
CONTENTS 1

An introduction to R for dynamic models in biology
Last compile: March 7, 2008

Stephen P. Ellner1 and John Guckenheimer2

1Department of Ecology and Evolutionary Biology, and
2Department of Mathematics

Cornell University, Ithaca NY 14853

Contents

1 Interactive calculations 4

2 An interactive session: fitting a linear regression model 6

3 Script files and data files 8

4 Vectors 11

5 Matrices 14

5.1 cbind and rbind . 15

5.2 Matrix addressing . 16

5.3 Matrix operations and matrix-vector multiplication . 16

6 Iteration (“Looping”) 17

6.1 For-loops . 17

6.2 While-loops . 19

7 Branching 21

8 Numerical Matrix Algebra 22

8.1 Eigenvalues and eigenvectors . 23

8.2 Eigenvalue sensitivities and elasticities . 24

8.3 Finding the eigenvalue with largest real part . 25

9 Creating new functions 26

10 A simulation project 27

11 Coin tossing and Markov Chains 29

11.1 Markov chains and residence times . 31

CONTENTS 2

12 The Hodgkin-Huxley model 32

12.1 Getting started . 34

13 Solving systems of differential equations 37

13.1 Always use lsoda! . 40

13.2 The logs trick . 40

14 Equilibrium points and linearization 41

15 Phase-plane analysis and the Morris-Lecar model 44

16 Simulating Discrete-Event Models 47

17 Simulating dynamics in systems with spatial patterns 48

17.1 General method of lines . 50

18 References 51

Preface

These notes for computer labs accompany our textbook Dynamic Models in Biology (Princeton Univer-
sity Press 2006), but they can also be used as a “standalone” introduction to R as a scripting language for
simulating dynamic models of biological systems. They are based in part on course materials by former
TAs Colleen Webb, Jonathan Rowell and Daniel Fink at Cornell University, Lou Gross (University of
Tennessee) and Paul Fackler (NC State University), and on the book Getting Started with Matlab by
Rudra Pratap (Oxford University Press). We also have drawn on the documentation supplied with R
(R Development Core Team 2005).

The current home for these notes is www.cam.cornell.edu/∼dmb/DMBsupplements.html, a web page
for the textbook that we maintain ourselves. If that fails, an up-to-date link should be in the book’s
listing at the publisher (www.pupress.princeton.edu). Parallel notes and script files for Matlab are
also available at those sites.

Sections 1-7 are a general introduction to some basics of R programming. We generally cover those
in two or three 2-hour lab sessions, depending on how much previous experience students have had.
Rather than lecturing, we have students work through them individually, asking for help as needed and
having us or a TA check their exercise solutions. Those sections contain many sample calculations. It is
important to do them yourselves – type them in at your keyboard and see what happens on your screen –
to get the feel of working in R . All exercises in the middle of a section should be done immediately when
you get to them, and make sure that you have them right before moving on. Exercises at the ends of
sections may be more appropriate as homework exercises. However the exercises are all straightforward
applications of the programming techniques being taught.

The subsequent sections are linked to our textbook in fairly obvious ways. For example, section 8 on
matrix computations goes with Chapter 2 on matrix models for structured populations, and section 15
on phase-plane analysis of the Morris-Lecar model accompanies the corresponding section in Chapter 5.
Some exercises in these sections are designed as ’warmups’ for exercises in the textbook, such as simple

CONTENTS 3

examples of agent-based (discrete-event) models as a warmup for agent-based simulation of infectious
disease dynamics.

What is R ?

R is an object-oriented scripting language that combines

• the programming language S developed by John Chambers (Chambers and Hastie 1988, Chambers
1998, Venables and Ripley 2000).

• a user interface with a few basic menus and extensive help facilities.

• an enormous set of functions for classical and modern statistical data analysis and modeling.

• graphics functions for visualizing data and model output.

R is an open-source project (R Development Core Team 2005) available free via the Web (see below).
Originally a research project in statistical computing (Ihaka and Gentlemen 1996) it is now managed by
a team that includes a number of well-regarded statisticians, and is widely used by statistical researchers
and a growing number of theoretical biologists. The commercial implementation of the S language (called
S-plus) offers a “point and click” interface that R lacks. However for our purposes this is outweighed by
the fact that S-plus lags far behind in providing tools for dynamic models. The standard installation of
R includes extensive documentation, including an introductory manual and a comprehensive reference
manual. At this writing, R mostly follows version 3 of the S language, but some packages are starting
to use version 4 features. These notes refer only to version 3 of S. We also limit ourselves to graph-
ics functions in the base graphics package (rather than the more advanced grid and lattice graphics
packages).

The main sources for R are CRAN (cran.r-project.org) and its mirrors. You can get the source code,
but most users will prefer a precompiled version. To get one from CRAN, click on the link for your OS,
continue to the folder corresponding to your OS version, and find the appropriate download file for your
computer.

For Windows or OS X, R is installed by launching the downloaded file and following the on-screen
instructions. At the end you’ll have an R icon on your desktop that can be used to launch the program.
Installing versions for LINUX or UNIX is more complicated and idiosyncratic (which will not bother the
corresponding users), but many recent LINUX distributions include a fairly up-to-date version of R .

For Windows PCs we strongly suggest that you edit the file Rconsole in R ’s etc folder and change the
line MDI=yes to MDI=no, and also edit Rprofile to un-comment the line options(chmhelp=TRUE) by
removing the # at the start of the line. These changes allow R ’s command and graphics windows to
move independently on the desktop, and selects the most powerful version of the help system.

This document was written at a Windows PC and may sometimes refer to Windows-specific aspects of
R . We will be happy to make changes as these lapses are brought to our attention.

Statistics in R

Some of the important functions and libraries (collections of functions) for data analysis and sta-
tistical modeling are summarized in Table 1. The book by Venables and Ripley (2002) gives a
good practical overview, and a list of available libraries and their contents is available at CRAN
(www.cran.r-project.org, click on Package sources). Maindonald (2004) and Verzani (2002) – both
available online – present the basics of statistical data analysis and graphics in R . For the most part,
we are not concerned here with this side of R .

1 INTERACTIVE CALCULATIONS 4

aov, anova Analysis of variance or deviance
lm, glm Linear and generalized linear models
gam, gamm Generalized additive models and mixed models (in mgcv package)
nls Fit nonlinear models by least-squares (in nls package)
lme,nlme Linear and nonlinear mixed-effects models (in nlme package)
nonparametric regression Various functions in numerous libraries including stats (smoothing

splines, loess, kernel), mgcv, fields, KernSmooth, logspline,
sm

Commmander Point-and-click GUI for basic statistics and model fitting, can im-
port data from SPSS, Minitab or STATA data files (in package
Rcmdr)

boot Package: functions for bootstrap estimates of precision and signif-
icance

multiv Package: multivariate analysis
survival Package: survival analysis
tree Package: tree-based regression

Table 1: A small selection of the functions and add-on packages in R for statistical modeling and data analysis.
There are many more, but you will have to learn about them somewhere else.

1 Interactive calculations

Launching R opens the console window. This has a few basic menus at the top, whose names and content
are OS-dependent; check them out on your own. The console window is also where you enter commands
for R to execute interactively, meaning that the command is executed and the result is displayed as soon
as you hit the Enter key. For example, at the command prompt >, type in 2+2 and hit Enter; you will
see

> 2+2
[1] 4

To do anything complicated, the results from calculations have to be stored in variables. For example,
type a=2+2; a at the prompt and you see

> a=2+2; a
[1] 4

The variable a has been created, and assigned the value 4. The semicolon allows two or more commands
to be typed on a single line; the second of these (a by itself) tells R to print out the value of a. By
default, a variable created this way is a vector (an ordered list of numbers); in this case a is a vector
length 1, which acts just like a number.

Variable names in R must begin with a letter, and followed by alphanumeric characters. Long names can
be broken up using a period, as in very.long.variable.number.3, but (Windows users beware!) do
not use the underscore character () or blank space as a separator in variable names. Recent versions
of R have been progressively removing limitations like this, but for compatibility with older versions of
R and other implementations of S it is best to not use underscores and blanks. R is case sensitive: Abc
and abc are not the same variable.

Exercise 1.1 Here are some variable names that cannot be used in R ; explain why: cell maximum
size; 4min; site#7 .

1 INTERACTIVE CALCULATIONS 5

Calculations are done with variables as if they were numbers. R uses +, -, *, /, and ^ for addition,
subtraction, multiplication, division and exponentiation, respectively. For example enter

> x=5; y=2; z1=x*y; z2=x/y; z3=x^y; z2; z3

and you should see

[1] 2.5
[1] 25

Even though the variable values for x, y were not displayed, R “remembers” that values have been
assigned to them. Type > x; y to display the values.

If you mis-enter a command, it can be edited instead of starting again from scratch. The ↑ key recalls
previous commands to the prompt. For example, you can bring back the next-to-last command and edit
it to

> x=5 y=2 z1=x*y z2=x/y z3=x^y z2 z3

so that commands are not separated by a semicolon. Then press Enter, and you will get an error message.

You can do several operations in one calculation, such as

> A=3; C=(A+2*sqrt(A))/(A+5*sqrt(A)); C
[1] 0.5543706

The parentheses are specifying the order of operations. The command
> C=A+2*sqrt(A)/A+5*sqrt(A)

gets a different result – the same as
> C=A + 2*(sqrt(A)/A) + 5*sqrt(A).

The default order of operations is: (1) Exponentiation, (2) multiplication and division, (3) addition and
subtraction.

> b = 12-4/2^3 gives 12 - 4/8 = 12 - 0.5 = 11.5
> b = (12-4)/2^3 gives 8/8 = 1
> b = -1^2 gives -(1^2) = -1
> b = (-1)^2 gives 1

In complicated expressions it’s best to use parentheses to specify explicitly what you want, such
as > b = 12 - (4/(2^3)) or at least > b = 12 - 4/(2^3) .

R also has many built-in mathematical functions that operate on variables (see Table 2). You can
get help on any R function by entering

?functionname
in the console window (e.g., try ?sin). You should also explore the items available on the Help menu,
which include the manuals, FAQs, and a Search facility (’Apropos’ on the menu) that is useful if you
sort of maybe remember part of the the name of what it is you need help on.

Exercise 1.2 : Have R compute the values of
1. 27

27−1and compare it with
(
1 − 1

27

)−1

2 AN INTERACTIVE SESSION: FITTING A LINEAR REGRESSION MODEL 6

abs(x) absolute value
cos(x), sin(x), tan(x) cosine, sine, tangent of angle x in radians
exp(x) exponential function
log(x) natural (base-e) logarithm
log10(x) common (base-10) logarithm
sqrt(x) square root

Table 2: Some of the built-in mathematical functions in R. You can get a more complete list from the
Help system: ?Arithmetic for simple, ?log for logarithmic, ?sin for trigonometric, and ?Special for special
functions.

2. sin(π/9), cos2(π/7) [Note that typing cos∧2(pi/7) won’t work!]

3. 27

27−1
+ 4 sin(π/9), using cut-and-paste to assemble parts of your past commands

Exercise 1.3 : Do an Apropos on sin via the Help menu, to see what it does. Now enter the command
help.search("sin")

and see what that does (answer: help.search pulls up all help pages that include ’sin’ anywhere in their
title or text. Apropos just looks at the name of the function).

Exercise 1.4 Use the Help system to find out what the hist function does – most easily, by typing
?hist at the command prompt. Prove that you have succeeded by doing the following: use the command
y=rnorm(5000) to generate a vector of 5000 random numbers with a Normal distribution, and then use
hist to plot a histogram of the values in y with about 20 bins. Why did we say “about 20” rather than
“exactly 20”?

2 An interactive session: fitting a linear regression model

To get a feel for working in R we’ll fit a straight line model (linear regression) to some data. Below are
data on the maximum per-capita growth rate rmax of laboratory populations of the green alga Chlorella
vulgaris as a function of light intensity (µE per m2 per second). These experiments were run during the
system-design phase of the study reported by Fussmann et al. (2000).

Light: 20, 20, 20, 20, 21, 24, 44, 60, 90, 94, 101
rmax: 1.73, 1.65, 2.02, 1.89, 2.61, 1.36, 2.37, 2.08, 2.69, 2.32, 3.67

To analyze these data in R , first enter them as numerical vectors:

Light=c(20,20,20,20,21,24,44,60,90,94,101);
rmax=c(1.73,1.65,2.02,1.89,2.61,1.36,2.37,2.08,2.69,2.32,3.67);

The function c() combines the individual numbers into a vector.

To see a histogram of the growth rates enter > hist(rmax) which opens a graphics window and
displays the histogram. There are many other built-in statistics functions, for example mean(rmax)
gets you the mean, sd(rmax) and var(rmax) return the standard deviation and variance, respectively.

To see how the algal rate of increase is affected by light intensity,

> plot(Light,rmax)

2 AN INTERACTIVE SESSION: FITTING A LINEAR REGRESSION MODEL 7

creates a plot. A linear regression seems reasonable. To perform linear regression we create a linear
model using the lm() function:

> fit = lm(rmax~Light)

This produces no output whatsoever, but it has created fit as an object, i.e. a data structure consisting
of multiple parts, holding the results of a regression analysis with rmax being modeled as a function of
Light. Unlike most statistics packages, R rarely produces automatic summary output from an analysis.
Statistical analyses in R are done by creating a model, and then giving additional commands to extract
desired information about the model or display results graphically.

To get a summary of the results, enter the command > summary(fit). Model objects are set up in R
(more on this later) so that the function summary “knows” that fit was created by lm, and produces
an appropriate summary of results for an object created by lm:

Call:
lm(formula = rmax ~ Light)

Residuals:
Min 1Q Median 3Q Max

-0.5478 -0.2607 -0.1166 0.1783 0.7431

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.580952 0.244519 6.466 0.000116 ***
Light 0.013618 0.004317 3.154 0.011654 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4583 on 9 degrees of freedom
Multiple R-Squared: 0.5251, Adjusted R-squared: 0.4723
F-statistic: 9.951 on 1 and 9 DF, p-value: 0.01165

Adding the regression line to the plot of the data is similarly accomplished by a function taking fit as
its input.

> abline(fit)

You can also “interrogate” fit directly. Type > names(fit) to get a list of the components of fit.

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

Components of an object are extracted using the “$” symbol. For example, > fit$coeffficients
yields the regression coefficients

(Intercept) Light
1.58095214 0.01361776

3 SCRIPT FILES AND DATA FILES 8

20 40 60 80 100

1.
5

2.
0

2.
5

3.
0

3.
5

Light

rm
ax

Figure 1: Graphical summary of linear regression analysis. The commands for this plot are in Intro1.R. Data
are from the studies described in Fussmann et al. (2000). Science 290: 1358-1360.

3 Script files and data files

Modeling or complicated data analysis are often accomplished more efficiently using scripts, which are
a series of commands stored in a text file. As of this writing, most versions of R include a built-in
script editor. If your’s doesn’t, you will need to use an an external text editing program (e.g. Windows
Notepad or PFE).

