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NOTE:  An effective introduction to Markov chains and some of their computational 
science applications can be accomplished by covering the first two parts, "Scientific 
Questions" and "Computational Models," and omitting the third on "Bioinformatics and 
Markov Chains."  Exercise 1 and Projects 1-5 are accessible with only this background.  
The third part provides the necessary background for Exercises 2 and 3 and Projects 6-10.  
The sections entitled "The Area" and "High Performance Computing and Bioinformatics" 
of that part can be covered on their own as an overview of the need for high performance 
computing in this important new area of biology and computational science. 

1. Scientific Questions 

Introduction 
To the U.S. Navy and shipping companies around the world, barnacles can be a real drag, 
and they are out to get rid of them. How can such a small animal be so despised by so 
many?  Though seemingly insignificant, they are one of the main causes of fouling of 
ship hulls.  Growing on the submerged hull surfaces, they interfere with the smooth 
movement of ships through the water.  More fuel must be used to drive the ship, and this 
adds up to tremendous costs.  Millions of dollars have been expended to find ways to 
eliminate or at least greatly inhibit attachment.  Various types of paints have been tried, 
but many of them leach toxic compounds into the water.  Recently, researchers have 
developed some non-toxic coatings, which help to change the mechanical properties of 
the hull surface, so that barnacle larvae and other fouling organisms are less likely to 
attach. 
 Incidentally, barnacles also help to foul intake pipes for coastal power stations.  So, 
finding an effective, nontoxic method to prevent such fouling would be a significant 
benefit to human populations. 
 As adults, barnacles are mostly small, sessile animals—they remain attached to firm 
surfaces.  They adapted to various naturally occurring surfaces before human beings 
began exploring and harvesting the seas.  The 900 or so species can be found on whale 
skin, crab and mollusk shells and on rocky shores.  You may have seen them as you 
explored a rocky beach or examined a seashell that had washed up on a sandy beach.  
They are prominent members of a community of organisms that call the intertidal zone 
home. 
 Intertidal regions, which lie between high and low tide lines, represent a transition 
between the marine and terrestrial ecosystems.  Although these regions include sand 
beaches, estuaries, and bays, barnacles particularly like rocky shores.  In fact, rocky 
intertidal areas include very dense and diverse communities, highly adapted to the 
periodic exposure to drying, wave action, and extremes of temperature.  The organisms of 
this habitat are often found in distinct, vertical zones, arranged according to degree of 
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exposure—low, middle, high intertidal, and splash zones.  The width of each zone is 
determined somewhat by the degree of protection from wave action—narrower in more 
protected areas. 
 So, barnacles are important members of these communities, which are rich in 
numbers of taxa.  Like their neighbors in this zone, barnacles must live under some fairly 
extreme physical conditions (e.g., heavy wave action, desiccation, high temperature), 
while trying to supply themselves with sufficient food and available oxygen, overcoming 
competition and predation, and producing gametes for reproduction.   They are unable to 
control the physical environment, and none of the biological challenges is easily met.  
Any additional physical or biological stress would put even organisms as hardy as 
barnacles in jeopardy. 
 What if environmental conditions changed so that a barnacle species disappears?  
Many scientists suggest that the world oceans are warming.  What effects might ocean 
temperature change have on intertidal communities?  Well, increasing temperature would 
add to the often-extreme temperatures that these organisms already have to endure, and 
they might not be able to withstand them.  Temperature cues are also important for 
development and reproduction of many animals.   From 1993-1996, researchers at 
Hopkins Marine Station in California surveyed transects in a rocky intertidal community 
that was first surveyed in the 1930’s.  They found a dramatic shift in species, where 
southern species (warm-adapted) increased significantly over northern species (cold-
adapted), during a time period where ocean and summer air temperatures had both 
increased over the 60-year span of time.  What this study suggests is that such a change 
can eliminate some species from the community—perhaps a barnacle species.  So what? 
(California 1987; Foster 2009.  Intertidal 2007) 
 Barnacles are filter feeders that occur in large numbers in their communities.  They 
form hiding places for small animals, and they serve as food for others.  Their role or 
niche is interwoven into the community structure and function, and their loss might have 
serious ramifications.  Each species is integrated so that it has multiple interactions with 
other community members and the environment.  The extinction of a barnacle species 
would certainly affect other constituents of the ecosystem (Barnacles 2012; Barnacles 
2003; Secret Life 2012; Stout 2009). 
 Understanding the effects of losses in diversity is and will continue to be critical to 
the implementation of judicious conservation policies, but that understanding is 
problematic in the multifarious, natural ecosystems.  Mathematical models may offer us 
an effective approach to estimating the impact of species losses to a community.  For this 
type of study, we can employ Markov chain models (MCM), which are based on the 
probability of passing from one state to another.  Normally, the parameters of these 
models depend on the observed and experimental data available, but MCMs allow us to 
utilize parameters without extensive experimentation. 

