
Interactivate Style Guide

Table of Contents
1. Preface
2. Variables
3. Primitives
4. Conditional Statements and Comparison
5. Arrays
6. Objects
7. Functions
8. Brackets and Whitespace
9. Comments

10. Semicolons
11. Commas
12. Naming Conventions
13. Use Strict
14. Linting

Preface
Except for PHP, Javascript is possibly the quirkiest and most annoying language you
will come across. However, if done properly, it can be a joy to write code in. This
guide will help you avoid common pitfalls and keep the puppy and unicorn
fatalities to a minimum.

Compare the folowing two code blocks

General Information
Create at most one global variable per interactivate project. If you feel the
need to use multiple global variables, put them in a namespace.
Be consistent with the existing coding style. If you are maintaining code that

does not follow the style guide, either fix the old style or keep using the old
style. Switching styles in the middle of code can be very confusing to
programmers, causing them to jump up and down, screeching like monkeys.

Variables
ALWAYS declare variables with var the first time they are used. If you do not
do this, the variable will become a global variable and a unicorn will die

//bad. A unicorn just died
function square(x) {
 y = x * x; //throw new UnicornDiedException('You awful person!');
 return y;
}

alert(square(3));
alert(y); // :(

//good. The unicorn is saved
function square(x) {
 var y = x * x;
 return y;
}

alert(square(3));
alert(y); //y is not defined

Put all variable declarations at the top of a file or function. They can either be
in the same command or different ones. If you put them in one statement,
each new variables goes in its own line.

 //bad
 for(var i = 0; i < 10; i++) {
 //do some code
 }

 var num = 4;

 for(var j = 0; j < 10; j++) {
 //do some more code
 }

 //good, multiple var statements

 var num = 4;
 var i;
 var j;

 for(i = 0; i < 10; i++) { //no var
 //some code
 }

 for(j = 0; j < 10; j++) {
 //more code
 }

 //good, single var statement

 var num = 4,
 i,
 j;

 for(i = 0; i < 10; i++) { //no var
 //some code
 }

 for(j = 0; j < 10; j++) {
 //more code
 }

Primitives
In Javascript the primitive types are:

string
number
boolean

When you assign values to these, use the literal values

//bad
var num = new Number(3);
console.log(num); // => Number {}
var bool = new Boolean(true);
console.log(bool); // => Boolean {}
var str = new String("Hello, World");
console.log(str); // => String {0: "H", 1: "e", 2: "l", 3: "l", 4: "o", 5: ","
, 6: " ", 7: "W", 8: "o", 9: "r", 10: "l", 11: "d", length: 12}
//Clearly, these are exactly what you wanted.

//good
var num = 3;
console.log(num); // => 3
var bool = true;

console.log(bool); // => true
var str = "Hello, World";
console.log(str); // => "Hello, World"

Conditional Statements and
Comparison

When you are comparing two values, unless one of the values is null ,
ALWAYS use === instead of == . If you use === , it can lead to some very odd
results. === checks if both the type and the value are the same, == only
checks the value

//BAD CODE.
'\r\n\t' == 0; // true. \r\n\t is a newline and a tab.
'' == '0'; // false
0 == '' // true
0 == '0' // true. What happened to the transitive property?

//GOOD CODE.

'\r\n\t' === 0 // false
'' === 0 // false
0 === '' // false
0 === '0' // false

Those are only some of a few examples of pitfalls of using == . Use === and
you will be fine
Use shortcuts in your if statements.
To test if a value is true or false, use if(value) and if(!value)

//bad
if(bool === true) {
 //do something if bool is true;
}
if(bool === false) {
 //do something if bool is false
}

//good

if(bool) {
 //do something if true
}

if(!bool) {
 //do something if false

}

To check if a variable exists, use if(variable) . This is often used to provide
built-in functions in old browsers that don’t support them

//bad
if (typeof variable === 'undefined') {
 //define variable here
}

//good

if(variable) {
 //define variable here
}

Arrays
Similarly to primitives, use the literal [] instead of new Array

//bad
var array = new Array('Apple', 'Banana', 'Orange');

//good
var array = ['Apple', 'Banana', 'Orange'];

To check equality in arrays, iterate through the array and check if the values
are the same

//bad
var arr1 = [1, 2, 3, 4];
var arr2 = [1, 2, 3, 4];

arr1 == arr2; // false
arr1 === arr2; // false

//good

function arrayEquals(array1, array2) {
 var i;

 if(array1.length !== array2.length) {
 return false;
 }

 for(i = 0; i < array1.length; i++) {

 if(array1[i] !== array2[i]) {
 return false;
 }
 }

 return true;
}

arrayEquals([1, 2, 3, 4], [1, 2, 3, 4]); //true. Note that if you have objects
or arrays inside the array, you might need to make a deep equals

All arrays should contain the same type. If you feel the need to use strings
and numbers or any other combination of types in the same array, your code
can probably be refactored to fix it.

