
2.016 4.163

0.234 113.900
0.226 11.110
0.230 |11.060
0.221 10.595
0.220 |10.461

RUNTIME scheduling, FFTs, and performance issues

2 STATIC,63 4.152 1.560 4.191 & 0.222 10.125
2| STATIC,64 4.067 1.998 4.145| 0.228 |10.438
2 STATIC,1024 8.432 3.266 8.412 0.591 20.701
I N B
4 STATIC4 |1.974 2452 2158 0.080 6.664
4 STATIC,8 |1.944 1.32712.120| 0.078 5.469
4| STATIC,16 1.974 1.175 2.108 0.076 | 5.333
4| STATIC,32 1.969 1.158 |2.108 | 0.076 | 5.311
4| STATIC,63 2.049 1.215 2170 | 0.081 5.515
4| STATIC,64 1.952 1.254 12.122 | 0.082 | 5.410
4 |STATIC,1024 8.427 3.302 8.393 0.573 20.695
_
6 STATIC,4 1.330 1.642 1.467 0.067 4.506
6 STATIC,8 |1.351 0.969 |1.508 | 0.079 | 3.907
6| STATIC,16 1.343 0.819 |1.468 0.060 3.690
6| STATIC,32|1.479 0.821 |1.608 | 0.069 | 3.977
6 STATIC,63 1.502 0.977 1.613 | 0.065| 4.157
6| STATIC,64|1.447 0.960 |1.612 | 0.054 | 4.073
6 STATIC,1024 8.433 3.236 8.409 0.577 20.655

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (7 of 16) [6/11/2003 9:33:39 AM]

RUNTIME scheduling, FFTs, and performance issues

STATIC,2 |1.042 1439 11.184| 0.056 3.721
STATIC,4 0.996 1.251 1124 0.050 3.421
STATIC,8 |1.010 0.8651.128 | 0.055| 3.058
STATIC,16 0.971 0.669 1.078 0.031 2.749
STATIC,32 |0.973 0.7171.108 | 0.042 2.840
STATIC,63 1.065 0.858 1.177 0.057 3.157
STATIC,64 |0.985 0.832 11.133| 0.057| 3.007
STATIC,1024 8.440 3.220 8.403 | 0.579 20.642

cO| 00| OO 0O CO| 0O| 0O| 0

Timings for the optics kernel
Machine C

OpenMP
parameters

Threads Scheduling fft 1 |transpose |fft 2 |scaling [total
SERIAL 2.576 1.817 2585 0.334 7.312

STATIC,2 |11.536 1.087 11.532 | 0.169 4.324

2 STATIC,4 1.508 1.290 1.518 0.160 4.476

2 STATIC,8 |1.498 1.015 /1504 | 0.157 |4.174

TIMES

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (8 of 16) [6/11/2003 9:33:40 AM]

RUNTIME scheduling, FFTs, and performance issues

2
2
2
2
2

STATIC,16 1.504
STATIC,32 |1.504
STATIC,63 1.531
STATIC,64 1.507

STATIC,1024 | 2.995

0.962 |1.509
0.999 |1.503
1.009 1.529
1.042 |1.504
1.826 2.991

0.152 4.127
0.159 |4.165
0.167 4.236
0.156 |4.209
0.292 8.104

4
4
4
4
4
4
4
4

STATIC,2 |0.769
STATIC,4 0.760
STATIC,8 |0.793
STATIC,16 0.784
STATIC,32 |0.758
STATIC,63 0.784
STATIC,64 0.751

STATIC,1024 3.048

0.810 |0.779
0.650 0.760
0.621 |0.751
0.587 |0.759
0.532 |0.789
0.633 0.794
0.602 |0.743
1.936 3.031

0.096 |2.454
0.090 2.260
0.089 |2.254
0.103 2.233
0.090 |2.169
0.082 2.293
0.085 |2.181
0.353 8.368

6
6
6
6
6
6
6

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (9 of 16) [6/11/2003 9:33:40 AM]

STATIC,2 0.640
STATIC,4 0.607
STATIC,8 |0.552
STATIC,16 0.619
STATIC,32 |0.612
STATIC,63 0.641
STATIC,64 |0.634

0.518 |0.542
0.481 0.505
0.532 |0.573
0.424 0.631
0.428 0.678
0.549 /0.623
0.541 |0.652