Problems from Psychology to Genetics 
Besides predicting effects of species loss to a community, Markov chain models are 
useful in quite a variety of problems from predicting the behavior of animals to locating 
genes in the DNA.  In this module, we start with a problem from psychology in which we 
have observed the various activities of an animal and the likelihood of moving from one 
pursuit to another.  Using this information, with MCMs we can estimate the average 
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amount of time a typical animal spends performing each endeavor and, given the 
activities of a group of animals, to predict their behavior in the near future. 
 Employing the same modeling technique we can pursue vastly different problems in 
genetics.  One such problem involves locating genes in DNA.  Such determination can 
lead to targeted drug therapies and greater understanding of genetic diseases.  Some of 
the gene-finding programs the scientists employ have Markov chain models at their core. 

2. Computational Models 

Probability 
Markov chain models involve matrices in which all the elements are probabilities, so we 
start with a brief introduction to probability theory.  The probability of an event, or the 
occurrence of something, is a number between 0 and 1, inclusively, indicating the chance 
of the event happening.  A probability of 0 means that the event can never occur, while 1 
says that that the situation is always true.  As an example, suppose a certain kind of seed 
has a 50-50 chance of germinating.  Thus, the probability or chance of germinating is 
P(germinating) = ½ = 0.5 = 50%.  For each seed, one of two events can occur, 
germination or no germination; and the results are equally likely to occur.  We expect that 
if we observe many seeds, about half the seeds will germinate. 
 

Definition The probability of an event, E, written P(E), is the chance of its occurrence 
and is a number between 0 and 1, inclusively. 

 

Quick Review Question 1 Suppose at a site on a strand of DNA, an equal likelihood 
exists for any of the four bases (A, C, T, G).  Give the probability of the base 
T occurring at a particular site. 

 
 The sum of all the possible events for a situation, such as germinating and not 
germinating, sums to 1.  If a seed has only a 30% chance of germinating, P(germinating) 
= 0.3, then it has a 70% chance of not germinating.  P(not germinating) = 1 - 
P(germinating) = 1 - 0.3 = 0.7. 

Rule  The probability of an event not occurring is 1 minus the probability of the 
event, 

   P(not E) = 1 - P(E) 
 

Quick Review Question 2 Suppose at a site on a strand of DNA, an equal likelihood 
exists for any of the four bases (A, C, T, G).  Give the probability of T not 
being at a particular site. 

 
 Suppose an ant is equally likely to go in any one of eight directions, N, NE, E, SE, 
S, SW, W, NW.  For example, P(N) = 1/8 and P(S) = 1/8.  The probability that the ant 
will move in the north or south direction is P(N or S) = P(N) + P(S) = 1/8 + 1/8 = 1/4. 
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The ant cannot move in two directions at the same time, so moving to the north and 
moving to the south are mutually exclusive; the events cannot occur at the same time.  If 
events E1 and E2 are mutually exclusive, then the probability of E1 or E2 is the sum of the 
probabilities of the individual events, P(E1 or E2) = P(E1) + P(E2). 

Rule  If events E1 and E2 are mutually exclusive, and, thus, cannot occur at the 
same time, then the probability of E1 or E2 is the sum of the probabilities of 
the individual events, 

   P(E1 or E2) = P(E1) + P(E2) 
 

Rule  If E1, E2, …, En are all possible mutually exclusive events for a situation so 
that no two of the events cannot occur at the same time, then 

   P(E1) + P(E2) + … + P(En) = 1  

Quick Review Question 3 Suppose at a site on a strand of DNA, an equal likelihood 
exists for any base.  Give the probability of a site containing A or T. 

 
 To calculate the probability that the ant will go in a northerly (N, NE, NW) or 
westerly (W, NW, SW) direction, we must subtract the probability of where the events 
overlap, going NW, as follows: 
 P(northerly or westerly) =  P({N, NE, NW}) + P({W, NW, SW}) - P(NW) 
         = 3/8 + 3/8 - 1/8 = 5/8 
We must subtract P(NW) to avoid counting that direction twice.  The two events, heading 
in a northerly direction and heading in a westerly direction, are not mutually exclusive. 
If events are not mutually exclusive, then for the probability of one or the other we must 
subtract the probability of overlap from the sum of the probabilities. 

Rule  P(E1 or E2) = P(E1) + P(E2) - P(E1 and E2) 
 

Quick Review Question 4 Suppose a certain medicine causes nausea in one out of every 
ten patients.  On the average, 4% of those taking the drug experience diarrhea.  The 
probability of a patient who is using the drug experiencing nausea and diarrhea is 
0.01.  Give the probability that a patient taking the drug has nausea or diarrhea. 

 
 Considering again the seeds that have a 30% chance of germinating, suppose we 
have two seeds, S1 and S2.  Each has 0.3 probability of germinating, and the state of one 
seed has no bearing on the state of the other.  We say these events are independent.  
Certainly, the probability of both seeds germinating is even less likely than any one 
germinating.  In fact, the probability of S1 germinating and S2 germinating is the product 
of their individual probabilities: 
 P(S1 germinating and S2 germinating) = P(S1 germinating) ⋅ P(S2 germinating) 
              = (0.3)(0.3) = 0.09 
Only a 9% chance exists of both seeds germinating. 
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Definition Events are independent if the occurrence of one event has no impact on the 
occurrence of the other. 