To iterate through the array, use a regular for loop instead of a for .. in
loop. This will save you lots of trouble if some elements of the array are
undefined

//bad
var array = [1, 2, 3, 4, 5];
for(var i in array) {
 print(array[i]);
}

//good

var array = [1, 2, 3, 4, 5];
for(var i = 0; i < array.length; i++) {
 console.log(array[i]);
}

Objects
Use the literal {} instead of the new Object() constructor.

//bad
var obj = new Object();
obj.prop1 = 'Hi';
obj.prop2 = 'Bye';

//good
var obj = {
 prop1: 'Hi',
 prop2: 'Bye'
};

Use dot notation(obj.propertyName) for accessing array members when you
know the property name.

//bad

var obj = {
 prop1: 'Hi',
 prop2: 'Bye'
};

alert(obj['prop1']);

//good

var obj = {
 prop1: 'Hi',
 prop2: 'Bye'
};

alert(obj.prop1);

Use bracket notation(obj['propertyName']) for when you don’t know the
property name or when the property name is stored in a variable

//bad.
var obj = {
 prop1: 'Hi',
 prop2: 'Bye'
};
var propName = 'prop1';

var property = eval('obj.' + propName); //Doing this is an awful idea. Don't d
o this. This is bad. This is evil. Never do this. This is awful. h̵̕is unh̨o͞ly
radiańcé destro�ying all enlı̈́̍̂̈́ghtenment, evals lea͠ki̧n͘g fr̶om̨ ̡you͟r eye͢s̸ ̛l̕ik͏e l
iquid pain, the song of eval parsing will extinguish the voices of mortal man
from the sphere I can see it can you see ͚̲�̖ı̙́̂t̩̲͎̩̱̀̋́� it is beautiful the final snuff
ing of the lies of Man ALL IS LOS̈́̏́�̩͇̗̪T ALL IS LOST the pon̷y he comes he c̶o̮mes he
comes the ichor permeates all MY FACE MY FACE ᵒh god no NO NOO̼OO NΘ stop the a
n*̶͑̾̾�͏̙̤̅g�͆�͇̾̑͆l̫̍����͉̗̳̩e̟̠̅s ͎a̧͈�r͑͒̈́̾̽e not rè̑�ǎ�l̃�̙̝̘͂̾̆ ZA̡͊͠L͝GΌ IS��̂�̯�̹̱̘ TO͇̹̺ͅƝ̴ȳ̳ TH̘Ë́�̉ ͠P͍̯O̭̚N̐Y̡ H�̸̡̪̯͊̽̎̾̅E̾��̧̈́̀́͘*̬ ��̶̧̨̯̭̹̱̾
C��̏�̷̙̲͟�̝O�͏̮̝̪͍M͊̒̚

�
�
�

. If you̲̚͜Ȇ̖�͌ ̴͝ ̟̟͙S̞�̨̥̫͎̭̿̔̀ͅ

//good code

var obj = {
 prop1: 'Hi',
 prop2: 'Bye'
};
var propName = 'prop1';
return obj[propName];

Make sure to use hasOwnProperty(prop) when using a for...in loop. This
makes sure to check that the property is of that object and that object only
and not inherited from a superclass

//bad
var obj = {
 a: 1,
 b: 2
};

for(var prop in obj) {
 console.log(prop + ": " + obj[prop]);
}

//good
var obj = {
 a: 1,
 b: 2
};

for(var prop in obj) {
 if(obj.hasOwnProperty(prop)) {
 console.log(prop + ": " + obj[prop]);
 }
}

Functions
Functions inside functions must be declared with var fn = function() {}

//bad

function outer() {
 function inner() { //is not cross-browser
 console.log('hi');
 }
 inner();
}

//good

function outer() {
 var inner = function() {
 console.log('hi');
 }
}

When you want to specify default parameters, use the following syntax

function power(base, exponent) {
 var defaultBase = 2;
 var defaultExponent = 3;

 //if the parameters are undefined, set it to the default
 base = typeof base !== 'undefined' ? base : defaultBase;
 exponent = typeof exponent !== 'undefined' ? exponent: defaultExponent;

 return Math.pow(base, exponent);
}
power(); // 8
power(3, 4); // 81
power(3); // 3

Brackets and Whitespace
Use 4 spaces or tabs. Tabs will be converted to 4 spaces upon build.
Curly braces go on the same line as the statement, separated by one space

//bad
function fn(x){
var i;
for(i = 0; i < 10; i++){
console.log(i);
}
}

//worse
function fn(x)
{
var i;
for(i = 0; i < 10; i++)
{
console.log(i);
}
}

//good

function fn(x) {
 var i;
 for(i = 0; i < 10; i++) {
 console.log(i);
 }
}

Always use braces, even when they are not necessary

//bad
var i;
for(i = 0; i < 10; i++)
 console.log(i); //what happens when you add another line to this?