0.156 |1.856
0.114 1.707
0.159 |1.816
0.104 |1.77/8
0.148 |1.866
0.100 |1.913
0.095 |1.922

RUNTIME scheduling, FFTs, and performance issues

6 STATIC,1024 3.066 1.844 3.036 0.353 8.299

I N N
STATIC,4 0.524 0414 0491 0.142 1571
STATIC,8 |0.539 0.380 |0.465| 0.114 1.498
STATIC,16 0.450 0.335 /0457 0.090 1.332
STATIC,32 |0.460 0.350 0.422 | 0.082|1.314
STATIC,63 0.536 0.519 0.483 | 0.156 |1.694
STATIC,64 |0.547 0.478 |0.525 | 0.118 |1.668
STATIC,1024 3.069 1.936 3.080 0.375 8.460

| 00| 0O 00| 0O 00| 00| 0

OMP_SCHEDULE does effect timing

We first note that setting the environment variable OMP_SCHEDUL E does effect timing for this program. That is, RUNTIME
scheduling does work.

Changing scheduling has the biggest effect on the transpose, particularly for machines A and B. For these, the biggest change in the
runtime is from the time spent in the transpose.

Not all changes in timing are from OpenMP overhead

Consider machine, A, where the time for the transpose with STATIC,2 scheduling is 2.319 seconds and 1.659 seconds for STATIC,4.
The OpenMP microkernel benchmark was run on machine A. We find from that benchmark that the overhead associated with using
STATIC,2 scheduling is 2.05 microseconds and STATIC,4 is 1.67 microseconds. The difference in overhead is insufficient to explain the
differencesin this program. It is possible that the poorer performance for the STATIC,2 case is from cache conflicts . The data being
accessed by two threads might be on the same cache line. For larger chunk sizes we might be seeing better performance because the two

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.ntml (10 of 16) [6/11/2003 9:33:40 AM]

RUNTIME scheduling, FFTs, and performance issues

processors are able to access the data on different cache lines.

OpenMP can decrease performance

For machines A and B the runtime of the transpose operation is actually longer using STATIC,2 scheduling than when the loop is run
using asingle thread. There are some loops, on some machines, with some scheduling algorithms that will run slower. Sometimesthisis
from cache conflicts as discussed above. For some of the first OpenM P compilers the slow down on some loops was dramatic. The slow
down exceeded what was cause by cache conflict. It was from the compiler just generating bad code. Fortunately the instances of
compliers generating bad code has decrease with newer compilers but it still does happen.

Running with a chunk size of 1024 exposes a compiler problem

The outer loops in this program have counts of 1024. So why run with a chunk size of 1024 when thisforces al of the computation to run
using asingle thread?

This exposes additional overhead that is introduced by the OpenMP compiler. For machine B we have a serial runtime of 17.132
seconds. With a chunk size of 1024 the runtime is 20.701 seconds or about 3.5 seconds more. Most of the extratimeisin the doing the
loops that contains the routine fourl. There should not be any significant synchronization associated with this loop. The other possibility
Is that turning on OpenM P effects the efficiency of the code generated for the routine fourl. To test this, the program was recompiled and
rerun. The routine fourl was split out into its own file and compiled with OpenMP turned off. The rest of the program was compiled with
OpenMP turned on and then linked with fourl. The difference in results is dramatic. The runtime for the case where chunk size was 1024
dropped from 20.701 seconds to 17.623 seconds, over 3 seconds. All of the reduction was seen in the loop that performed the fft. All of
the cases showed speed up in fourl when the routine was compiled with OpenMP turned off. For one instance, 2 threads; STATIC,4, the
transpose took longer. See the new results for machines B and C below.

Apparently, some optimizations for the routine fourl were not performed when OpenM P was turned on. There is no reason, from the
standpoint of the language definition, that this should occur. As compilers mature this type of anomalous behavior should diminish.

Why 637

One of the first machines that this program was run on was a Cray T90. The Cray T90 memory system did not do as well when multiple

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.ntml (11 of 16) [6/11/2003 9:33:40 AM]

RUNTIME scheduling, FFTs, and performance issues

processors tried to access data that was offset in memory by certain strides. This was well documented and it was recommended that
program writers avoid such simultaneous memory access. When this program was run with a chunk size of 64 the memory access
recommendation was violated. When run with a chunk size of 63 the performance was much better. The Cray T90 is not in wide use
today. However this example isincluded to point out again that OpenM P performance can be effected by the memory subsystem of a
machine.

