Interactivate


Aligned Resources


Shodor > Interactivate > Standards > North Carolina Standard Course of Study: Discrete Mathematics > Aligned Resources

North Carolina Standard Course of Study
Discrete Mathematics
Algebra:
Competency Goal 3: The learner will describe and use recursively-defined relationships to solve problems.
Calculating...
Lesson  (...)
Lesson: Introduces students to arithmetic and geometric sequences. Students explore further through producing sequences by varying the starting number, multiplier, and add-on.

Lesson: Introduces students to the ideas involved in understanding fractals.

Activity  (...)
Activity: Students work step-by-step through the generation of a different Hilbert-like Curve (a fractal made from deforming a line by bending it), allowing them to explore number patterns in sequences and geometric properties of fractals.

Activity: Generate complicated geometric fractals by specifying starting polygon and scale factor.

Activity: Step through the generation of a Hilbert Curve -- a fractal made from deforming a line by bending it, and explore number patterns in sequences and geometric properties of fractals.

Activity: Enter a complex value for "c" in the form of an ordered pair of real numbers. The applet draws the fractal Julia set for that seed value.

Activity: Step through the generation of the Koch Snowflake -- a fractal made from deforming the sides of a triangle, and explore number patterns in sequences and geometric properties of fractals.

Activity: Graph recursive functions by defining f(0)=C and defining f(n) based on f(n-1).

Activity: Learn about number patterns in sequences and recursions by specifying a starting number, multiplier, and add-on. The numbers in the sequence are displayed on a graph, and they are also listed below the graph.

Activity: Step through the generation of Sierpinski's Carpet -- a fractal made from subdividing a square into nine smaller squares and cutting the middle one out. Explore number patterns in sequences and geometric properties of fractals.

Activity: Step through the generation of Sierpinski's Triangle -- a fractal made from subdividing a triangle into four smaller triangles and cutting the middle one out. Explore number patterns in sequences and geometric properties of fractals.

Activity: Learn about how the Pythagorean Theorem works through investigating the standard geometric proof. Parameters: Sizes of the legs of the triangle.

Activity: Explore fractals by investigating the relationships between the Mandelbrot set and Julia sets.

Activity: Enter two complex numbers (z and c) as ordered pairs of real numbers, then click a button to iterate step by step. The iterates are graphed in the x-y plane and printed out in table form. This is an introduction to the idea of prisoners/escapees in iterated functions and the calculation of fractal Julia sets.

No Results Found

a resource from CSERD, a pathway portal of NSDL NSDL CSERD