Most programs for working with models or analyzing data follow a simple pattern of program parts:

1. “Setup” statements.

2. Input some data from a file or the keyboard.

3. Carry out the calculations that you want.

4. Print the results, graph them, or save them to a file.

For example, a script file might

1. Load some libraries, or run another script file that creates some functions (more on functions later).

2. Read in from a text file the parameter values for a predator-prey model, and the numbers of
predators and prey at time t = 0.

3. Calculate the population sizes at times t = 1, 2, 3, . . ., T .

4. Graph the results, and save the graph to disk for including in your term project.

3 SCRIPT FILES AND DATA FILES 9

Even for relatively simple tasks, script files are useful for build up a calculation step-by-step, making
sure that each part works before adding on to it.

As first examples, the files Intro1.R has the commands from the interactive regression analysis. Im-
portant: before working with a script file that you have downloaded to your computer, create a copy
of it and work with the copy, not the original.

Now open your copy of of Intro1.R. In your editor, select and Copy the entire text of the file, and
then Paste the text into the R console window. This has the same effect as if you entered the commands
by hand into the console, and they will be executed resulting in a graph being displayed with the results.
Cut-and-Paste allows you to execute script files one piece at a time (which is useful for finding and fixing
errors). The source function allows you to run an entire script file, e.g.

> source("c:/temp/Intro1.R")

Source’ing can also be done in point-and-click fashion via the File menu on the console window.

Another important time-saver is loading data from a text file. Grab copies of Intro2.R and Chlorella-
Growth.txt from the course folder to see how this is done. In ChlorellaGrowth.txt the two variables
are entered as columns of a data matrix. Then instead of typing these in by hand, the command

X=read.table("c:\\temp\\ChlorellaGrowth.txt")

reads the file and puts the data values into the variable X. NOTE that we specified the path to the file;
you will have to do the same, using the correct path for your computer. The double-backslash notation
is one way to indicated subfolders in Windows; a single forward slash also works, as in the source()
statement above.

The variables are then extracted from X with the commands

Light=X[,1]; rmax=X[,2];

Think of these as shorthand for “Light = everything in column 1 of X”, and “rmax = everything in
column 2 of X” (we’ll learn about working with matrices later). From there out it’s the same as before,
with some additions that set the axis labels and add a title.

Exercise 3.1 Make a copy of Intro2.R under a new name, and modify the copy so that it does linear
regression of algal growth rate on the log of light intensity, LogLight=log(Light), and plots the data
appropriately. You should end up with a graph sort of like Figure (2).

Exercise 3.2 Run Intro2.R, then enter the command plot(fit) in the console and follow the direc-
tions in the console. Figure out what just happened by entering ?plot.lm to bring up the Help page
for the function plot.lm that carries out a plot command for an object produced by lm. [This is one
example of how R uses the fact that statistical analyses are stored as model objects. fit “knows” what
kind of object it is (in this case an object of type lm), and so plot(fit) invokes a function that produces
plots suitable for an lm object.] Answer: R produced a series of diagnostic plots exploring whether or
not the fitted linear model is a suitable fit to the data. In each of the plots, the 3 most extreme points
(the most likely candidates for “outliers”) have been identified according to their sequence in the data
set.

Exercise 3.3 The axes in plots are scaled automatically, but the outcome is not always ideal (e.g. if
you want several graphs with exactly the same axes limits). You can control scaling using the xlim and
ylim arguments in plot:

plot(x,y,xlim=c(x1,x2),ylim=c(y1,y2))
will draw the graph with the x-axis running from x1 to x2, and the y-axis running from y1 to y2.

3 SCRIPT FILES AND DATA FILES 10

3.0 3.5 4.0 4.5

1.
5

2.
0

2.
5

3.
0

3.
5

Log Light intensity (uE/m2/s)

M
ax

im
um

 g
ro

w
th

 r
at

e
rm

ax
 (

1/
d)

Data from Fussmann et al. (2000) system

rmax= −0.011 + 0.617 Log Light

Figure 2: Graphical summary of regression analysis using log of light intensity.

Create a plot of growth rate versus Light intensity with the x axis running from 0 to 120, and the y axis
running from 1 to 4.

Exercise 3.4 Several graphs can be placed within a single figure by using the par function (short for
“parameter”) to adjust the layout of the plot. For example the command

par(mfrow=c(m,n))
divides the plotting area into m rows and n columns. As a series of graphs are drawn, they are placed
along the top row from left to right, then along the next row, and so on. mfcol=c(m,n) has the same
effect except that successive graphs are drawn down the first column, then down the second column, and
so on.

Save Intro2.R with a new name and modify the program as follows. Use mfcol=c(2,1) to create graphs
of growth rate as a function of Light, and of log(growth rate) as a function of log(Light) in the same
figure. Do the same again, using mfcol=c(1,2).

Exercise 3.5 Use ?par to read about other plot control parameters that can be set using par(). Then
write a script that draws a 2× 2 set of plots, each showing the line y = 5x + 3 with x running from 3 to
8, but with 4 different line styles and 4 different line colors. Recall that x=3:8 will create x as a vector
of the integers from 3 to 8 inclusive.

Exercise 3.6 Use ?savePlot to read about the savePlot function, and then use it modify one of your
scripts so that at the very end the plot is saved to disk. Note that the argument filename in savePlot
can include the path to a folder, for example filename="c:/temp/Intro2Figure" in Windows. 1

1This and the previous seem to be about plotting, but really they are exercises in using the Help system with the bonus
that you learn more about plot. (Let’s see, we know plot can graph data points...maybe it can also draw a line to connect
the points, or just draw the line and leave out the points. That would be useful. So let’s try ?plot and see if it says
anything about lines...Hey, it also says that graphical parameters can be given as arguments to plot, so maybe I can
set line colors inside the plot command instead of using par all the time....). The Help system is very helpful once you get
used to it and acquire the habit of using it often.

4 VECTORS 11

4 Vectors

Vectors and matrices (1- and 2-dimensional rectangular arrays of numbers) are predefined data types in
R . Operations with vectors and matrices may seem a bit abstract now, but we need them to do useful
things later.

We’ve already seen two ways to create vectors in R :
1. A command in the console window or a script file listing the values, such as

> initialsize=c(1,3,5,7,9,11).
2. Using read.table(), for example:

initialsize=read.table("c:\\temp\\initialdata.txt")
(Note: if the file you’re tying to load doesn’t exist, this is not going to work!).

Once it has been created, a vector can be used in calculations as if it were a number (more or less)

> finalsize=initialsize+1; newsize=sqrt(initialsize); finalsize; newsize;
[1] 2 4 6 8 10 12
[1] 1.000000 1.732051 2.236068 2.645751 3.000000 3.316625

Notice that the operations were applied to every entry in the vector. Similarly, commands like
initialsize-5, 2*initialsize, initialsize/10 apply subtraction, multiplication, and division to
each element of the vector. The same is true for

> initialsize^2;
[1] 1 9 25 49 81 121

In R the default is to apply functions and operations to vectors in an element by element manner;
anything else (e.g. matrix multiplication) is done using special notation (discussed below). Note: this
is the opposite of Matlab, where matrix operations are the default and element-by-element requires
special notation.

Functions for vector construction

Some of the main functions for creating and working with vectors are listed in Table 3. A set of regularly
spaced values can be constructed with the seq function, whose syntax is

seq(from,to,by) or seq(from,to,length)
The first form generates a vector (from,from+by,from+2*by,...) with the last entry not being larger
than to. If a value for by is not specified, its value is assumed to be 1 or -1, depending on whether from
or to is larger. The second generates a vector of length evenly-spaced values, running from from to to,
for example

> seq(1,3,length=6)
[1] 1.0 1.4 1.8 2.2 2.6 3.0

There are also two shortcuts for creating vectors with by=1:

> 1:8; c(1:8);
[1] 1 2 3 4 5 6 7 8
[1] 1 2 3 4 5 6 7 8

A constant vector such as (1,1,1,1) can be created with rep function, whose basic syntax is
rep(values,lengths). For example,

4 VECTORS 12

> rep(3,5)
[1] 3 3 3 3 3

created a vector in which the value 3 was repeated 5 times. rep can also be used with a vector of values
and their associated lengths, for example

> rep(c(3,4),c(2,5))
[1] 3 3 4 4 4 4 4

The value 3 was repeated 2 times, followed by the value 4 repeated 5 times.

R also has numerous functions for creating vectors of random numbers with various distributions, that
are useful in simulating stochastic models. Most of these have a number of optional arguments,
which means in practice that you can choose to specify their value, or if you don’t a default value
is assumed. For example, x=rnorm(100) generates 100 random numbers with a Normal (Gaussian)
distribution having mean=0, standard deviation=1. But rnorm(100,2,5) yields 100 random numbers
from a Gaussian distribution with mean=2, standard deviation=5.

Here, and in the R documentation and help pages, the existence of default values for some arguments of
a function is indicated by writing (for example) rnorm(n, mean=0, sd=1). Since no default value is
given for n, the user must supply one: rnorm() gives an error message.

Some of the functions for creating vectors of random numbers are listed in Table 4. Functions to evaluate
the corresponding distribution functions are also available. For a listing use the Help system: ?Normal,
?Uniform, ?Lognormal, etc. will give lists of the available functions for each distribution family.

Exercise 4.1 Create a vector v=(1 5 9 13) using seq. Create a vector going from 1 to 5 in increments
of 0.2 first by using seq, and then by using a command of the form v=1+b*c(i:j).

Exercise 4.2 Generate a vector of 5000 random numbers from a Gaussian distribution with mean=3,
standard deviation=2. Use the functions mean, sd to compute the sample mean and standard deviation
of the values in the vector, and hist to visualize the distribution.

Exercise 4.3 The sum of the geometric series 1 + r + r2 + r3 + ... + rn approaches the limit 1/(1 − r)
for r < 1 as n → ∞. Take r = 0.5 and n = 10, and write a one-statement command that creates the
vector [r0, r1, r2, . . . , rn] and computes the sum of all its elements. Compare the sum of this vector to
the limiting value 1/(1 − r). Repeat this for n = 50.

seq(from,to,by=1) Vector of evenly spaced values with specified increment (default = 1)
seq(from,to,length) Vector of evenly spaced values with specified length
c(u,v,...) Combine a set of numbers and/or vectors into a single vector
rep(a,b) Create vector by repeating elements of a by amounts in b
hist(v) Histogram plot of value in v
mean(v),var(v),sd(v) Population mean, variance, standard deviation estimated from values in v
cor(v,w) Correlation between two vectors

Table 3: Some important R functions for creating and working with vectors. Many of these have other optional
arguments; use the help system (e.g. ?cor) for more information. Note that statistical functions such as var

regard the values as samples from a population (rather than a list of value for the entire population) and compute
an estimate of the population statistic; for example sd(1:3)=1.

4 VECTORS 13

rnorm(n,mean=1,sd=1) Gaussian distribution(mean=mu, standard deviation=sd)
runif(n,min=0,max=1) Uniform distribution on the interval (min,max)
rbinom(n,size,prob) Binomial distribution with parameters size=#trials N ,

prob=probability of success p
rpois(n,lambda) Poisson distribution with mean=lambda
rbeta(n,shape1,shape2) Beta distribution on the interval [0, 1] with shape parameters shape1,

shape2

Table 4: Some of the main R function for generating vectors of n random numbers. To create random matrices,
these vectors can be reshaped using the matrix() function, for example: matrix(rnorm(50*20),50,20) generates
a 50 × 20 matrix of Gaussian(0,1) random numbers.

Vector addressing

Often it is necessary to extract a specific entry or other part of a vector. This is done using subscripts,
for example

> q=c(1,3,5,7,9,11); q[3]
[1] 5

q[3] extracts the third element in the vector q. You can also access a block of elements using the
functions for vector construction, e.g.

v=q[2:5]; v
[1] 3 5 7 9

This has extracted 2nd through 5th elements in the vector. If you enter v=q[seq(1,5,2)], what will
happen? Try it and see, and make sure you understand what happened.

Extracted parts of a vector don’t have to be regularly spaced. For example

> v=q[c(1,2,5)]; v
[1] 1 3 9

Addressing is also used to set specific values within a vector. For example,

> q[1]=12

changes the value of the first entry in q while leaving all the rest alone, and

> q[c(1,3,5)]=c(22,33,44)

changes the 1st, 3rd, and 5th values.

Exercise 4.4 write a one-line command to extract a vector consisting of the second, first, and third
elements of q in that order.

Exercise 4.5 Write a script file that computes values of z = (x−1)
(x+1)

and w = sin(x2)
x2 for x = 1, 2, 3, · · · , 12

and plots both of these as a function of x with the points connected by a line.

5 MATRICES 14

Vector orientation

You may be wondering if vectors in R are row vectors or column vectors (if you don’t know what those
are, don’t worry: we’ll get to it later). The answer is “both and neither”. Vectors are printed out as
row vectors, but if you use a vector in an operation that succeeds or fails depending on the vector’s
orientation, R will assume that you want the operation to succeed and will proceed as if the vector has
the necessary orientation. For example, R will let you add a vector of length 5 to a 5 × 1 matrix or to
a 1 × 5 matrix, in either case yielding a matrix of the same dimensions. The fact that R wants you to
succeed is both good and bad – good when it saves you needless worry about details, bad when it masks
an error that you would rather know about.

5 Matrices

A matrix is a two-dimensional array of numbers. Like vectors, matrices can be created by reading in
values from a data file, using the read.table function. Matrices of numbers can also be entered by
creating a vector of the matrix entries, and then reshaping them to the desired number of rows and
columns using the matrix function. For example

> X=matrix(c(1,2,3,4,5,6),2,3)

takes the values 1 to 6 and reshapes them into a 2 by 3 matrix.

> X
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6

Note that values in the data vector are put into the matrix column-wise, by default. You can change
this by using the optional parameter byrow). For example

> A=matrix(1:9,3,3,byrow=T); A
[,1] [,2] [,3]

[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

R will re-cycle through entries in the data vector, if need be, to fill out a matrix of the specified size. So
for example matrix(1,50,50) creates a 50 × 50 matrix of all 1’s.

Exercise 5.1 Use a command of the form X=matrix(v,2,4) where v is a data vector, to create the
following matrix X

[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 2 2 2 2

Exercise 5.2 Use rnorm and matrix to create a 5× 7 matrix of Gaussian random numbers with mean
1 and standard deviation 2.

5 MATRICES 15

matrix(v,m,n) m × n matrix using the values in v
data.entry(A) call up a spreadsheet-like interface to edit the values in A
diag(v,n) diagonal n × n matrix with v on diagonal, 0 elsewhere
cbind(a,b,c,...) combine compatible objects by binding them along columns
rbind(a,b,c,...) combine compatible objects by binding them along rows
outer(v,w) “outer product” of vectors v,w: the matrix whose (i, j)th element is

v[i]*w[j]
iden(n) n × n identity matrix (in boot library)
zero(n,m) n × m matrix of zeros (in boot library)
dim(X) dimensions of matrix X. dim(X)[1]=# rows, dim(X)[2]=# columns
apply(A,MARGIN,FUN) apply the function FUN to each row of A (if MARGIN=1) or each

column of A (if MARGIN=2). See ?apply for details and examples.