Advice

Check the runtime of your loops. Check that your loops actually show speed up. If they don't show speed up it could be because of
memory conflicts. It pays to know the cache and memory subsystem of your machine. Y ou may want to use RUNTIME scheduling. Y ou
can then try different scheduling algorithms without recompiling your program. For some machines you may even be able to change the
scheduling on the fly by changing the environment variable while the program is running. (Some machines have library calls that allow
system callsto do such things.) For important subroutines, try compiling them separately with OpenMP turned off. This may lead to
additional optimizations being performed.

Timings for the optics kernel
Machine B
Routine fourl compiled separately.

OpenMP
parameters

TIMES
Threads Scheduling fft 1 |transpose |fft 2 |scaling [total
SERIAL 6.705 3.107 6.694 0.589 |17.095

STATIC,2 |3.378 5.341 3.529 | 0.251 (12.499
2 STATIC,4 3.355 4.353 3.47/8| 0.242 11.428

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.ntml (12 of 16) [6/11/2003 9:33:40 AM]

RUNTIME scheduling, FFTs, and performance issues

2
2
2
2
2
2

STATIC,8 |3.365
STATIC,16 3.377
STATIC,32 | 3.330
STATIC,63 |3.378
STATIC,64 | 3.332

STATIC,1024 6.986

2.513 | 3.477
2.160 3.483
1.999 3.417
1.939 3.450
1.936 | 3.409
3.113 6.938

0.245
0.248
0.221
0.230
0.220
0.586

9.600
9.268
8.967
8.997
8.897
17.623

4
4
4
4
4
4
4
4

STATIC,2 |1.623
STATIC,4 1.597
STATIC,8 |1.585
STATIC,16 |1.582
STATIC,32 |1.576
STATIC,63 1.672
STATIC,64 |1.614

STATIC,1024 6.972

2514 |1.781
2454 1.783
1.310 |1.754
1.155 1.745
1.160 1.738
1.192 1.791
1.226 1.775
3.178 |6.938

0.098
0.103
0.074
0.089
0.074
0.093
0.090
0.585

6.016
5.937
4.723
4571
4.548
4.748
4.705
17.673

6
6
6
6
6
6

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (13 of 16) [6/11/2003 9:33:40 AM]

STATIC,2 |1.143
STATIC,4 1.085
STATIC,8 |1.125
STATIC,16 1.106
STATIC,32 |1.178
STATIC,63 1.207

1.982 1.235
1.881 1.228
0.835 |1.254
0.827 1.210
0.852 |1.316
0.971 |11.333

0.079
0.065
0.047
0.057
0.063
0.080

4.439
4.259
3.261
3.200
3.409
3.591

RUNTIME scheduling, FFTs, and performance issues

6| STATIC,64 1.197 0947 11.341| 0.069| 3.554
6 STATIC,1024 6.960 3.272 6.925 0.579 17.736
I N B
8 STATIC,4 0.801 1.389 0.908 0.046 3.144
8 STATIC,8 0.803 0.634 10913 | 0.054 | 2.404
8 STATIC,16 0.786 0.653 0912 0.041 2.392
8| STATIC,32|0.890 0.741/0.970 | 0.058 | 2.659
8 STATIC,63 0.876 0.825 10937 0.043 2.681
8 STATIC,64 |0.804 0.848 |0.967 | 0.049 | 2.668
8 |STATIC,1024 6.975 3.207 6.946 0.590 17.718

Timings for the optics kernel
Machine C
Routine fourl compiled separately.

OpenMP
parameters

Threads |[Scheduling |fft 1 |transpose |fft 2 |scaling |total
1 SERIAL 2.577 1.900 2.581 0.337 7.395

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.ntml (14 of 16) [6/11/2003 9:33:40 AM]

TIMES

RUNTIME scheduling, FFTs, and performance issues

NI NN N DN DN NN

STATIC,2 11.329
STATIC,4 1.318
STATIC,8 |1.298
STATIC,16 |1.293
STATIC,32 | 1.306
STATIC,63 1.317
STATIC,64 1.309
STATIC,1024 | 2.602

1.372 11.338
1.287 1.327
1.098 1.308
1.144 1.298
0.973 |1.307
1.033 1.317
1.052 | 1.306
1.856 2.606