//good
var i;
for(i = 0; i < 10; i++) {
 console.log(i);
}

Place a space between binary operators and operands, but not between
unary operators and operands

//bad
var a=1;
var b=2;
console.log(a+b);
console.log(a ++);

//good
var a = 1;
var b = 2;
console.log(a + b);
console.log(a++);

End all files with newlines. You must do this because files get added to each
other and without that newline syntax errors could arise

Comments
Comments are necessary in code to provide information for the IDE, other
developers, and future you. I have written code that I completely understand
but didn’t document, and I came back to it six months later. I had absolutely
no clue what things did because I did not provide proper documentation.
Write your code primarily for other people to read, and secondarily for a
computer to read.
A good general guideline is that the code explains the how, and comments
explain the why. If you feel that you need to use comments to explain how
something works, in most cases it is better to refactor the code to make it
more readable.

//bad

function calculatePressure(v, n, t) {
 var r = 0.082;
 return r * n * t / v;
}

//This is valid code, but if you don't already know the formula, it is nearly
impossible to understand. Compare it to the following code

//good

//calculate pressure according to the ideal gas law pressure * volume = moles
* gas constant * temperature or PV = nRT
function calculatePressure(volume, moles, temperature) {
 var gasConstant = 0.082;
 return moles * gasConstant * temperature / volume;
}

//In the above example the code explains what it is doing, and the comments ex
plain why it works and why we are using it

JSDoc is a way to provide API documentation. It is used to generate a
webpage giving an outline of the code with descriptions and parameter lists
of functions and the like. ALL PUBLIC METHODS AND VARIABLES MUST BE
DOCUMENTED WITH JSDOC. Learn how to provide JSDoc documentation at
http://usejsdoc.org/. Consider the example of calculating pressure with JSDoc

/**
* Calculate the pressure of a function according to the ideal gas law pressure
* volume = moles * gas constant * temperature or PV = nRT
*
* @param {Number} volume The volume in liters
* @param {Number} amount The amount of gas in moles
* @param {Number} temperature The temperature in Kelvin
*
* @returns {Number} The pressure in atmospheres
*/

function calculatePressure(volume, moles, temperature) {
 var gasConstant = 0.082;
 return moles * gasConstant * temperature / volume;
}

The JSDoc generated from the above code might look like

http://usejsdoc.org/

Semicolons
Every time you don’t use a semicolon, a cute little puppy is bludgeoned to
death with a giant semicolon. Save the puppies.

Commas
For declaring multiple variables, objects, and arrays, the comma goes on the
previous line.

//bad
var person = {
 firstName: 'Bob'
 , lastName: 'Joe'
};

//good

var i = 0,
 j = 3,

 k = 4;

var person = {
 firstName: 'Bob',
 lastName: 'Joe'
};

Commas preceding other code are separated by one space

//bad
function(param1,param2,param3) {
 //do some stuff
}

//good
function(param1, param2, param3) {
 //do some stuff
}

Naming Conventions
Be descriptive with your variable and function names, and avoid single
character names
use camelCase when naming functions, objects, instances, and regular
variables
use PascalCase when naming classes and constructors
use ALL_CAPS_WITH_UNDERSCORES when naming constants
put an underscore before private members in a class

//good
function Person(name) {

 //private variables prefixed by an underscore, but they aren't really priv
ate
 this._name = name;
}

Person.prototype.sayHi = function() {
 alert('Hi, my name is ' + this._name);
}
var person = new Person('Alice');
person.sayHi(); //alerts 'Hi, my name is Alice';

Use Strict
Putting 'use strict'; at the top of a Javascript function before any other
commands are run sets the function into strict mode. This means that some
unexpected behaviors which would fail silently now thrash around and throw
an error and actually tell you what is going on. You must put this at the top of
every global function, like this

//good
function strict() {
 'use strict';
 //some strict code here
}

Linting
All your code must pass the JSHint code quality test without any warnings or
errors. These tests are run automatically whenever you save a file or build.

The excellent zalgo text taken from bobince

http://stackoverflow.com/a/1732454/2027567

	Interactivate Style Guide
	Table of Contents
	Preface
	General Information
	Variables
	Primitives
	Conditional Statements and Comparison
	Arrays
	Objects
	Functions
	Brackets and Whitespace
	Comments
	Semicolons
	Commas
	Naming Conventions
	Use Strict
	Linting
	The excellent zalgo text taken from bobince