Table 5: Some important functions for creating and working with matrices. Many of these have additional
optional arguments; use the Help system for full details.

Another useful function for creating matrices is diag. diag(v,n) creates an n × n matrix with data
vector v on its diagonal. So for example diag(1,5) creates the 5 × 5 identity matrix, which has 1’s on
the diagonal and 0 everywhere else.

Finally, one can use the data.entry function. This function can only edit existing matrices, but for
example

A=matrix(0,3,4); data.entry(A)
will create A as a 3 × 4 matrix, and then call up a spreadsheet-like interface in which the values can be
changed to whatever you need.

5.1 cbind and rbind

If their sizes match, vectors can be combined to form matrices, and matrices can be combined with
vectors or matrices to form other matrices. The functions that do this are cbind and rbind.

cbind binds together columns of two objects. One thing it can do is put vectors together to form a
matrix:

> A=cbind(1:3,4:6,7:9); A
[,1] [,2] [,3]

[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

Remember that R interprets vectors as row or column vectors according to what you’re doing with them.
Here it treats them as column vectors so that columns exist to be bound together. On the other hand,

> B=rbind(1:3,4:6); B
[,1] [,2] [,3]

[1,] 1 2 3
[2,] 4 5 6

treats them as rows. Now we have two matrices that can be combined.

Exercise 5.3 Verify that rbind(A,B) works, cbind(A,A) works, but cbind(A,B) doesn’t. Why not?

5 MATRICES 16

5.2 Matrix addressing

Matrix addressing works like vector addressing except that you have to specify both the row and column,
or range of rows and columns. For example q=A[2,3] sets q equal to 8, which is the (2nd row, 3rd column)
entry of the matrix A , and

> A[2,2:3];
[1] 5 8
> B=A[2:3,1:2]; B

[,1] [,2]
[1,] 2 5
[2,] 3 6

There is an easy shortcut to extract entire rows or columns: leave out the limits.

> first.row=A[1,]; first.row
[1] 1 4 7
> second.column=A[,2]; second.column;
[1] 4 5 6

As with vectors, addressing works in reverse to assign values to matrix entries. For example,

A[1,1]=12; A
[,1] [,2] [,3]

[1,] 12 4 7
[2,] 2 5 8
[3,] 3 6 9

The same can be done with blocks, rows, or columns, for example

> A[1,]=runif(3); A
[,1] [,2] [,3]

[1,] 0.985304 0.743916 0.00378729
[2,] 2.000000 5.000000 8.00000000
[3,] 3.000000 6.000000 9.00000000

Exercise 5.4 Use runif to construct a 5×5 matrix B of random numbers with a uniform distribution
between 0 and 1. (a) Extract from it the second row, the second column, and the 3×3 matrix of the
values that are not at the margins (i.e. not in the first or last row, or first or last column). (b) Use seq
to replace the values in the first row of B by 2 5 8 11 14.

5.3 Matrix operations and matrix-vector multiplication

A numerical function applied to a matrix acts element-by-element.

> A=matrix(c(1,4,9,16),2,2); A; sqrt(A);
[,1] [,2]

[1,] 1 9

6 ITERATION (“LOOPING”) 17

[2,] 4 16
[,1] [,2]

[1,] 1 3
[2,] 2 4

The same is true for scalar multiplication and division. Try 2*A, A/3 and see what you get.

If two matrices (or two vectors) are the same size, then you can do element-by-element addition, sub-
traction, multiplication, division, and exponentiation: (A+B, A-B, A*B, A/B, A B). Matrix × matrix
and matrix × vector multiplication (when they are of compatible dimensions) is indicated by the special
notation %*%. Remember, element-by-element is the default in R. This requires some attention,
because R ’s eagerness to make things work can sometimes let errors get by without warning. So for
example

v=1:2; A*v
[,1] [,2]

[1,] 1 9
[2,] 8 32

A is a 2×2 matrix, and v is a vector of size 2, so the matrix-vector product Av is legitimate. However, Av
should be a vector, not a matrix. Since you (incorrectly) “asked” for element-by-element multiplication,
that’s what R did, “recycling” through the elements of v when it ran out of entries in v before it ran out
of entries in A. What you should have done is

> A%*%v
[,1]

[1,] 19
[2,] 36

6 Iteration (“Looping”)

6.1 For-loops

Loops make it easy to do the same operation over and over again, for example:

• Making population forecasts 1 year ahead, then 2 years ahead, then 3, etc.

• Updating the state of every neuron in a model network based on the inputs it received in the last
time interval.

• Simulating a biochemical reaction network multiple times with different values for one of the
parameters.

There are two kinds of loops in R : for loops, and while loops. A for loop runs for a specified number
of steps. These are written as

for (var in seq) {
commands
}

6 ITERATION (“LOOPING”) 18

Here’s an example (in Loop1.R):

initial population size
initsize=4;

create vector to hold results and store initial size
popsize=rep(0,10); popsize[1]=initsize;

calculate population size at times 2 through 10, write to Command Window
for (n in 2:10) {

popsize[n]=2*popsize[n-1];
x=log(popsize[n]);
cat(n,x,"\n");

}
plot(1:10,popsize,type="l");

The first time through the loop, n=2. The second time through, n=3. When it reaches n=10, the
for-loop is finished and R starts executing any commands that occur after the end of the loop. The
result is a table of the log population size in generations 2 through 10.

Note also the cat function (short for “concatenate”) for printing results to the console window. cat
converts its arguments to character strings, concatenates them, and then prints them. The "\n" ar-
gument is a line-feed character (as in the C language) so that each (n,x) pair is put on a separate
line.

Several for loops can be nested within each other, which is needed for working with matrices as in the
example below. It is important to notice that the second loop is completely within the first. Loops
must be either nested (one completely inside the other) or sequential (one starts after the previous
one ends).

A=matrix(0,3,3); (1)
for (row in 1:3) { (2)

for (col in 1:3) { (3)
A[row,col]=row*col (4)

} (5)
} (6)
A; (7)

Type this into a script file and run it; the result should be

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9

Line 1 creates A as a matrix of all zeros - this is an easy way to create a matrix of whatever size you
need, which can then be filled in with meaningful values as your program runs. Then two nested loops
are used to fill in the entries. Line 2 starts a loop over the rows of A, and immediately in line 3 a loop
over the columns is started. To fill in the matrix we need to consider all possible values for the pair (row,
col). So for row=1, we need to consider col=1,2,3. Then for row=2 we also need to consider col=1,2,3,
and the same for row=3. That’s what the nested for-loops accomplish. For row=1 (as requested in line
2), the loop in lines 3-5 is executed until it ends. Then we get to the end in line 6, at which point the
loop in line 2 moves on to row=2, and so on.

6 ITERATION (“LOOPING”) 19

Nested loops also let us automate the process of running a simulation many times, for example with
different parameters or to look at the average over many runs of a stochastic model. For example
(Loop2.R),

p=rep(0,5); (1)
for (init in c(1,5,9)){ (2)

p[1]=init; (3)
for (n in 2:5) { (4)

p[n]=2*p[n-1] (5)
cat(init,n,p[n],"\n"); (6)

} (7)
} (8)

Line 1 creates the vector p. Line 2 starts a loop over initial population sizes Lines 4-7 does a ”population
growth” simulation Line 8 then closes the loop over initial sizes

The result when you run Loop2.R is that the “population growth” calculation is done repeatedly, for a
series of values of the initial population size. To make the output a bit nicer we can add some headings
as the program runs - source Loop3.R and then look at the file to see how the formatting was done.

If this discussion of looping doesn’t make sense to you, stop now and get help. Loops are essential
from here on out.

Exercise 6.1 : Imagine that while doing fieldwork in some distant land you and your assistant have
picked up a parasite that grows exponentially until treated. Your case is more severe than your assistant’s:
on return to Ithaca there are 400 of them in you, and only 120 in your assistant. However, your field-
hardened immune system is more effective. In your body the number of parasites grows by 10 percent
each day, while in your assistant’s it increases by 20 percent each day. That is, j days after your return
to Ithaca your parasite load is n(j) = 400(1.1)j and the number in your assistant is m(j) = 120(1.2)j.

Write a script file Parasite1.R that uses a for-loop to compute the number of parasites in your body
and your assistant’s over the next 30 days, and draws a single plot of both on log-scale (i.e. log(n(j))
and log(m(j)) versus time for 30 days).

Exercise 6.2 : Write a script file that uses for-loops to create the following 5×5 matrix A. Think first:
do you want to use nested loops, or sequential?

0 1 2 3 4
0.1 0 0 0 0
0 0.2 0 0 0
0 0 0.3 0 0
0 0 0 0.4 0

6.2 While-loops

A while loop lets an iteration continue until some condition is satisfied. For example, we can solve a
model until some variable reaches a threshold. The format is

while(condition){
commands

}

The loop repeats as long as the condition remains true. Loop4.R contains an example similar to the
for-loop example; source it to get a graph of population sizes over time. A few things to notice about

6 ITERATION (“LOOPING”) 20

x < y less than
x > y greater than
x <= y less than or equal to
x >= y greater than or equal to
x == y equal to

Table 6: Some comparison operators in R . Use ?Comparison to learn more.

the program:

1. Although the condition in the while loop said while(popsize<1000) the last population value
was > 1000. That’s because the loop condition is checked before the commands in the loop are
executed. When the population size was 640 in generation 6, the condition was satisfied so the
commands were executed again. After that the population size is 1280, so the loop is finished and
the program moves on to statements following the loop.

2. Since we don’t know in advance how many iterations are needed, we couldn’t create in advance
a vector to hold all the results. Instead, a vector of results was constructed by starting with the
initial population size and appending each new value as it is calculated. .

3. When the loop ends and we want to plot the results, the “y-values” are popsize, and the x values
need to be 0:something. To find “something”, the length function is used to find the length of
popsize.

Within a while-loop it is often helpful to have a counter variable that keeps track of how many times
the loop has been executed. In the following code, the counter variable is n:

n=1;
while(condition) {

commands
n=n+1;

}

The result is that n=1 is true while the commands (whatever they are) are being executed for the first
time. Afterward n is set to 2, and this remains true during the second time that the commands are
executed, and so on. One use of counters is to store a series of results in a vector or matrix: on the nth

time through the commands, put the results in the nth entry of the vector, nth row of the matrix, etc.

The conditions controlling a while loop are built up from operators that compare two variables (Table
6). These operators return a logical value of TRUE or FALSE. For example, try:

> a=1; b=3; c=a<b; d=(a>b); c; d;

The parentheses around (a>b) are optional but can be used to improve readability in script files.

When we compare two vectors or matrices of the same size, or compare a number with a vector or
matrix, comparisons are done element-by-element. For example,

> x=1:5; b=(x<=3); b
[1] TRUE TRUE TRUE FALSE FALSE

R also does arithmetic on logical values, treating TRUE as 1 and FALSE as 0. So sum(b) returns the
value 3, telling us that 3 entries of x satisfied the condition (x<=3). This is useful for running multiple
simulations and seeing how often one outcome occurred rather than another.

7 BRANCHING 21

Exercise 6.3 Write a script file Parasite2.R that uses a while-loop to compute the number of parasites
in your body and your assistant’s so long as you are sicker than your assistant (i.e. so long as n > m)
and stops when your assistant is sicker than you. Use a copy of Parasite1.R as your starting point.

More complicated conditions are built by using logical operators to combine comparisons:

! Negation
& && AND
| || OR

OR is non-exclusive, meaning that x|y is true if x is true, if y is true, or if both x and y are true. For
example:
>> a=c(1,2,3,4); b=c(1,1,5,5); (a<b)&(a>3); (a<b)|(a>3);

An alternative to (x==y) is the identical function. identical(x,y) returns TRUE if x and y are
exactly the same, else FALSE. The difference between these is that if (for example) x and y are vectors
(x==y) will return a vector of values for element-by-element comparisons, while identical(x,y) returns
a single value: TRUE if each entry in x equals the corresponding entry in y, otherwise FALSE. You can
use ?Logical to read more about logical operators.

Exercise 6.4 Use the identical function to construct a one-line command that returns TRUE if
each entry in a vector rnorm(5) is positive, and otherwise returns FALSE. Hint: rep works on logical
variables, so rep(TRUE,5) returns the vector (TRUE,TRUE,TRUE,TRUE,TRUE).

7 Branching

Logical conditions also allow the rules for “what happens next” in a model to depend on the current
values of state variables. The if statement lets us do this; the basic format is

if(condition) {
some commands

}else{
some other commands

}

An if block can be set up in other ways, but the layout above, with the }else{ line to separate the two
sets of commands, can always be used.

If the “else” is to do nothing, you can leave it out:

if(condition) {
commands

}

Exercise 7.1 Look at and source a copy of Branch1.R to see an if statement which makes the
population growth rate depend on the current population size.

More complicated decisions can be built up by nesting one if block within another, i.e. the “other
commands” under else can include a second if block. Branch2.R uses this method to have population
growth tail off in several steps as the population size increases:

8 NUMERICAL MATRIX ALGEBRA 22

for (i in 1:50) { (1)
if(popnow<250){ (2)

popnow=popnow*2; (3)
}else{ (4)

if(popnow<500){ (5)
popnow=popnow*1.5 (6)

}else{ (7)
popnow=popnow*0.95 (8)

} (9)
} (10)
popsize=c(popsize,popnow); (11)

} (12)

What does this accomplish?

• If popnow is still < 250, then line 3 is executed growth by a factor of 2 occurs. Since the if
condition was satisfied, the entire else block (line numbers 5-10 above) isn’t looked at; R jumps
line (11) and continues from there.

• If popnow is not < 250, R moves on to the else on line 4, and immediately encounters the if on
line 5.

• If popnow is < 500 the growth factor of 1.5 applies, and R then jumps to the end and continues
from there.

• If neither of the two if conditions is satisfied, the final else block is executed and population
declines by 5% instead of growing.

Exercise 7.2 Modify Parasite1.m so that there is random variation in parasite success, depending on
whether or not conditions on a given day are stressful. Specifically, on “bad days” the parasites increase
by 10% while on “good days” they are beaten down by your immune system and they go down by 10%,
and similarly for your assistant. That is,

Bad days: n(j + 1) = 1.1n(j), m(j + 1) = 1.2m(j)
Good days: n(j + 1) = 0.9n(j), m(j + 1) = 0.8m(j)

Do this by using runif(1) and an if statement to “toss a coin” each day: if the random value produced
by unif for that day is < 0.5 it’s a good day, and otherwise it’s bad. Make sure that your script does a
new “coin toss” for each day, but that the same toss applies to both you and your assistant.

8 Numerical Matrix Algebra

R has functions for matrix-algebra calculations that use “industry standard” numerical libraries. At
this writing R is completing a transition from older (LINPACK, EISPACK) to newer (BLAS, LAPACK)
libraries. Many functions exist in two versions corresponding to these, with the default choice generally
being the newer libraries. Some of these functions are listed in Table 7.