0.162 |4.201
0.157 4.089
0.156 |3.860
0.157 |3.892
0.159 |3.745
0.156 3.823
0.160 |3.827
0.297 7.361

4
4
4
4
4
4
4
4

STATIC,2 |0.662
STATIC,4 0.659
STATIC,8 |0.674
STATIC,16 0.658
STATIC,32 |0.672
STATIC,63 0.740
STATIC,64 |0.668
STATIC,1024 2.611

0.738 |0.673
0.714 0.680
0.633 |0.657
0.607 |0.653
0.523 |0.663
0.621 |0.673
0.625 |0.665
1.877 |2.576

0.092 |2.165
0.095 2.148
0.093 |2.057
0.090 2.008
0.095 |1.953
0.094 2.128
0.092 |2.050
0.314 7.378

6
6
6
6

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.html (15 of 16) [6/11/2003 9:33:40 AM]

STATIC,2 |0.516
STATIC,4 0.506
STATIC,8 |0.552
STATIC,16 0.470

0.634 10.479
0.541 0.521
0.461 0.486
0.441 0.561

0.162 1.791
0.129 1.697
0.147 |1.646
0.101 |1.573

RUNTIME scheduling, FFTs, and performance issues

6| STATIC,32 0571 0.491 0.541| 0.178 |1.781

6 STATIC,63 0.504 0.523 0.520 0.097 1.644

6| STATIC,64 0.505 0.562 10.546 | 0.070 |1.683

6 STATIC,1024 2.598 1.825 2.603 0.381 7.407

1 |

STATIC,4 0.425 0.454 0450 0.230 1.559
STATIC,8 |0.404 0.392 |0.470 | 0.066 |1.332
STATIC,16 0.505 0.363 0.427 | 0.083 1.378
STATIC,32 |0.409 0.360 |0.382 | 0.066 |1.217
STATIC,63 0.392 0.488 0.394 | 0.134 |1.408
STATIC,64 |0.394 0.468 |0.414 0.051 |1.327
STATIC,1024 2.642 1.894 2.643 0.303 |7.482

| 00| 0O 00| 0O 00| 0| 0

http://coherentcognition.com/projects/port/articles/openmp/guide/fft.ntml (16 of 16) [6/11/2003 9:33:40 AM]

http://coherentcognition.com/projects/port/arti cles/openmp/guide/omp_fft.f90

'this programis the kernel for an optical propagation program
it does a series of 2d ffts followed by a nmultiplication

'it is nodeled after the AFW. program HELP or Hi gh Energy

I Laser Propagati on.

|

'it does the 2d fft by first doing a collection of 1d ffts
'then a transpose foll owed by a second collection of 1d ffts.

|

'the sections of the programthat are commented out represent
Idifferent ways of doing the operations. the nost interesting
laddition is using the using the subroutine shuff to generate
'a nonuni formordering for accessing the array.

I'the routines fourl was taken fromthe book

'"nurerical recipes in fortran, 1st addition."

'however, the authors of that book derived their routine
!fromthe routine fourn that was in the AFW program HELP
'the original routine, fourn, contained many additiona
loptions

I'disclainer: for a production code you woul d nost likely
luse a vendor supplied library to do the fft instead of a
'hand written one.

nmodul e ccm nune
! basic real types
i nteger, paranmeter:: b8 = selected real kind(10)
cont ai ns
function ccmtine()
inmplicit none

i nteger i

integer :: ccmstart _time(8) = (/(-100,i=1,8)/)
real (b8) :: ccmtime,tnp

i nteger,paraneter :: norm(13)=(/ &

0, 2678400, 5097600, 7776000, 10368000, 13046400, &
15638400, 18316800, 20995200, 23587200, 26265600, 28857600, 31536000/)
i nteger, paraneter :: leap(13)=(/ &

0, 2678400, 5184000, 7862400, 10454400, 13132800, &
15724800, 18403200, 21081600, 23673600, 26352000, 28944000, 31622400/
integer :: values(8),msec
save
call date_and tine(val ues=val ues)

i f(nod(val ues(1),4) .eq. 0)then
mel eap(val ues(2))

