
BCCD 
 
Goal: 

This activity gives students hands-on experience with running parallel programs on a 
parallel computer. 
 
Materials: 

● Computer, one per student. 
● One computer connected to a projector for the instructor. 
● Ethernet network connecting all computers together, disconnected from any other 

networks. 
● VirtualBox (https://www.virtualbox.org) virtual disk image (VDI) running the Bootable 

Cluster CD (BCCD) operating system (http://bccd.net) on the instructor’s computer. 
● VirtualBox virtual machine that boots from the network by default, one per student 

computer. 
● Parallel Computing Notebook, one per student. 

 
Activity: 

1. The instructor instructs the students to disconnect the Ethernet routers from any outside 
networks, and to make sure that their computers are each connected to the router, and 
that all routers are connected together. 

2. Each student logs in to a local account (the instructor provides the credentials). 
3. Each student opens the Activity Monitor (Mac) application so they can monitor how 

much of the system resources are being used. 
4. Each student opens the VirtualBox application. The bccd virtual machine should be 

present. 
5. Each student sets the number of cores for the virtual machine by clicking the bccd 

virtual machine, choosing Settings, clicking the System tab, clicking the Processor tab, 
and increasing the number of processors to the total number of cores on the computer 
(you can figure this out on Mac by going to the Apple menu, choosing About This Mac, 
then System Report). 

6. The instructor demonstrates how to boot the BCCD virtual machine. NOTE: it is 
important that only one computer boot fully first, otherwise some computers will not be 
able to connect to all the others. The instructor clicks the Start button and explains that 
this is like booting up a computer that has the BCCD operating system installed on it. 
BCCD is a Linux operating system developed and maintained with support from Shodor, 
designed for making it easier to teach parallel computing. 

7. Once the boot process finishes, the instructor points out that the hostname of the 
computer is node000. Each node in the BCCD cluster has a unique hostname that 
starts with node0. The head node of the BCCD cluster is node000. 

8. Each student clicks the Start button to boot their virtual machine. The student should not 
see the No DHCP blue screen, and the hostname of each student’s machine should end 

http://bccd.net/


up being different. If any are the same, the student should let the instructor know, and 
together the student and instructor should diagnose any network connection issues. 

9. The instructor and students review some of the basic Linux commands: 
a. pwd<ENTER> - prints the name of the working (current) directory (folder). For 

now this should print /home/bccd, which is the BCCD user’s home directory. 
b. ls<ENTER> - lists all the files in the working directory. For now this will list all the 

files and folders in the BCCD user’s home directory. 
c. cd name-of-directory<ENTER> - change the working directory. For 

example: 
i. cd GalaxSee<ENTER> - change to the directory named GalaxSee. This 

directory has the code for a model of stars in a galaxy interacting 
gravitationally. Enter pwd<ENTER> to confirm it worked; it should print 
/home/bccd/GalaxSee. 

d. mv source destination<ENTER> - move or rename a file. For example, 
i. mv GalaxSee.cxx-mpi gal-student-name<ENTER> - rename the 

binary executable file for the galaxy model. Students should replace 
student-name with their name so they can keep track of their 
executable files running across all the computers in the room. 

10. The instructor introduces some of the BCCD-specific commands: 
a. bccd-snarfhosts -sv<ENTER> - find all the other BCCD nodes on the 

network and lists them out, one per line, sorted. It also indicates how many cores 
each node has, referred to as slots. Furthermore, the command creates a file in 
the BCCD user’s home directory called machines-openmpi, which can be used 
when running a program across multiple nodes (it is analogous to a roster of a 
sports team, which lists the people who will be playing together). NOTE: this 
command may produce errors related to egrep. These errors can safely be 
ignored. 

b. bccd-syncdir . ~/machines-openmpi<ENTER> - synchronize (copy) a 
directory across all the machines listed in the file machines-openmpi. This will 
create a directory on every node in the cluster; the directory will be named 
/tmp/node0##-bccd, where ## is replaced by the unique ID of the node that 
created it. 

11. The instructor introduces the Linux command for keeping track of which processes are 
using the most % of the CPU: top<ENTER> 

12. In another terminal window, the instructor introduces the command for running a 
program across multiple computers in parallel: 

a. time mpirun -np A -machinefile ~/machines-openmpi \ 
/tmp/node0B-bccd/GalaxSee.cxx-mpi C D E<ENTER> 

i. Students should replace the highlighted letters in that command with the 
following: 

1. A with the number of processes (independent pieces of the 
program that run in parallel) they want to use. 

2. B with the unique ID for their node. 



3. C with the number of stars in the galaxy. 
4. D with the mass of each star, measured in solar masses (the mass 

of our sun). 
5. E with the number of millions of years of model time to run the 

model. 
13. Students check the top command to see which processes are running on their system. 

They also check Activity Monitor (Mac) to see how much of the system resources are 
currently being used. 

14. When the command finishes, it will list three different times: 
a. real time is the amount of wall clock time from when the program is entered to 

when it finishes running. 
b. user time is the amount of time the program actually runs code. This does not 

include the time the program spends waiting for resources. 
c. sys time is the amount of time the Kernel of the operating system runs on behalf 

of the program. 
15. The instructor introduces the concept of scaling, in which the number of processes is 

increased across multiple runs of the same program. The real time for each run of the 
program can be measured, and this can be graphed vs. the number of process. 

 