Some of R ’s matrix functions only work on square matrices and will return an error if A is not square,
in particular functions for computing eigenvalues and eivenvectors. For the remainder of this section we
only consider square matrices.

8 NUMERICAL MATRIX ALGEBRA 23

iden(n) n × n identity matrix (in boot library)
zero(n,m) n × m matrix of zeros (in boot library)
outer(v,w) outer product of vectors v and w; very useful for avoiding loops
solve(A) inverse of matrix A
solve(A,B) solution x of the linear system Ax = b for each column b of the matrix B
det(A) determinant of the matrix A
norm(A) matrix norm of A (several options)
eigen(A) eigenvalues and eigenvectors
t(A) transpose of A
apply(A,MARGIN,FUN) apply a function FUN to the rows (MARGIN=1) or columns (MARGIN=2)

of matrix A, and return all resulting values as a vector. See ?apply for
details and examples. Very useful for avoiding loops

sapply(A,FUN) apply a function FUN to each element in matrix A, returning a vector of
values.

Table 7: Some important functions for creating and working with matrices in R . Many of these have additional
optional arguments; use the Help system for full details.

8.1 Eigenvalues and eigenvectors

Because eigenvalues are so important for studying dynamic models, we will now study eigen in some
detail. Recall that if Aw = λw (for A a square matrix, w a nonzero column vector, and λ a real or
complex number) then λ is called an eigenvalue and w is the corresponding eigenvector of A. If v is a
row-vector such that vA = λv, then v is called a left eigenvector of A. The left eigenvalues for a matrix
are the same as the (right) eigenvalues.

We are often most interested in the dominant eigenvalue, which depending on context (discrete versus
continuous time models) means either the one with the largest absolute value, or the one with the largest
real part.2 eigen is convenient for the former: it returns eigenvalues sorted by absolute value, with the
largest first. For example,

A=matrix(1:9,3,3); vA=eigen(A); vA;
$values
[1] 1.611684e+01 -1.116844e+00 -4.054215e-16

$vectors
[,1] [,2] [,3]

[1,] -0.4645473 -0.8829060 0.4082483
[2,] -0.5707955 -0.2395204 -0.8164966
[3,] -0.6770438 0.4038651 0.4082483

$values
[1] 1.611684e+01 -1.116844e+00 -9.357342e-17

As with the output from lm in our first interactive session (you remember lm . . .) vA is a compound
object composed of two components, whose names are values and vectors. The “$” is used to extract
components of a compound object, for example vA$values is the values part of vA, a vector consisting
of the sorted eigenvalues:

vA$values

2The general definition of absolute value, which covers both real and complex numbers, is |a + ib| =
√

a2 + b2, where
i =

√
−1.

8 NUMERICAL MATRIX ALGEBRA 24

[1] 1.611684e+01 -1.116844e+00 -9.357342e-17

Note that the eigenvalues are sorted by magnitude,so va$values[1] is the eigenvalue with the largest
absolute value.

The vectors component is a matrix whose columns are the corresponding eigenvectors, sorted in the
same order as the eigenvalues. That is,

j=1; A%*%vA$vectors[,j]-vA$values[j]*vA$vectors[,j];
[,1]

[1,] 0.000000e+00
[2,] -3.552714e-15
[3,] -3.552714e-15

Exercise 8.1 Verify that the output is also (0, 0, 0), apart from numerical error, for j=2 and j=3.
Explain in words what these calculations show.

Exercise 8.2 Enter the command names(vA) and see what results. From this, infer what the names
function does. Enter the command names(A) and infer the meaning of the object NULL in R . Check
your guess by using the Help menu on the console window: select R language (standard) and type NULL
into the popup window that appears.

To get the left eigenvectors of a matrix, you have to use eigen again. Recall that the left eigenvectors
of a matrix A are the same as the eigenvectors of its transpose, t(A). So

vLA=eigen(t(A))$vectors
gets you the left eigenvectors of A.

Exercise 8.3 Compute vLA[,j]%*%A-vA$values[j]*vLA[,j] to verify the last claim about left eigen-
vectors, for j=1 to 3.

Eigenvector scalings: For a transition matrix model, the dominant right eigenvector w (i.e. the
eigenvector corresponding to the eigenvalue with largest absolute value) is the stable stage distribution, so
we are most interested in relative proportions. To get those, w=w/sum(w). The dominant left eigenvector
v is the reproductive value, and it is conventional to scale those relative to the reproductive value of a
newborn. If newborns are class 1: v=v/v[1].

Exercise 8.4 : Write a script file which applies the above to the matrices

A =

1 −5 0
6 4 0
0 0 2

 B =

0 1 5
0.6 0 0
0 0.4 0.9

finding all the eigenvalues and then extracting the dominant one and the corresponding left and right
eigenvectors. For B, use the scalings defined above.

8.2 Eigenvalue sensitivities and elasticities

For an n × n matrix A with entries aij, the sensitivities sijand elasticities eijcan be computed as

sij =
∂λ

∂aij
=

viwj

〈v, w〉 eij =
aij

λ
sij (1)

where λ is the dominant eigenvalue, v and w are dominant left and right eigenvalues, and 〈v, w〉 is the
inner product of v and w, computed in R as sum(v*w). So once λ, v, and w have been found and
stored as variables, it just takes some for-loops to compute the sensitivies and elasticities.

8 NUMERICAL MATRIX ALGEBRA 25

vA=eigen(A); lambda=vA$values[1];
w=vA$vectors[,1]; w=w/sum(w);
v=eigen(t(A))$vectors[,1]; v=v/v[1];
vdotw=sum(v*w);
s=A; n=dim(A)[1];
for(i in 1:n) {

for(j in 1:n) {
s[i,j]=v[i]*w[j]/vdotw;

}
}
e=(s*A)/lambda;

Note how all the elasticities are computed at once in the last line. In R that kind of “vectorized”
calculation is much quicker than computing entries one-by-one in a loop. Even better is to use a built-
in function that operates at the vector or matrix level. In this case we can use outer to completely
eliminate the nested do-loops:

vA=eigen(A); lambda=vA$values[1];
w=vA$vectors[,1]; w=w/sum(w);
v=eigen(t(A))$vectors[,1]; v=v/v[1];
s=outer(v,w)/sum(v*w);
e=(s*A)/lambda;

Vectorizing code to avoid or minimize loops is an important aspect of efficient R programming.

Exercise 8.5 Construct the transition matrix A, and then find λ, v, w for an age-structured model
with the following survival and fecundity parameters.

Age-classes 1-6 are genuine age classes with survival probabilities (p1p2 · · ·p6) = (0.3, 0.4, 0.5, 0.6,0.6, 0.7)

Note that pj = aj+1,j, the chance of surviving from age j to age j + 1, for these ages. You can create a
vector p with the values above and then use a for-loop to put those values into the right places in A.

Age-class 7 are adults, with survival 0.9 and fecundity 12.

Results: λ = 1.0419

A =

0 0 0 0 0 0 12
.3 0 0 0 0 0 0
0 .4 0 0 0 0 0
0 0 .5 0 0 0 0
0 0 0 .6 0 0 0
0 0 0 0 .6 0 0
0 0 0 0 0 .7 .9

w = (0.6303, 0.1815, 0.0697, 0.0334,0.0193,0.0111)
v = (1, 3.4729, 9.0457, 18.8487,32.7295, 56.8328,84.5886)

8.3 Finding the eigenvalue with largest real part

For the Jacobian matrix of a differential equation model, the dominant eigenvalue is the one with the
largest real part. To find this, and the associated eigenvector, we need to extract the real parts of the
eigenvalues and locate the largest one.

9 CREATING NEW FUNCTIONS 26

Use the help system – (?complex) – to see the R functions for working with complex numbers. The one
we need now is Re, which extracts the real parts of complex numbers.

Use data.entry to create the matrix

A =

3 0 0
2 2 −3
0 3 1

and you should find that eigen(A)$values are
[1] 1.5+2.95804i 1.5-2.95804i 3.0+0.00000i.

The first two are a complex conjugate pair with absolute value 3.316625 (mod(eigen(A)$values) gets
you the absolute values of the eigenvalues), but the third one has the largest real part.

To have R do this for you, we use the which function to find where the real part is maximized.

vA=eigen(A)$values; rmax=max(Re(vA));
j=which(vA==rmax);
lmax=vA[j]; vmax=eigen(A)$vectors[,j];

The first line uses max to compute the largest real part of any eigenvalue. In the second line, which finds
the indices at which the logic condition (vA==rmax) are TRUE, in this case j=3. The third line then
extracts the relevant entries from the lists of eigenvalues and eigenvectors.

Exercise 8.6 Try the above on A=diag(3,1,3) and see what you get for lmax and vmax. Why?

9 Creating new functions

Functions (often called subroutines in other computing languages) allow you to break a program into
subunits. This makes complex problems easier to program, and helps us (and others) to understand the
logical flow of programs. Each function is an independent little program, performing one task or a few
related tasks, and returning the results. A program can then be written to call on various functions to
perform different tasks. Each function can be written and tested independently, which leads naturally
to the generally recommended modular style of program construction.

The basic syntax for creating a function is as follows. Suppose [for the sake of an easy example] you
want a function mysquare that produces sums of squares: given vectors v and w, it returns a vector
consisting of the element-by-element sums of the squares of the elements in the two vectors. The syntax
for doing that is as follows:

mysquare=function(v,w) {
u=v^2+w^2;
return(u)

}

This code effectively adds mysquare as a new R command, just like sin or log. The variable u is internal
to the function; if you use mysquare in a program, the program won’t “know” the value of u.

Exercise 9.1 Type the above into a script file and run it, and then do q=mysquare(1:4,1:4); q in
the console window.

10 A SIMULATION PROJECT 27

Schematically,

function.name=function(argument1,argument2,...) {
command;
command;

...
command;
return(value)

}

Functions can be placed anywhere in a script file. Once the code for a function has been executed within
a session, the new function can be treated like any other R command.

Functions can return several different values, by combining them into a list with named parts.

mysquare2=function(v,w) {
q=v^2; r=w^2
return(list(v.squared=q,w.squared=r))

}

You can then extract the components in the usual way.

> x=mysquare2(1:4,2:5); names(x);
[1] "v.squared" "w.squared"
> x$v.squared
[1] 1 4 9 16

Exercise 9.2 Write a script that defines a function domeig which takes as input a single matrix, and
returns a list with components value and vector, which are respectively the eigenvalue with largest
absolute value, and the corresponding eigenvector scaled so that the absolute value of its entries sum to
1. (If v is a vector, then v/sum(abs(v)) will have the property that the absolute values of its entries
sum to 1).

Exercise 9.3 Modify your function from the last exercise so that it has a third, optional argument j
with default value 1. Call the function oneeig. If no value of j is specified, then oneeig should act just
like domeig. If a value of j is specified, it should return the jth largest eigenvalue (in absolute value),
and the corresponding eigenvector scaled as in the last exercise.

10 A simulation project

This section is an optional “capstone” project putting into use the programming skills that have been
covered so far. Nothing new about R per se is covered in this section.

The first step is to write a script file that simulates a simple model for density-independent population
growth with spatial variation. The model is as follows. The state variables are the numbers of individuals
in a series of L = 20 patches along a line (L stands for “length of the habitat”) .

1 2 3 4 L-1 L

Let Nj(t) denote the number of individuals in patch j (j = 1, 2, . . . , L) at time t (t = 1, 2, 3, . . .), and let
λj be the geometric growth rate in patch j. The dynamic equations for this model consist of two steps:

10 A SIMULATION PROJECT 28

1. Geometric growth within patches:

Mj(t) = λjNj(t) for all j. (2)

2. Dispersal between neighboring patches:

Nj(t + 1) = (1 − 2d)Mj(t) + dMj−1(t) + dMj+1(t) for 2 ≤ j ≤ L − 1 (3)

where 2d is the “dispersal rate”. We need special rules for the end patches. For this exercise we
assume reflecting boundaries: those who venture out into the void have the sense to come back.
That is, there is no leftward dispersal out of patch 1 and no rightward dispersal out of patch L:

N1(t + 1) = (1 − d)M1(t) + dM2(t)
NL(t + 1) = (1 − d)ML(t) + dML−1(t)

(4)

• Write your script to start with 5 individuals in each patch at time t=1, iterate the model up to t=50,
and graph the log of the total population size (the sum over all patches) over time. Use the following
growth rates: λj = 0.9 in the left half of the patches, and λj = 1.2 in the right.
• Write your program so that d and L are parameters, in the sense that the first line of your script file
reads d=0.1; L=20; and the program would still work if these were changed other values.

Notes and hints:

1. This is a real programming problem. Think first, then start writing your code.

2. Notice that this model is not totally different from Loop1.m, in that you start with a founding
population at time 1, and use a loop to compute successive populations at times 2,3,4, and so on.
The difference is that the population is described by a vector rather than a number. Therefore, to
store the population state at times t = 1, 2, · · · , 50 you will need a matrix njt with 50 rows and L
columns. Then njt(t,:) is the population state vector at time t.

3. Vectorize! Vector/matrix operations are much faster than loops. Set up your calculations so that
computing Mj(t) = λjNj(t) for j = 1, 2, · · · , L is a one-line statement of the form a=b*c . Then
for the dispersal step: if Mj(t), j = 1, 2, . . . , L is stored as a vector mjt of length L, then what (for
example) are Mj(t) and Mj±1(t) for 2 ≤ j ≤ (L − 1)?

Exercise 10.1 Use the model (modified as necessary) to ask how the spatial arrangement of good versus
bad habitat patches affects the population growth rate. For example, does it matter if all the good sites
(λ > 1) are at one end or in the middle? What if they aren’t all in one clump, but are spread out evenly
(in some sense) across the entire habitat? Be a theoretician: (a) Patterns will be easiest to see if good
sites and bad sites are very different from each other. (b) Patterns will be easiest to see if you come
up with a nice way to compare growth rates across different spatial arrangements of patches. (c) Don’t
confound the experiment by also changing the proportion of good versus bad patches at the same time
you’re changing the spatial arrangement.

Exercise 10.2 Modify your script file for the model (or write it this way to begin with...) so that the
dispersal phase (equations 3 and 4) is done by calling a function reflecting whose arguments are the
pre-dispersal population vector M (t) and the dispersal parameter d, and which returns N (t + 1), the
population vector after dispersal has taken place.

11 COIN TOSSING AND MARKOV CHAINS 29

11 Coin tossing and Markov Chains

The exercises on coin tossing and Markov chains in Chapter 3 of the textbook can be used as the
basis for a computer-lab session. For convenience we also include them here. All of the R functions
and programming methods required for these exercises have been covered in previous sections, but it is
useful to “remember”

• how to generate sets of random uniform and Gaussian random numbers using runif and rnorm.

• how logical operators can be used to convert a vector of numbers into a vector of 1’s and 0’s
according to whether or not a condition holds.