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90 (1 of 6) [6/11/2003 9:33:41 AM]

http://coherentcognition.com/projects/port/arti cles/openmp/guide/omp_fft.f90

el se
m=nor m(val ues(2))
endi f
sec=((val ues(3)*24+val ues(5))*60+val ues(6))*60+val ues(7)
t mp=r eal (m b8) +real (sec, b8) +real (val ues(8), b8)/1000.0_h8
'wite(*,*)"vals ", val ues
if(values(1l) .ne. ccmstart tine(l))then
if(mod(ccmstart _tinme(l),4) .eq. 0)then
t mp=t np+real (|1 eap(13), b8)
el se
t mp=t np+r eal (norm(13), b8)
endi f
endi f
ccmtine=tnp
end function
end nodul e ccm nune

programtwo_d fft
use ccm.nune
inmplicit none
! i nteger size
i nteger, paraneter:: size=1024
! i nt eger onp_get _max_t hreads
integer i,j,k,ijk,isign,iseed
real (b8),allocatable:: x(:)
integer, allocatable:: index(:)
compl ex(b8), allocatable:: a(:,:)
! compl ex(b8) :: a(size,size)
! compl ex(b8), allocatable:: tenp(:)
compl ex(b8) tmp
compl ex(b8) factor
real (b8) gen,fftl,fft2,trans,totf,fact
real (b8) t0,t1,t2,t3,t4,t5
i nt eger OWP_GET_MAX_ THREADS
interface
subrouti ne shuff (i ndex, mn)
di mensi on i ndex(:)
integer mn
end subroutine
end interface
factor=si ze
factor=1.0_b8/(factor)
i seed=-12345
i sign=1
gen=0
fft1=0

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90 (2 of 6) [6/11/2003 9:33:41 AM]

http://coherentcognition.com/projects/port/arti cles/openmp/guide/omp_fft.f90

fft2=0
trans=0
totf=0
fact=0
read(12, *)si ze
al | ocat e(a(si ze, si ze))
al | ocat e(x(si ze), i ndex(size))
call shuff (index, size, 8)
dummy=ranl(i seed)
wite(*,*)"dummy=", dumry
tO=ccmtine ()
do j =1, size
call random nunber (x)
do i=1,size
a(i,j)=cmpl x(x(i), 0.0 _b8)
enddo
enddo
wite(*," " (("(",920.10,",",020.10,")"))")a(sizel 2+1, si ze- 2)

do 10 ijk=1,20 ! change to 4 to run faster
do 10 ij k=1, 20
tl=ccmtinme ()

1 $OVP PARALLEL DO SCHEDULE (RUNTI ME)

do i =1, size
call fourl(a(:,i),size,isign)
lcall fourl(a(i,:),size,isign)
enddo

! $OVP END PARALLEL DO

t2=ccmtinme ()

I $OMP PARALLEL DO SCHEDULE (RUNTI ME) PRIVATE(i, |, k,tnp)

do k=1, si ze

i =k
i =i ndex(k)
do j=i,size
tmp=a(j, i)
a(j,i)=a(i,j)
a(i,j)=tnp
tmp=a(i,j)
a(i,j)=a(j,i)
a(j,i)=tnp
enddo

] =1

tenmp(j:size)=a(i,]:size)

a(i,j:size)=a(j:size, i)

a(j:size,i)=tenp(j:size)
enddo

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90 (3 of 6) [6/11/2003 9:33:41 AM]

http://coherentcognition.com/projects/port/arti cles/openmp/guide/omp_fft.f90

1 $OMP END PARALLEL DO
t3=ccmtine ()
! $OVP PARALLEL DO SCHEDULE (RUNTI MVE)
do i=1,size
call fourl(a(:,i),size,isign)
lcall fourl(a(i,:),size,isign)
enddo
1 $OMP END PARALLEL DO
td=ccmtinme ()
! $OVP PARALLEL DO SCHEDULE (RUNTI MVE)
do j =1, size
do i=1,size
a(i,j)=factor*a(i,j)
enddo
enddo
1 $OMP END PARALLEL DO
t5=ccmtine ()
gen=gen+t 1-t0
fftl=ffti+t2-t1
fft2=fft2+t4-t3
trans=trans+t 3-t2
totf=totf+t5-t1
fact=fact+t5-t4
i sign=isign*(-1)
wite(*,'(i3)',advance="no")ijk
10 continue
wite(*,*)

wite(*," " (("(",920.10,",",020.10,")"))")a(sizel 2+1, si ze- 2)
wite(*,*)"nunber of transforms",ijk-1
'wite(*,'("generation time=",f7.1)")gen

wite(*,' (" fftl time= ",f9.4)")fftl

wite(*,' (" transpose tine= ",f9.4)"')trans

wite(*,' (" fft2 time= ",f9.4)")fft2

wite(*,"' (" scaling time= ",f9.4)")fact

wite(*,"' (" total tinme = ",f9.4)',advance="no")totf
wite(*,' (" for matrix of size",i6)')size
wite(*,*)"THREADS = ", OWP_GET_MAX_THREADS()

stop

end programtwo_d fft

subroutine fourl(data, nn,isign)

use ccmnune

inmplicit none

integer i,j,isign,nn,n, mmmx,istep

real (b8), parameter :: two_pi = 6.283185307179586477_b8
real (b8) wr,w ,wpr,wi,wenp,theta,tenpr,tenpi

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90 (4 of 6) [6/11/2003 9:33:41 AM]

http://coherentcognition.com/projects/port/arti cles/openmp/guide/omp_fft.f90

real (b8) data(16384)
n=2*nn
j=1
do 11 i=1,n,2
if(j.gt.i)then
tenpr=data(j)
t enpi =dat a(j +1)
data(j)=data(i)
data(j +1) =dat a(i +1)
data(i)=tenpr
dat a(i +1) =t enpi
endi f
men/ 2
1 if ((mge.2).and.(j.gt.n) then
j=i-m
mend 2
go to 1
endi f
j=j+m
11 conti nue
mmax=2
2 if (n.gt.nmmax) then
i st ep=2* mmax
t het a=t wo_pi / (i si gn* max)
wpr=-2.0_b8*sin(0.5 b8*theta)**2
wpi =si n(t het a)
w=1.0 b8
wi =0. 0_b8
do 13 n¥l, mmax, 2
do 12 i=mn,istep
j =i +mmax
tenmpr=(w)*data(j)-(w)*data(j+1)
tenmpi =(w)*data(j+1)+(w)*data(j)
data(j)=data(i)-tenpr
dat a(j +1) =dat a(i +1) -t enpi
data(i)=data(i) +tenpr
dat a(i +1) =dat a(i +1) +t enpi
12 continue
w enp=wr
W =WE X Wor - Wi *wpi +wr
W =W *wpr +wt enp* wpi +wi

13 conti nue
mrax=i st ep
go to 2
endi f
return

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90 (5 of 6) [6/11/2003 9:33:41 AM]

http://coherentcognition.com/projects/port/arti cles/openmp/guide/omp_fft.f90

end

subrouti ne shuff (i ndex, mn)
i nteger tens, ones
di nmensi on index(:)
tens=n
ones=1
j=0
k=1
do while (j <m
j=+1
if(k.gt. mthen
wite(*,*)k, m
st op
endi f
i ndex (k) =j
k=k+t ens
if(k .gt. mthen
ones=ones+1
k=ones
endi f
enddo
end subroutine shuff

http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90 (6 of 6) [6/11/2003 9:33:41 AM]

	coherentcognition.com
	OpenMP Guide
	Collection of links
	Compiler invocation, information and environment variables
	Portability and thread scheduling
	http://coherentcognition.com/projects/port/articles/openmp/guide/ompf.f90
	Effects of schedule types
	http://coherentcognition.com/projects/port/articles/openmp/guide/t5.c
	Parallel Sections
	http://coherentcognition.com/projects/port/articles/openmp/guide/t7.c
	http://coherentcognition.com/projects/port/articles/openmp/guide/t7.f90
	Threadprivate and derived types
	http://coherentcognition.com/projects/port/articles/openmp/guide/t8.c
	Single and operatations on a subsection of an array without using a for loop
	http://coherentcognition.com/projects/port/articles/openmp/guide/t10.c
	http://coherentcognition.com/projects/port/articles/openmp/guide/t10.f90
	Merge Sort, threadprivate with pointers to derived types
	http://coherentcognition.com/projects/port/articles/openmp/guide/sort.f90
	http://coherentcognition.com/projects/port/articles/openmp/guide/fort_sort_source.txt
	Merge Sort, threadprivate with pointers to derived types
	http://coherentcognition.com/projects/port/articles/openmp/guide/sort.c
	http://coherentcognition.com/projects/port/articles/openmp/guide/sortc_source.txt
	Atomic operation to update an array index
	RUNTIME scheduling, FFTs, and performance issues
	http://coherentcognition.com/projects/port/articles/openmp/guide/omp_fft.f90