• how to find the places in a vector where the value changes, using logicals and which.

>> v=rnorm(100);
>> u = (v<0.3);
>> w=which(u[2:100]!=u[1:99])

Exercise 11.1 Experiment with sequences of coin flips produced by a random number generator:

• Generate a sequence r of 1000 random numbers uniformly distributed in the unit interval [0, 1].

• Compute and plot a histogram for the values with 10 equal bins of length 0.1. How much variation
is there in values of the histogram? Does the histogram make you suspicious that the numbers are
not independent and uniformly distributed random numbers?

• Now compute sequences of 10000 and 100000 random numbers uniformly distributed in the unit
interval [0, 1], and a histogram for each with ten equal bins. Are your results consistent with the
prediction that the range of variation between bins in the histogram is proportional to the square
root of the sequence length?

Note: q=hist(runif(1000),10) will plot the first histogram you need, and q$counts will hold the
number in each bin of the histogram.

The theoretical “benchmark” for this experiment, and its relation to coin tossing, goes as follows. Let
Xi be 1 if the ith random number falls into the first bin of the histogram, otherwise Xi = 0, for
i = 1, 2, 3, · · ·n. So each Xi is a coin toss with P (H) = 0.1. The fraction of tosses that fall in the first
bin is then f = (X1 + X2 + · · ·Xn)/n. Using the basic properties of means and variances, we can derive
that E(f) = E(X) and V ar(f) = V ar(X)/n. The 10 bins of the histogram that you constructed can
be regarded as (approximately) 10 repetitions of this experiment, because there’s nothing special about
bin 1: they all have the same “probability of Heads”. So if you compute

n=10000; q=hist(runif(n),10); f1=q$counts/n; sqrt(var(f1))
and then compute f2 with n = 100, 000, you should see (what?)

Exercise 11.2 (a) Recall that coin tossing is modeled by the binomial distribution: the probability of
k heads in a sequence of n tosses, with p = 0.6 being the probability of heads, is given by

ck(0.6)k(0.4)1000−k where ck =
(

1000
k

)
=

1000!
k!(1000− k)!

.

In R , the binomial coefficient
(

n
k

)
is computed using choose(n,k), e.g. choose(1000,5) gives

(
1000

5

)
.

11 COIN TOSSING AND MARKOV CHAINS 30

Calculate the probability of k heads for values of k between 500 and 700 in a sequence of 1000 independent
tosses. Plot your results with k on the x-axis and the probability of k heads on the y-axis. Comment
on the shape of the plot.

(b) Generate a sequence of 1000 uniformly distributed random numbers r, as in the last exercise, convert
them into a sequence of coin tosses in which the probability of heads is 0.6 and the probability of tails is
0.4, and compute the total number of heads in the 1000 coin tosses. Write a script that does this 1000
times (i.e., 1000 repetitions of tossing 1000 coins) and for each repetition stores (in a vector) the total
number of heads. Now test the binomial distribution by plotting a histogram of the number of heads
obtained in each repetition, and compare the results with the predictions of the binomial distribution.

(c) Modify the last experiment by doing 10000 repetitions of 100 coin tosses. Comment on the differences
you observe between this histogram and the histogram for 1000 repetitions of tossing 1000 coins.

Tossing multi-sided coins Uniform random numbers can also be used to simulate “coin-toss” experi-
ments where the coin has 3 or more sides. Conceptually this is easy. If there are n sides with probabilities
p1, p2, · · · , pn, you generate r=runif(1) and declare that

Side 1 occurs if r ≤ p1.

Side 2 occurs if p1 < r ≤ p1 + p2

Side 3 occurs if p1 + p2 < r ≤ p1 + p2 + p3

· · ·

Side n occurs if p1 + p2 + · · ·+ pn−1 < r.

To code this compactly in R , note that the outcome depends on the cumulative sums

c1 = p1, c2 = p1 + p2, c3 = p1 + p2 + p3, · · · , cn = 1.

If r is larger than exactly k of these, then the outcome is Side k + 1. Cumulative sums of a vector are
computed using the function cumsum.

As an example, the following code tosses a 5-sided coin with probabilities given by the vector p defined
in the first line:

p=c(.3,.1,.3,.1,.2); b=cumsum(p);
side=sum(runif(1)>b)+1

To toss the coin repeatedly you can use the sapply function, which applies an arbitrary function to all
elements in a vector.

side=sapply(runif(1000),FUN=function(x) sum(x>b)+1)

In the code above the function to be applied is defined within the call to sapply. More complicated
functions can be defined separately, prior to the call, as in the following example:

side.choose=function(x) {sum(x>b) +1}
side=sapply(runif(1000),FUN=side.choose)

Exercise 11.3 Generate 10000 tosses of a 3-sided coin (with your choice of probabilities), and plot a
histogram of the results to verify that your coin is behaving the way it should.

11 COIN TOSSING AND MARKOV CHAINS 31

11.1 Markov chains and residence times

The purpose of the following exercises is to generate synthetic data for single channel recordings from
finite state Markov chains, and to explore patterns in the “data”. Single channel recordings give the
times that a Markov chain makes a transition from a closed to an open state or vice versa. The histogram
of expected residence times for each state in a Markov chain is exponential, with different mean residence
time for different states. To observe this in the simplest case, we again consider coin tossing. The two
outcomes, heads or tails, are the different states in this case. Therefore the histogram of residence times
for heads and tails should each be exponential. The following steps are taken to compute the residence
times:

• Generate sequences of independent coin tosses based on given probabilities.

• Look at the number of transitions that occur in each of the sequences (a transition is when two
successive tosses give different outcomes).

• Calculate the residence times by counting the number of tosses between each transition.

Exercise 11.4 Find the script cointoss.R. This program calculates the residence times of coin tosses
by the above methodology. Are the residence times consistent with the prediction that their histogram
decreases exponentially? Produce a plot that compares the predicted results with the simulated residence
times stored by cointoss.R in the vectors hhist and thist. (Suggestion: use par(ylog=TRUE) to use
a logarithmic scale for the plotted values). Note: a run of exactly k H’s in a row occurs whenever a
T is followed by k H’s in a row and then another T. How many of these should occur in the output of
cointoss.R?

Models for stochastic switching among conformational states of membrane channels are somewhat more
complicated than the coin tosses we considered above. There are usually more than 2 states, and
the transition probabilities are state dependent. Moreover, in measurements some states cannot be
distinguished from others. We can observe transitions from an open state to a closed state and vice
versa, but transitions between open states (or between closed states) are “invisible”. Here we shall
simulate data from a Markov chain with 3 states, collapse that data to remove the distinction between 2
of the states and then analyze the data to see that it cannot be readily modeled by a Markov chain with
just two states. We can then use the distributions of residence times for the observations to determine
how many states we actually have.

We will consider a membrane that has three states: two closed states C1 and C2, and one open state O.
We assume that direct transitions between C1 and O are impossible, but that the intermediate state C2

has a shorter residence time than C1 and O. Here is the transition matrix of a Markov chain we will use
to simulate these conditions:

C1 C2 O

.98 .1 0

.02 .7 .05
0 .2 .95

C1

C2

O

You can see from the matrix that the probability 0.7 of staying in state C2 is much smaller than the
probability 0.98 of staying in state C1 or the probability 0.95 of remaining in state O.

Exercise 11.5 Generate a set of 100000 samples from the Markov chain with these transition proba-
bilities. We will label the state C1 by 1, the state C2 by 2 and the state O by 3. This can be done by
a modification of the method that we used to toss coins with 3 or more sides. The modification is that
the probabilities of each side depend on the current state of the membrane:

12 THE HODGKIN-HUXLEY MODEL 32

nt = 100000;
A = matrix(c(0.98, 0.10, 0, 0.02, 0.7, 0.05, 0, 0.2, 0.95),3,3,byrow=T);
B = apply(A,2,cumsum); #cumulative sums of each column
A; B;
states=numeric(nt+1); rd=runif(nt);
states[1] = 3; # Start in open state
for(i in 1:nt) {

b=B[,states[i]]; #cumulative probabilities for current state
states[i+1]=sum(rd[i]>b)+1 # do the ‘‘coin toss’’ based on current state

}
plot(states[1:1000],type="s");

Notice the use of apply to compute the cumulative sum of each column of the transition matrix, and
type="s" to get a “stairstep” plot of the state transitions (see ?plot).

Exercise 11.6 Compute the eigenvalues and eigenvectors of the matrix A. Compute the total time that
your “data” in the vector states spends in each state (use vector operations to do this!) and compare
the results with predictions coming from the dominant right eigenvector of A.

Exercise 11.7 Produce a new vector rstates by “reducing” the data in the vector states so that
states 1 and 2 are indistinguishable. The states of rstates will be called “closed” and “open”.

Exercise 11.8 Plot histograms of the residence times of the open and closed states in rstates by
applying the methods used in the script cointoss.R. Comment on the shapes of the distributions in
each case. Using your knowledge of the transition matrix A, make a prediction about what the residence
time distributions of the open states should be. Compare this prediction with the data. Show that the
residence time distribution of the closed states is not fit well by an exponential distribution.

12 The Hodgkin-Huxley model

The purpose of this section is to develop an understanding of the components of the Hodgkin-Huxley
model for the membrane potential of a space-clamped squid giant axon. It goes with the latter part of
Chapter 3 in the textbook, and with the Recommended reading: Hille, Ion Channels of Excitable
Membranes, Chapter 2.

The Hodgkin-Huxley model is the system of differential equations

C
dv

dt
= i −

[
gNam3h (v − vNa) + gKn4 (v − vK) + gL (v − vL)

]

dm

dt
= 3

T−6.3
10

[
(1 − m)Ψ

(
−v − 35

10

)
− 4m exp

(
−v − 60

18

)]

dn

dt
= 3

T−6.3
10

[
0.1 (1 − n) Ψ

(
−v − 50

10

)
− 0.125n exp

(
−v − 60

80

)]

dh

dt
= 3

T−6.3
10

[
0.07(1 − h) exp

(
−v − 60

20

)
− h

1 + exp(−0.1(v + 30))

]

(5)

where
Ψ(x) =

x

exp(x) − 1
.

The state variables of the model are the membrane potential v and the ion channel gating variables m,
n, and h, with time t measured in msec. Parameters are the membrane capacitance C, temperature T ,
conductances gNa, gK, gL, and reversal potentials vNa, vK , vL. The gating variables represent channel

12 THE HODGKIN-HUXLEY MODEL 33

opening probabilities and depend upon the membrane potential. The parameter values used by Hodgkin
and Huxley are:

gNa gK gL vNa vK VL T C
120 36 0.3 55 -72 -49.4011 6.3 1

Most of the data used to derive the equations and the parameters comes from voltage clamp experiments
of the membrane, e.g Figure 2.7 of Hille.

In this set of exercises, we want to see that the model reproduces the voltage clamp data well, and
examine some of the approximations and limitations of the parameter estimation. Note that because
T = 6.3 in the parameter set we are using, the prefactor 3

T−6.3
10 in the equations for m, n and h equals 1,

and it can be omitted in all of the exercises. Also, the exercises all consider voltage clamp experiments
in which the membrane potential v(t) is externally imposed, and is constant except for instantaneous
jumps from one value to another. So for the situation we are considering here, the model (5) reduces to:

dm

dt
= (1 − m)Ψ

(
−v − 35

10

)
− 4m exp

(
−v − 60

18

)

dn

dt
= 0.1 (1 − n) Ψ

(
−v − 50

10

)
− 0.125n exp

(
−v − 60

80

)

dh

dt
= 0.07(1 − h) exp

(
−v − 60

20

)
− h

1 + exp(−0.1(v + 30))

(6)

When the membrane potential v is constant, the equations for the gating variables m, n, h are first order
linear differential equations that can be rewritten in the form

τx
dx

dt
= −(x − x∞)

where x is m, n or h.

Exercise 12.1 Re-write the differential equations for m, n, and h in the form above, thereby obtaining
expressions for τm, τn, τh and minf , ninf , hinf as functions of v.

Exercise 12.2 Write an R script that computes and plots τm, τn, τh and minf , ninf , hinf as functions of
v for v varying from −100mV to 75mV. You should obtain graphs that look like Figure 2.17 of Hille.

In voltage clamp, dv
dt = 0 so we obtain the following formula for the current from the Hodgkin-Huxley

model:
i = gNam3h(v − vNa) + gKn4(v − vK) + gL(v − vL)

The solution of the first order equation

τx
dx

dt
= −(x − x∞)

is
x(t) = x∞ + (x(0) − x∞) exp(

−t

τx
)

Exercise 12.3 Write an R script to compute and plot as a function of time the current i(t) obtained
from voltage clamp experiments in which the membrane is held at a potential of −60mV and then
stepped to a higher potential vs for 6msec. (When the membrane is at its holding potential −60mV, the
values of m, n, h approach m∞(−60), n∞(−60), h∞(−60). Use these approximations as starting values.)
As in Figure 2.7 of Hille, use vs = −30,−10, 10, 30,50,70,90 and plot each of the curves of current on
the same graph.

12 THE HODGKIN-HUXLEY MODEL 34

Exercise 12.4 Separate the currents obtained from the voltage clamp experiments by plotting on
separate graphs each of the sodium, potassium and leak currents.

Exercise 12.5 Hodgkin and Huxley’s 1952 papers explain their choice of the complicated functions
in their model, but they had no computers available to analyze their data. In this exercise and the
next, we examine procedures for estimating from experimental data the sodium current parameters
m∞, h∞, τm, τh. However, the data that we will use will be generated by the model itself.

As in Exercises 2 and 3, compute the Hodgkin-Huxley sodium current generated by
a voltage clamp experiment with a holding potential of −90mV and steps to vs =
−80,−70,−60,−50,−40,−30,−20,−10,0. This is your “data”.3 Then using the expression gNam3h(v−
vNa) for the sodium current, estimate m∞, τm, h∞ and τh as functions of voltage from this simulated
data. The most commonly used methods assume that τm is much smaller than τh, so that the activation
variable m reaches its steady state before h changes much. So for times just after the step occurs, you
can assume that m is changing but h is holding constant at its initial value. For times long after the
step (many multiples of τm), you can assume that h is changing but m is holding constant at its steady
state value.

Explain the procedures that you used. Some of the parameters are difficult to determine, especially over
certain ranges of membrane potential. Why? How do your estimates compare with the values computed
in Exercise 1?

Challenge: For the parameters that you had difficulty estimating in the previous exercise, design and
simulate voltage clamp protocols that help you estimate these parameters better. (See Hille, pp. 44-45.)
Describe your protocols and how you estimate the parameters. Plot the currents produced by the model
for your new experiments, and give the parameter estimates that you obtain using the additional “data”
from your experiments. Further investigation of these procedures is a good topic for a course project.

12.1 Getting started

We offer here some suggestions for completing the exercises in this section.

Complicated expressions are often built by composing simpler expressions. In any programming lan-
guage, it helps to introduce intermediate variables. Here, let’s look at the gating variable h first. We
have

dh

dt
= 0.07 exp

(
−v − 60

20

)
(1 − h) − h

1 + exp(−0.1(v + 30)
Introduce the intermediate expressions

ah = 0.07 exp
(
−v − 60

20

)

and
bh =

1
1 + exp(−0.1(v + 30)

Then
dh

dt
= ah(1 − h) − bhh = ah − (ah + bh)h

We can then divide this equation by (ah + bh) to obtain the desired form

τh
dh

dt
= −(h − h∞)

3Analyzing data that come from a model in order to estimate parameters that you already know may sounds a bit crazy
at first, but statisticians do this all the time and many of them are not crazy. Before working with real data, it’s a good
idea to generate artificial “data” from the model with known parameters, and make sure that your approach to fitting the
model allows you to correctly recover the parameters that generated the “data”.

12 THE HODGKIN-HUXLEY MODEL 35

as
1

ah + bh

dh

dt
=

ah

ah + bh
− h.

Comparing these two expressions we have

τh =
1

ah + bh
, h∞ =

ah

ah + bh
.

Implementing this in R to compute the values of h∞(−45) and τh(−45), we write

v = -45;
ah = 0.07*exp((-v-60)/20);
bh = 1/(1+exp(-0.1*(v+30)));
tauh = 1/(ah+bh);
hinf = ah/(ah+bh);

Evaluation of this script gives tauh = 4.6406 and hinf = 0.1534.

To do the second exercise, for th and h∞, we want to evaluate the script for values of v that vary from
-100 to 75. We will do this at integer values of v with a loop. We first make vectors to hold the data,
and then store each value as it is computed:

tauh = rep(0,176); # to start with v = -100, end with v = 75
hinf = rep(0,176);

for(j in 1:176){
v = -101+j; # so v goes from -100 to 75
ah = 0.07*exp((-v-60)/20);
bh = 1/(1+exp(-0.1*(v+30)));
tauh(j) = 1/(ah+bh);
hinf(j) = ah/(ah+bh);

}

The same strategy can be used to compute m∞, τm, n∞, τn, but there is one slight twist: the function
Ψ. This function defined by

Ψ(x) =
x

exp(x) − 1

gives the indeterminate value 0/0 when x = 0, so R cannot evaluate it there. Nonetheless, using
l’Hopital’s rule from calculus, we can define Ψ(0) = 1. When computing the values in R , either avoid
x = 0 or use an if statement to check whether x = 0. It is helpful in writing R scripts to compute the
terms involving Ψ to introduce intermediate variables for its argument:

...
amv = -(v+35.0)/10.0;
am = amv/(exp(amv) - 1);
...

You will need some of the data from the second exercise in completing the third and fourth, and you
should extend the range of v to include v = 90 for these exercises. It is helpful to define the parameters,
a vector t of the time values that you want to use in computing the currents, values of m, n, h at the
holding potential v = −60, values of m∞, n∞, h∞ and τm, τn, τh at the potentials of the steps, arrays that

12 THE HODGKIN-HUXLEY MODEL 36

will hold all of the data for each of the gating variables m, n, h, etc. before you compute the currents.
Use code like m[s,j] = m1[s] + (m0 - m1[s])*exp(-t[j]/mt1[s]) to compute the gating variables,
with m0 the value of m at the holding potential, m1[s] the value of m∞ during the step and mt1[s] the
value of τm during the step. Once these arrays have been computed, use

i = gNam3h(v − vNa) + gKn4(v − vK) + gL(v − vL)

to compute the total current, with gNam3h(v−vNa) and gKn4(v−vK) giving the sodium and potassium
currents.

The fifth exercise requires much more ingenuity than the previous ones. To get started, repeat compu-
tations like those of Exercise 3 to generate the sodium current data used in the exercise. Currents must
be converted to conductances by dividing by (v − vNa). After this is done, strategies must be developed
to estimate m∞, h∞, τm, τh. Frequently used procedures assume that

1. the experiment starts at a potential sufficiently hyperpolarized that there is no inactivation (i.e.
h = 1) and

2. activation is so fast relative to inactivation that m reaches its steady state before h has changed
significantly.

This separation of time scales – m changing much faster than h because τm � τh – means that early,
rapid changes in conductance are caused by changes in m, while later, slower changes in conductance
are caused by changes in h. One can then estimate m∞ and τm from the increasing portion of the
conductance traces, assuming that h = 1 during this entire period of time, so that the conductance is
gNam3. Then to estimate τh we assume that the decreasing “tail” of the conductance curve is given by
gNam3

∞h(t), because m(t) has already converged to its steady state.

It is easier to estimate h∞ from a different set of voltage traces, having different values of the holding
potential v0, followed by a step to another potential v1 that is the same for each trace. In this protocol
we start with h partially inactivated (i.e. h < 1), so the peak conductance during the subsequent trace
is proportional to the initial value of h, which is h∞(v0). A plot of peak conductance as a function of v0

is then proportional to a plot of h∞ as a function of v0. The constant of proportionality can be inferred
from the fact that the maximum value of h∞(v) is 1. Consult Hille for further descriptions of these
protocols.

13 SOLVING SYSTEMS OF DIFFERENTIAL EQUATIONS 37

13 Solving systems of differential equations

R built-in functions make it relatively easy to do some complicated things. One important example is
finding numerical solutions for a system of differential equations

dx

dt
= f(t, x).

Here x is a vector assembled from quantities that change with time, and the vector field f gives their
rates of change. The Hodgkin-Huxley model from the last section is one example. Here we start with the
simple model of a gene regulation network from Gardner et al. (2000) that is described in the textbook.
The model is

du

dt
= −u +

αu

1 + vβ

dv

dt
= −v +

αv

1 + uγ

(7)

The variables u, v in this system are functions of time. They represent the concentrations of two repressor
proteins Pu, Pv in bacteria that have been infected with a plasmid containing genes that code for Pu and
Pv. The plasmid also contains promoters, with Pu a repressor of the promoter of the gene coding for Pv

and vice-versa.

The equations are a simple compartment model describing the rates at which u and v change with time.
Pu degrades at rate 1 (so the loss rate is −1×u) and it is produced at a rate

αu

1 + vβ
, which is a decreasing

function of v. The exponent β models the cooperativity in the repression of Pu synthesis by Pv. The

processes of degradation and synthesis combine to give the equation for
du

dt
, and the equation for

dv

dt
is

similar.

There are no explicit formulas to solve this pair of equations, but we can interpret what the equations
mean geometrically. At each point of the (u, v) plane, we regard (du

dt , dv
dt) as a vector that gives the

direction and magnitude for how fast (u, v) jointly change as a function of t. Solutions to the equations
give rise to parametric curves (u(t), v(t)) whose tangent vectors (du

dt , dv
dt) are those specified by the

equations.

To plot the vector field, first run the script DMBpplane.R (this script is based on pplane.R by Daniel
Kaplan, Department of Mathematics, Macalester College, and has been modified and used here with
his permission). This script includes a function that computes the vector field for model (7) with the
assumption that αu = αv:

toggle=function(u,v,parms) {
du= -u + parms[1]/(1+v^parms[2]);
dv= -v + parms[1]/(1+u^parms[3]);
return(c(du,dv));

}

Note how this function is set up:

• Its input arguments are the two state variables u,v and a parameter vector parms. Even if parms
is not used by the function, it must be included in the list of arguments (you can set parms=0).

• The function returns the vector field as a vector.

• The computations are set up so they will go through if u and v are matrices of equal size. This
eliminates the needs for for-loops in many of the computations that we will use to study vector
fields.

13 SOLVING SYSTEMS OF DIFFERENTIAL EQUATIONS 38

Use this setup for any vector field that you want to study using the functions in DMBpplane.R.

The function phasearrows (also in DMBpplane.R) can then be used to plot the vector field, as in this
example:

phasearrows(fun=toggle,xlim=c(0,3),ylim=c(0,3),resol=25,parms=c(3,2,2))

In this statement, fun is the name of the function that calculates the vector field, xlim and ylim define
the range of values for the plot, and setting resol=25 means that arrows showing the vector field will
be drawn at a 25×25 grid of points within the plotting region. The parameter vector parms is passed to
the vector field function – this argument can be omitted if the vector field function does not use parms.

Exercise 13.1 Run DMBpplane.R to create the toggle function, and then use the command above
to plot the vector field.

We can think of solutions to (7) as curves in the plane that “follow the arrows”. Given a starting
point (u0, v0), the mathematical theory discussed in the textbook proves that there is a unique solution
(u(t), v(t)) with (u(0), v(0)) = (u0, v0). The process of finding the solution numerically is called numer-
ical integration. Methods for numerical integration build up an approximate solution by adding short
segments of an approximate solution curve, one after another.

R ’s numerical ODE solvers are in the odesolve package. Download this (if necessary) from CRAN, and
then use the command library(odesolve) to load it into your R session.

Exercise 13.2 After you load the odesolve library, use ?rk4 to look at the syntax for this function.

To use R ’s ODE solvers, the first step is to write a function to evaluate the vector field in the specific
format required by the solvers. Here’s what that looks like for the toggle switch model:

Toggle=function(t,y,parms) {
u=y[1]; v=y[2];
du= -u + parms[1]/(1+v^parms[2]);
dv= -v + parms[1]/(1+u^parms[3]);
dY=c(du,dv);
return(list(dY));

}

There’s a bit to digest in that. Here are the things to note:

1. The function must have input arguments (t,y,parms), even if only the state vector y is used to
compute the vector field. Here t is time, y is the state vector, and

2. parms is again a vector of parameter values for the function. This allows you to see how solutions
change as parameters are varied, without having to re-write and re-run the function. It also
simplifies the process of fitting differential equations to data.

3. The vector field value has to be returned as a list, which is why we need both toggle and Toggle.
There’s a good reason for this; if you’re curious and have way too much free time on your hands,
?lsoda gives the explanation. You’ve been warned.

The “basic” ODE solver in R is rk4, which implements the 4th-order Runge Kutta method with a fixed
time step. The format is

out=rk4(x0,times,func,parms)

13 SOLVING SYSTEMS OF DIFFERENTIAL EQUATIONS 39

Here times is a vector of the times at which you want solution values, x0 is the value of the state vector
at the initial time (i.e. times[1]), func func is the function specifying the model (such as Toggle), and
parms is the vector of parameter values that will be passed to func.

Here is an example using our Toggle function:

x0=c(.2,.1); times=seq(0,50,by=0.2); parms=c(3,2,2);
out=rk4(x0,times,Toggle,parms)
matplot(out[,1],out[,2:3],type="l",ylim=c(0,3),xlab="time t",ylab="u,v");

Exercise 13.3 Write a script toggle.R with the commands above, and run them to see some solution
trajectories as a function of time. Which plotted curve is u, and which is v? How do you know? Look
at the matrix out to see how it is set up: the first column is a list of times, and the other columns are
the computed (approximate) values of the state variables at each time.

The state trajectories both seem to be approaching constants, and that these constants have different
values. A second way of looking at the trajectories (Exercise: do this yourself right now) is:

plot(out[,2],out[,3],type="l",xlab="u",ylab="v")

This kind of plot is called a phase portrait. It shows the path in the (u, v) phase plane taken by the
trajectory, but we lose track of the times at which the trajectory passes through each point on this path.

Exercise 13.4 Use rk4 again with initial conditions (0.2, 0.3) to produce a new output matrix out2
and plot phase portraits of both solutions. Do this first for time interval [0, 50] and again for [0, 200].

The trajectories appear to end at the same places, indicating that they didn’t go anywhere after t = 50.
We can explain this by observing that the differential equations vanish at these endpoints. The curves
where du

dt
= 0 and dv

dt
= 0 are called nullclines for the vector field. They intersect at equilibrium points,

where both du
dt

= 0 and dv
dt

= 0. The solution with initial point an equilibrium is constant. Here, the
equilibrium points are (asymptotically) stable, meaning that trajectories close to the equilibria approach
them as t increases.

Nullclines for a general vector field can be plotted using the function nullclines in DMBpplane.R. The
syntax is the same as phasearrows, for example:

nullclines(fun=toggle,xlim=c(0,3),ylim=c(0,3),resol=250,parms=c(3,2,2))

It is a good idea to use a large value of resol so that the nullclines are found accurately.

Exercise 13.5 Without erasing the nullclines, add to that plot (using points) the two solution trajec-
tories with different initial conditions that you have computed (out and out2 from previous exercises).
You should see that each trajectory converges to an equilibrium point where the nullclines intersect.

Exercise 13.6 There is a third equilibrium point where the two nullclines intersect, in addition to the
two at the ends of the trajectories that you have computed. Experiment with different initial conditions,
to see if you can find any trajectories that converge onto this third equilibrium (Hint: what happens in
this model if u(0) = v(0) for these parameter values?)

Exercise 13.7 Change the value of α from 3 to 1.5. How does the phase portrait change? Plot the
nullclines to help answer this question.

13 SOLVING SYSTEMS OF DIFFERENTIAL EQUATIONS 40

13.1 Always use lsoda!

The “industrial strength” solver in R is lsoda. This is a front end to a general-purpose differential equa-
tion solver (called, oddly enough, lsoda) that was developed at Lawrence Livermore National Laboratory.
The full calling format for lsoda is

lsoda(y, times, func, parms, rtol=1e-06, atol=1e-06, tcrit=NULL,
jacfunc=NULL, verbose=FALSE, dllname=NULL, hmin=0, hmax=Inf)

Don’t panic. Sensible defaults are provided for everything but the arguments required by rk4, so lsoda
can be called just like rk4:

out=lsoda(x0,times,Toggle,parms=c(3,2,2))
matplot(out[,1],out[,2:3],type="l",ylim=c(0,3));

Usually you can get away with doing this, and here we always will. The options rtol and atol can be
used to control the accuracy that the numerical integration tries to achieve, by using smaller time steps.
lsoda automatically adjusts step sizes to achieve the desired error tolerance (based on error estimates
that it calculates), whereas rk4 always goes directly from one value in times to the next.

One key reason for using lsoda rather than rk4 is stiffness. Differential equations are called stiff if they
have some variables or combinations of variables changing much faster than others. Stiff systems are
harder to solve than non-stiff systems and require special techniques. The lsoda solver monitors the
system that it is solving for signs of stiffness, and automatically switches to a stiff-system solver when
necessary. Many biological models are at least mildly stiff, so for real work you should always use lsoda
rather than rk4. The only time to try rk4 is when lsoda fails on your problem, returning an error
message rather than a solution matrix. You may get a clue as to the reason by trying rk4 with a very
small time step and seeing how the solutions behave, e.g., does a state variable blow up to infinity in
finite time?

Exercise 13.8 Write a script using lsoda to solve the Lotka-Volterra model

dx1/dt = x1(r1 − x1 − ax2)
dx2/dt = x2(r2 − x2 − bx1)

in which the parameters r1, r2, a, b are all passed as parameters via the argument parms. Generate
solutions for the same parameter values with rk4 and lsoda, and compare the results.

Exercise 13.9 Write a script using lsoda to solve the constant population size SIR model with births,

dS/dt = µ(S + I + R) − βSI − µS

dI/dt = βSI − (γ + µ)I
dR/dt = γI − µR

For parameter values µ = 1/60, γ = 25 (corresponding to a mean lifetime of 60 years, and disease
duration of 1/25 of a year) and population size S(0)+ I(0)+R(0) = 1000000, explore how the dynamics
of the disease prevalence I(t) changes as you increase the value of β from 0.

13.2 The logs trick

In many biological models the state variables always must be non-negative, but a numerical ODE solver
doesn’t know this. If a variable decreases rapidly to near-zero values in the exact solution, a numerical

14 EQUILIBRIUM POINTS AND LINEARIZATION 41

approximate solution might overshoot to a negative value, leading to nonsense. For example, suppose
that the number of infectives becomes negative in a standard SIR-type infectious disease model, the
transmission rate βSI becomes negative. So contacts between susceptibles and infectives still occur, but
their effect in the model is to make the sick one become healthy, pushing I even more negative. Once a
model goes down the rabbit hole, it may never come back.

This problem can often be fixed by a simple trick that is often used but rarely written down. The trick
is to transform the model onto natural-log scale, solve the transformed model, and back-transform the
output. This is much easier than it sounds, because of the fact that for any state variable x(t),

d(log x(t))
dt

=
1

x(t)
dx

dt
. (8)

This means that you can compute the untransformed vector field dx/dt, and then get the tranformed
vector field with a single element-by-element division. For example, here is the function that computes
the toggle-switch model vector field on log scale. The input argument logy is the log-transformed state
vector (logu, logv).

Toggle.log=function(t,logy,parms) {
y=exp(logy);
u=y[1]; v=y[2];
du= -u + parms[1]/(1+v^parms[2]);
dv= -v + parms[1]/(1+u^parms[3]);
dY=c(du,dv);
return(list(dY/y));
}

There are only two differences from the original Toggle: the first line that back-transforms from logy to
y, and the last line that uses equation (8) to compute the vector field of the log-transformed state vector.
And there are just two minor differences in the call to lsoda: log-transforming the initial conditions, and
back-transforming the output.

x0=log(c(.2,.1)); times=seq(0,50,by=1); parms=c(3,2,2);
out=lsoda(x0,times,Toggle.log,parms);
out[,-1]=exp(out[,-1]) #column 1 is time, which was not transformed
matplot(out[,1],out[,2:3],type="l",ylim=c(0,3),xlab="time t",ylab="u,v");

The logs trick is not a panacea. It can even create problems that weren’t there originally. If a positive
state variable converges to 0 in non-transformed numerical solutions, then on log scale it is diverging to
−∞, potentially leading to numerical overflow errors.

Exercise 13.10 Write a script to solve the Lotka-Volterra model (in the previous subsection) using
the log trick. Note that for this model you can do (8) in your head and avoid the dY/y calculation.

14 Equilibrium points and linearization

This section continues our study of differential equations with R . We will investigate the computation
of equilibrium points and their linearization. Recall that an equilibrium point of the system dx

dt = f(x)
is a vector x0 in the phase space where f(x0) = 0. If the model’s state vector has dimension n, the
equilibrium condition f(x0) = 0 is a system of n equations in n variables that may have multiple
solutions, or no solutions at all.

14 EQUILIBRIUM POINTS AND LINEARIZATION 42

Solving nonlinear equations is a difficult task for which there are no sure-fire algorithms. Newton’s
method is a simple iterative algorithm that is usually very fast when it works, but it doesn’t always work.
Newton’s method takes as its input a starting value of x0, ideally one that is close to the solution of
f(x0) = 0 that we seek. It evaluates y0 = f(x0) and terminates if the magnitude of y0 is smaller than a
desired tolerance. If y0 is larger than the desired tolerance, then a new value x1 is computed from the
solution of the linear or tangent approximation to f at x0:

f(x) ≈ L(x) = f(x0) + Df(x0)(x − x0)

Here Df(x0) is the n×n Jacobian matrix of the partial derivatives of f evaluated at x0 – the jth column
of Df is the derivative of f with respect to the jth state variable. If Df(x0) is an invertible matrix,
then we can solve the linear system L(x) = 0 for x, yielding the new value of x:

x1 = x0 − [Df(x0)]−1f(x0)

So we replace x0 by x1 and start over again by evaluating f(x1). If its magnitude is small enough, we
stop. Otherwise, we take x1 as our new “starting value” and repeat the process to find a point x2 that
is (hopefully) closer to being a solution of f(x) = 0.

Close to a solution of f(x) = 0 at which Df(x) is an invertible matrix, Newton’s method converges
“quadratically”, meaning that the error after one additional iteration is proportional to the current
error squared – which is a very good thing one the error has become small.

The function newton in DMBpplane.R implements Newton’s method functions set up in the format used
for solving differential equations with rk4 or lsoda. So we can apply Newton’s method to our toggle
switch model (7) using the commands

newton(Toggle,x0=c(2.5,0.4),parms=c(3,2,2))

The function newton has three optional arguments for which default values are provided: the maximum
number of iterations niter, the convergence tolerance tol, and the increment inc used to compute
Jacobian matrices Df by finite-difference approximation to the derivatives.

Exercise 14.1 Download and run DMBpplane.R, and then run the command above. Note that the
values of the state variables are displayed at each iteration. Recall that for these parameter values there
are three equilibrium points. Choose different values of x0 to find the other two equilibrium points.

The file repress.R implements the six dimensional repressilator model of Elowitz and Leibler:

repress=function(t,y,p){
dy = rep(0,6);
dy[1] = -y[1] + p[1]/(1.+y[6]^p[4])+ p[2];
dy[2] = -y[2] + p[1]/(1.+y[4]^p[4])+ p[2];
dy[3] = -y[3] + p[1]/(1.+y[5]^p[4])+ p[2];
dy[4] = -p[3]*(y[4]-y[1]);
dy[5] = -p[3]*(y[5]-y[2]);
dy[6] = -p[3]*(y[6]-y[3]);
return(list(dy))

}

Note that to save typing parms is replaced here by p – the name doesn’t matter so long as it’s in the
right place in the list of arguments.

Exercise 14.2 Use lsoda and repress to reproduce the textbook figure that shows oscillations in this
model by computing and graphing a trajectory for this model with parameters parms = c(50,0,0.2,2).
Almost any initial conditions should work – try x0 = 2*runif(6)

14 EQUILIBRIUM POINTS AND LINEARIZATION 43

Exercise 14.3 Use Newton’s method to compute an equilibrium point of the repressilator for the same
values of the parameters.

We can use eigenvalues and eigenvectors as tools to study solutions of a vector field near an equilibrium
point x0, as discussed in the textbook. The basic idea is that we approximate the vector field by the
linear system

dw

dt
= Aw

where A is the n×n matrix Df(x0) that newton computes for us and w = x−x0. In many circumstances
the phase portrait of this linear system will look similar to the phase portrait of dx

dt = f(x). Now, if v
is an eigenvector of A with eigenvalue λ, the curve

w(t) = exp(tλ)v

is a solution of dw
dt

= Aw because Av = λv.

If the eigenvalue λ is negative, then the exponential exp(tλ) → 0 as t → ∞. Complex eigenvalues give
solutions that have trigonometric terms: exp(it) = cos(t) + i sin(t). Whenever the real parts of all the
eigenvalues are negative, the equilibrium point is linearly stable. Otherwise it is unstable.

Exercise 14.4 Compute the eigenvalues of the Jacobian at the equilibrium point that you found for
the repressilator model (recall that the Jacobian at the equilibrium is one of the components of the
object returned by newton). Now change the parameters to parms = c(50,1,0.2,2) and recompute
the equilibrium point and its eigenvalues.

Exercise 14.5 Compute the eigenvalues of the three equilibrium points for the toggle switch model
with parms = c(3,2,2) – by plotting the nullclines you will be able to pick starting conditions for
newton near each of these. You should find that the two equilibria off the diagonal are stable. The
equilibrium point on the diagonal has one positive and one negative eigenvalue, making it a saddle.

Exercise 14.6 Continuing with the toggle switch model: choose initial points x = x0 ± εw1 where
0 < ε � 1 and w1 is the eigenvector of the Jacobian corresponding to the positive eigenvalue. Compute
and plot (on the same graph as the nullclines) solution trajectories starting at these points. These
trajectories are an approximation to the unstable manifold of the saddle.

Exercise 14.7 Next do the same for the eigenvector w2 corresponding to the negative eigenvalue, but
integrate backward in time; i.e., choose a negative final time for your integration. These trajectories
approximate the stable manifold of the saddle.

15 PHASE-PLANE ANALYSIS AND THE MORRIS-LECAR MODEL 44

Parameter Set 1 Set 2
gCa 4.4 5.5
gK 8 8
gL 2 2
vCa 120 120
vK -84 -84
vL -60 -60
C 20 20
φ 0.04 0.22
i 90 90
v1 -1.2 -1.2
v2 18 18
v3 2 2
v4 30 30

Table 8: Parameter sets for the Morris-Lecar model.

15 Phase-plane analysis and the Morris-Lecar model

Recommended reading: Rinzel and Ermentrout, Analysis of Neural Excitability and Oscillations.
In: Koch and Segev, Methods in Neuronal Modeling: From Synapses to Networks (2nd edition). MIT
Press, Cambridge, MA (1998).

In this section we continue to study phase portraits of two-dimensional vector fields, using the Morris-
Lecar model for the membrane potential of barnacle muscle fiber. The differential equations for the
Morris-Lecar model are

C
dv

dt
= i − gCam∞(v)(v − vCa) − gKw(v − vK) − gL(v − vL)

τw(v)
dw

dt
= φ(w∞(v) − w)

m∞(v) = 0.5
(

1 + tanh(
v − v1

v2
)
)

w∞(v) = 0.5
(

1 + tanh(
v − v3

v4
)
)

τw(v) =
1

cosh
(

v − v3

2v4

)

(9)

The parameters used in the textbook are listed in table 8.

For phase-plane analysis we recommend stepping outside R and using a specialized tool. If your computer
lab has Matlab installed you can use John Polking’s pplane, which runs inside Matlab but does not
require any knowledge of the Matlab language. Another fine option is Bard Ermentrout’s open-source
program XPP (Ermentrout 2002). Finally, we provide an R utility called Rpplane that includes the
essential tools for the phase-plane exercises here and in the textbook, but not much else.

Using pplane At this writing, pplane for various versions of Matlab can be obtained at
http://math.rice.edu/∼dfield. Download the appropriate versions pplane?.m and dfield?.m into
any convenient folder. Then start Matlab, and use File/open on the Matlab menu bar to load pplane?.m

15 PHASE-PLANE ANALYSIS AND THE MORRIS-LECAR MODEL 45

into the Matlab script editor. In the editor, use Debug/run to start pplane.4

To load the Morris-Lecar model into pplane, download the file ML.pps from the textbook webpage. In
the Pplane7 setup window, use File/load a system... and select ML.pps. The “default” system in the
setup window will then be replaced by the Morris-Lecar model, with two parameters free to be varied,
gCa and φ. Click on the Proceed bar at the bottom right of the setup window; this will open a graph
window in which you can work with the phase portrait. Everything you need is in the menus, but it will
take a bit of looking around or a guided tour by your instructor.

Using XPP The home page for XPP is www.math.pitt.edu/∼bard/xpp/xpp.html; you can
download the source code and binaries for various operating systems, including (at this writing)
OS X. For Windows PCs, the best option at this writing appears to be the one described at
www.math.pitt.edu/∼bard/xpp/ezwin.html, with links to all required files. Also download the file
MLdmb.ode from the textbook web page, and save it into any convenient folder. If you follow Bard’s
directions for installing XPP, you’ll be able to launch the program by first starting the X server that
you installed, and then drag-and-drop a model-definition file, such as MLdmb.ode, onto the xpp.bat icon
on your desktop. There’s some online documentation and a tutorial for XPP at its home page, and full
details in Ermentrout (2002).

Using Rpplane The function Rpplane is included in DMBpplane.R. The syntax is

Rpplane(fun,xlim,ylim,parms=NULL,add=F,ngrid=5,maxtime=100)

• fun is the function defining the vector field, which needs to be in the format of the toggle function
of the last section.
• xlim,ylim define the plotting region.
• parms is the vector of any parameter values that are used by fun.
• add indicates whether the results should be displayed on the currently active graphics device.
• ngrid is the number of grid points used for plotting a grid of trajectories
• maxtime is the time interval over which solution trajectories are computed

So Rpplane(ml,c(-60,40),c(-0,1),parms=c(5.5,0.22),maxtime=250); will launch Rpplane with
parameters gCa = 5.5, φ = 0.22 using the ml function that defines the vector field in DMBpplane.R,
drawing trajectories out to time t = 250, and default values for the other arguments. A high value of
maxtime is needed in this system for drawing the stable/unstable manifolds of saddle points.

Always start by drawing the nullclines or phase arrows. You can then add to those plots by selecting
from the menu. To start a trajectory, find a fixed point or get the local stable/unstable manifold for a
saddle, you need to click on the current graph to select the starting point. Fixed points with complex
eigenvalues are plotted as circles (closed = stable, open = unstable), those with real eigenvalues are
plotted as triangles. The fixed points and their eigenvalues are printed to the console window. At
saddles, the unstable manifold is plotted in red and the stable manifold in blue.

Exercise 15.1 Compute phase portraits for the Morris-Lecar model at the two different tabulated sets
of parameter values. Label

• Each of the equilibrium points by type,

• The stable and unstable manifolds of any saddle points
4Note that “?” here is a pplane version number, not literally a question mark. At this writing pplane7 is the latest

version, so you would download pplane7.m and dfield7.m, and load pplane7.m to get it started.

15 PHASE-PLANE ANALYSIS AND THE MORRIS-LECAR MODEL 46

• The stability of the periodic orbits.

It’s OK to print the graph out and do the labeling by hand, or you can use the text function in the
Console window to add text to an existing plot.

Bifurcations of a system occur at parameters where the number of equilibria or periodic orbits change.
The typical bifurcations encountered while varying a single parameter at a time in a system with at
most a single saddle point are

1. Saddle-node bifurcation: The Jacobian at an equilibrium points has a zero eigenvalue.

2. Hopf bifurcation: The Jacobian at an equilibrium point has a pair of pure imaginary eigenvalues.

3. Homoclinic bifurcation: There is a trajectory in both the stable and unstable manifold of a
saddle.

4. Saddle-node of limit cycle bifurcation: A periodic orbit has double eigenvalue 1.

The changes in dynamics that occur at each kind of bifurcation are discussed in Chapter 5 of the
textbook.

Exercise 15.2 At saddle-node bifurcations, two equilibria appear or disappear. Figure 5.14 of the
textbook shows that as gCa is varied, saddle-node bifurcations occur near gCa = 5.32 and gCa = 5.64.
Compute phase portraits for values of gCa near these bifurcations, describing in words how the phase
portraits change.

Exercise 15.3 Now set gCa = 5.5 and vary φ in the range from (0.04, 0.22). Show that both Hopf
and homoclinic bifurcations occur in this range. What are the approximate parameter values at which
bifurcations occur? Draw labeled phase portraits on both sides of the bifurcations, indicating the changes
that occur.

Exercise 15.4 Hopf bifurcations are supercritical if stable periodic orbits emerge from the equilibrium
and subcritical if unstable periodic orbits emerge from the equilibrium. Is the Hopf bifurcation you
located in the previous exercise subcritical or supercritical? Explain how you know.

Exercise 15.5 With gCa set to 4.4, show that the two periodic orbits you computed in the first
exercise approach each other and coalesce as φ is increased. This is a saddle-node of limit cycles (snlc)
bifurcation. Draw phase portraits on the two sides of the bifurcations.

Exercise 15.6 For parameter values φ = 0.33 and gCa varying near the saddle-node value approxi-
mately 5.64, the saddle-node is a snip. Explain what this is using phase portraits as an illustration.

16 SIMULATING DISCRETE-EVENT MODELS 47

16 Simulating Discrete-Event Models

This section is an introduction to simulating models that track discrete agents (organisms, molecules,
neurons) as they change in state, as an alternative to compartment models that assume large numbers
of agents. It can can be regarded as a warmup for simulating finite-population disease models (Chapter
6 in the textbook), or as some simple examples of agent-based models (Chapter 8).

Figure 3 shows a compartment model for biased movement of particles between two compartments. The
corresponding system of differential equations is

dx1
dt = Lx2 − Rx1

dx2
dt = Rx1 − Lx2

(10)

1

ρ21=Rx1−−−−−→
←−−−−
ρ12=Lx2

2

Figure 3: Compartment diagram for biased movements between 2 compartments.

Even for molecules – but much more so for individuals catching a disease – changes in state are discrete
events in which individuals move one by one from one compartment to another. In some cases, such as
molecular diffusion, transitions can really occur at any instant. But for modeling purposes we can have
transitions occurring at closely-spaced times dt, 2dt, 3dt, · · · for some short time step dt, and allow each
individual to follow a Markov chain with transition matrix

A =
[

1 − (R × dt) L × dt
R × dt 1 − (L × dt)

]

In TwoState.R the movement decisions for many particles are made by using runif to toss many coins
at once. If there are N particles in compartment 1, each with probability Rdt of moving to compartment
2, then sum(runif(N)<R*dt) simulates the combined outcome (number moving) from all of the “coin
tosses”. Note in TwoState.R that at each time step, first all coins are tossed – for all particles in all
compartments – and only then are particles moved to update the state variables. Note also the use of
ifelse to avoid trying to toss zero coins (and see ?ifelse).

Each simulation of the model will have a different outcome, but some properties will be more or less
constant. In particular

1. Once dt is small enough to approximate a continuous-time process, further decreases in dt have
essentially no effect on the behavior of simulations. Roughly, dt is small enough to model continuous
time if there would be practically no chance of an individual really doing 2 or more things in a
time interval of length dt. For this model, that means that we must have (Rdt) × (Ldt) � 1, i.e.
dt � 1/

√
RL.

2. A compartment’s typical range of departures from solutions of the differential equation are of order
1/

√
n where n is the expected number of particles in the compartment.

If there are many particles, coin-tossing with runif becomes slow. Instead, we can recall that the
binomial random variable B(N, p) is the number of heads in N coin-tosses with probability p of heads
on each toss. In R , binomial-distributed random numbers are generated by the rbinom function. The
syntax is:

17 SIMULATING DYNAMICS IN SYSTEMS WITH SPATIAL PATTERNS 48

>> rbinom(n,N,p)

This generates a vector of n random numbers from a B(N, p) distribution. The script file TwoState2.R
uses rbinom instead of runif to do the coin tosses.

Exercise 16.1 The pure death process in discrete time tracks a population of initial size N in which
the only events are the occasional death of individuals. Between times t and t + 1, each individual alive
at time t has probability p of death, and probability 1−p of surviving to time t+1, independent of what
happens to any other individual in the population. Eventually everybody is dead, so the main summary
measure of a simulation run is the time it takes until the population is extinct.

Write an R script to simulate the pure death process by using coin-tossing as in the two-compartment
example above. That is, if it is now time t and there are N (t) individuals still alive, we do N (t)
coin-tosses with probability p of Heads(=death) and subtract those from the current population. This
continues until everyone is dead. The first line of your m-file should specify the values of N and p, e.g.

N=250; p=0.05;

Exercise 16.2 One run of a stochastic model is not the whole story, because the next run will be
different. One needs to do multiple runs, and look at the distribution of possible outcomes. Extend your
m-file from the last exercise so that it does 100 runs of the pure death process (with the same value of
N and p), stores the time at which the population goes extinct in each run, computes the mean and
standard deviation of extinction times across runs, and plots a histogram of the extinction times.

Exercise 16.3 Let’s give the two-compartment example a totally different interpretation. We have n
potential sites for local populations in a landscape, which can either be empty (state=1) or occupied
(state=2). Then R is the chance that an empty site becomes occupied, and L is the chance that an
occupied site becomes extinct. It’s plausible that L is constant over time, but the rate at which empty
sites are occupied should depend on the how many sites are occupied. So, modify TwoState2.m so that
in each time step, R is proportional to the number of occupied (state=2) sites. Note that you should
choose parameters so that R is never bigger than 1 – that is, even if only one site is empty, that site has
some probability of remaining empty.

Exercise 16.4 Modify your script from the last exercise so that it runs until all sites are in state 1 or
until t = 100, whichever comes first, and prints out the extinction time (the population as a whole goes
extinct when all sites are in state 1). Find parameters such that extinction at or before t=100 is likely
but not 100% certain.

17 Simulating dynamics in systems with spatial patterns

Recommended reading: Winfree (1991).

The purpose of this section is to investigate the formation of spiral waves by a reaction-diffusion mech-
anism in the simplest possible manner. The system of equations that we study has as its reaction
mechanism the Fitzhugh-Nagumo model that is often used as a caricature for the Hodgkin-Huxley equa-
tions:

∂u

∂t
=

1
e
(u − u3

3
− v) + D

(
∂2u

∂x2
+

∂2u

∂y2

)

∂v

∂t
= e(u + b − 0.5v)

(11)

In this form of the model the substance v does not diffuse - the model is the extreme limit of the
differing diffusion constants that are required for pattern formation by the Turing mechanism. In an
electrophysiological context, v represents the gating variable of a channel (which does not move), while
u represents the membrane potential which changes due to diffusion of ions in the tissue as well as by

17 SIMULATING DYNAMICS IN SYSTEMS WITH SPATIAL PATTERNS 49

transmembrane currents. The tissue could be the surface of the heart, or (with one space dimension) a
nerve axon.

To solve equation (11) we want to discretize both space and time, replacing the derivatives in the
equations by finite differences. For the time derivatives, we estimate

∂u

∂t
(x, y, t) ≈ u(x, y, t + h) − u(x, y, t)

h

and
∂v

∂t
(x, y, t) ≈ v(x, y, t + h) − v(x, y, t)

h

h being the time step of the method. For the spatial derivatives, we estimate

∂2u

∂x2
(x, y, t) ≈

∂u
∂x

(x, y, t) − ∂u
∂x

(x − k, y)
k

≈ u(x + k, y, t) − u(x, y, t) − (u(x, y, t)− u(x − k, y, t))
k2

and

∂2u

∂y2
(x, y, t) ≈

∂u
∂y (x, y, t) − ∂u

∂y (x, y − k, t)

k
≈ u(x, y + k, t) − u(x, y, t) − (u(x, y, t) − u(x, y − k, t))

k2

The values of the function u “in the lower-left corner” of the lattice is given by

...
...

...
...

u(k, 3k, t) u(2k, 3k, t) u(3k, 3k, t) · · ·
u(k, 2k, t) u(2k, 2k, t) u(3k, 2k, t) · · ·
u(k, k, t) u(k, 2k, t) u(3k, k, t) · · ·

We will work with a rectangular domain and impose no flux boundary conditions. This means that none
of the u material should flow out of the domain due to the diffusion. Each of the terms of the form
u(x, y) − u(x − k, y) in the discretized Laplacian represents the net material flowing between two sites.
Therefore, if we surround the domain by an additional “ring” of sites that take the same values as those
at the adjacent site in the interior of the domain, then we can apply the discrete approximation of the
Laplacian throughout the domain, including the sites at the domain boundary. Using this trick, the
following R function calculates the right hand side of our discretized operator for the arrays u and v:

sfn=function(u,v) {
ny = dim(u)[1]; nx = dim(u)[2];
uer = cbind(u[,1],u,u[,nx]); # u with extra rows
uec = rbind(u[1,],u,u[ny,]); # u with extra columns
ul = uec[3:(ny+2),]+uec[1:ny,]+uer[,1:nx]+uer[,3:(nx+2)]-4*u;
uf = (u-0.3333*u*u*u-v)/e + dx2*ul;
vf = e*(u + b-0.5*v);
return(list(uf=uf,vf=vf));

}

An important practical consideration here is that there are no loops. Everything is written as matrix
operations. The program is already quite slow to run - loops would make it intolerable.

We use the simple Euler method to update the points, and plot the results:

sfn.run=function(nsteps,init) {
u=init$u; v=init$v;

17 SIMULATING DYNAMICS IN SYSTEMS WITH SPATIAL PATTERNS 50

for(i in 1:nsteps){
out=sfn(u,v);
u = u+h*out$uf; v = v+h*out$vf;
if(i%%5==1) image(1:dim(u)[2],1:dim(u)[1],t(u),col=rainbow(n=100,start=0,end=0.7))

}
return(list(u=u,v=v));

}

Because each time step depends on the results from the previous step, we do need a for-loop to iterate
the model over time. The value returned by sfn.run is the final state of the model, suitable for use as
a new “initial condition” to continue the run.

The file sfn.R includes everything needed to produce and plot simulations of spiral patterns. First,
select and run (using the R script editor or a text editor) the block of code with the functions sfn and
sfn.run. Then select and run the code for the first parameter set/initial condition at the bottom of the
script. The command

nsteps=1000; # or however long you want to run it
out=sfn.run(nsteps,init1)

will then run the model with the first parameters and initial conditions for 1000 iterations. To continue
the model run, you can use sfn.run again, but starting from the model state at the last time step:

out=sfn.run(nsteps,out)

Here are some more things things that you can do with these files:

• Restart the model using the second set of parameters and initial conditions, and see what happens
when spiral waves collide with with one another.

• Figure 13 from Winfree (1991) shows a (b, e) bifurcation diagram for the rotor patterns that he
studied. Can you reproduce some of these patterns?

• Experiment with changing the spatial discretization parameter k. What effect do you expect to
see on the spatial pattern?

• Experiment with gradually increasing the time step h. You should discover that solutions quickly
go from reasonable to nonsensical, or the computation crashing. It is characteristic of explicit
solution methods, such as those in sfn.run, that very small values of h are needed to keep numerical
solutions from becoming unstable and developing errors that grow exponentially fast.

17.1 General method of lines

The solution method in sfn.R consists of three steps:

1. Space is discretized so that the model only “lives” at a discrete grid of points {(xi, yj)}.

2. Values of state variables at the grid points are used to approximate the derivatives with respect to
x and y that appear in the dynamic equations (11).

3. We numerically solve the system of coupled ODEs that result from steps 1 and 2.

18 REFERENCES 51

This general approach is called the method of lines. This name comes from imagining a set of lines
running forward in time, one based at each grid point, along which we solve the ODEs. In sfn.R we
used a regular grid for step 1, a finite difference approximation for step 2, and Euler’s method for step 3.
All of those are choices favor simplicity over efficiency. More accurate results can be gotten with a bit
more work. As one simple example, sfnLines.R uses order-4 Runga-Kutta for step 3, by re-writing the
sfn function so it can be used with rk4. Because rk4 is also an explicit method (like Euler’s method)
it still requires short time steps, but it gives more accurate solution of the ODE system. Only implicit
solution methods, such as the widely used Crank-Nicholson finite-difference method, remain numerically
stable for long time steps.

The accuracy of step 2 can be greatly improved by using spectral methods (Trefethen 2000). These
interpolate the state variables “globally”, fitting a single smooth function that matches the values at
the grid points. Spatial derivates of the interpolating function are then used as the approximate spatial
derivates in step 2. The best choice of interpolating function depends on the spatial domain and boundary
conditions. Spectral methods with suitable interpolating functions can be very efficient, because the
entire (interpolate+differentiate) process can be expressed as a single matrix multiplication, with a
matrix that only has to be computed once. Details of these methods are beyond our scope here; see
Trefethen (2000) for an introduction and pointers to more advanced treatments.

According to Trefethen (2000), spectral methods are the method of choice for high-accuracy solutions
on simple spatial domains, but explicit methods for solving the ODE system often require very short
time steps so it is advantageous to use implicit or semi-implicit methods. For complex domains, such as
often arise in engineering applications, finite element methods are generally preferred. In general, apart
from simple PDEs like those considered here that can be solved using relatively simple of methods, it is
better to step outside R and use specialized software for numerical solution of PDEs.

18 References

Chambers, J.M. and T.J. Hastie. 1992. Statistical Models in S. Chapman and Hall, London.

Chambers, J.M. 1998. Programming with Data. Springer, New York.

Ermentrout, B. 2002. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT
for Researchers and Students. SIAM (Society for Industrial and Applied Mathematics), Philadelphia.

Fussmann, G., S.P. Ellner, K.W. Shertzer, and N.G. Hairston, Jr. 2000. Crossing the Hopf bifurcation
in a live predator-prey system. Science 290: 1358-1360.

Gardner, T.S., C.R. Cantor and J.J. Collins. 2000. Construction of a genetic toggle switch in Escherichia
coli. Nature 403: 339-342.

Ihaka, R., and R. Gentleman. 1996. R: a language for data analysis and graphics. Journal of Compu-
tational and Graphical Statistics 5: 299314.

Kelley, C.T. Iterative Methods for Optimization. SIAM (Society for Industrial and Applied Mathemat-
ics), Philadelphia PA.

Maindonald, J. H. 2004. Using R for Data Analysis and Graphics: Introduction, Code, and Commentary.
URL http://www.cran.R-project.org.

R Development Core Team. 2005. R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org.

Trefethen, L. 2000. Spectral Methods in MATLAB. SIAM (Society for Industrial and Applied Mathe-

18 REFERENCES 52

matics), Philadelphia.

Venables, W.N. and B.D. Ripley. 2000. S Programming. Springer, New York.

Venables, W.N. and B.D. Ripley. 2002. Modern Applied Statistics with S (4th edition). Springer, New
York.

Verzani, J. 2002. simpleR – using R for Introductory Statistics. URL http://www.cran.R-project.org.

Winfree, A. 1991. Varieties of spiral wave behavior: an experimentalist’s approach to the theory of
excitable media. Chaos 1: 303-334.