 

Rule  For independent events E1 and E2, the probability of both events occurring is 
the product of their individual probabilities: 

   P(E1 and E2) = P(E1) ⋅  P(E2) 

Quick Review Question 5 Suppose at a site on a strand of DNA, an equal likelihood 
exists for any of the four bases.  Give the probability of one site containing A and 
another unrelated site containing T. 

 

 Frequently, we wish to know the probability of one event, E2, given the occurrence 
of another event, E1.  The notation for such a conditional probability is P(E2| E1).  For 
example, suppose a public health agency wages an aggressive campaign to stop the 
spread of a particular disease by trying to quarantine any individual who has come in 
contact with someone who has the disease.  The probability that an exposed individual is 
quarantined can be written as a conditional probability, P(quarantined | exposed), the 
probability of quarantine given exposure.  This quantity is equal to probability of the 
individual being quarantined and exposed divided by the probability of being exposed: 
  P(quarantined | exposed) = P(quarantined and exposed) / P(exposed) 
For example, suppose in a group of 100 people, 10 have been exposed and 2 have been 
exposed and quarantined.  Thus, picking an individual at random from the group of 100, 
we have a 10/100 = 10% = 0.10 chance of selecting an exposed person and a 2/100 = 2% 
= 0.02 chance of the person being quarantined and exposed.  However, if our selection is 
only from the subset of 10 exposed people, then the probability of picking one of the two 
individuals who is also quarantined is 2/10 = 0.20 = 20%; the probability that an exposed 
individual is quarantined is 0.02 / 0.10 = 0.2 = 20%. 

Rule  Conditional probability of event E2 given event E1 is 
   P(E2 | E1) = P(E2 and E1) / P(E1)  
  Thus, 
   P(E2 and E1) = P(E2 | E1) P(E1) 

Quick Review Question 6 Suppose the DNA for a certain animal contains the sequence, 
s1, of 20 bases (A, C, T, G) that evolves to another sequence, s2, as follows: 

 
s1 C A C T T G T G A G C C C A C T T C G T 
s2 C A T T T G T G A C C C T A C T T A G T 

Determine the following probabilities: 
a. That C occurs in s1, written P(E1 = C) 
b. That C occurs in s2 
c. That C occurs in s1 and T occurs in the corresponding site in s2, written P(E2 = 

T and E1 = C) 
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d. T occurs in the corresponding site in s2, given that C occurs in s1, written P(E2 
= T | E1 = C) 

e. Calculate P(E2 = T and E1 = C) / P(E1 = C), which is your answer from Part a 
divided into your answer for Part c. 

f. How do your answers from Parts d and e compare? 

Transition Matrix 
We can employ a matrix of conditional probabilities to estimate the long-term behavior 
of an animal.  For example, the Red Howler Monkey's primary food is leaves.  Because 
leaves are hard to digest, the monkey spends about half of its waking hours resting.  
Resting requires less energy than other activities and gives time for digestion.  Suppose 
we consider a simplified system where the monkey is only in two states, eating (E) and 
resting/sleeping (R); and S = {E, R} is the state space, or set of possible states. 

Figure 1 Red Howler Monkey mother and infant in Costa Rica 

 
 

 Let us consider some hypothetical data.  If one state (Xn) of the monkey is eating, 
then the probability that the state of the monkey one hour later (Xn+1) is eating is 0.6.  We 
express this information as a conditional probability, P(Xn+1 = E | Xn = E) = 0.6.  Because 
we assume the monkey is either eating or resting at any time, the probability that the 
monkey is resting one hour after eating is P(Xn+1 = R | Xn = E) = 1 - 0.6 = 0.4. 

Quick Review Question 7 With a state of resting at time n, let us suppose that one hour 
later the monkey is eating with a probability of 0.2. 

a. Express this information in conditional probability notation. 
b. Give the conditional probability notation and value for the monkey resting one 

hour later. 
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 We can express the data in the above paragraph and quick review question with the 
following matrix, T: 
 

 T =    

 
The first column indicates the probabilities of the indicated values (E or R) of state Xn+1 
given that the monkey is initially eating, Xn = E.  Note that the sum of this column's 
values is 1, because we are considering only one of two possible states for the monkey at 
any time.  Similarly, the second column sums to 1 and presents the probabilities of the 
monkey eating or resting/sleeping given that the animal was resting the previous hour.  
Figure 2 presents a state diagram of the system with the nodes representing the states 
and probabilities of going from one state to another labeling the directed edges. 

Figure 2 State diagram of the system 

 
 

 We call T a transition matrix (Markov matrix, probability matrix, or stochastic 
matrix).  A Markov chain consists of a sequence of variables X1, X2, X3, … in which the 
value of any variable, Xn+1, only depends on the value of its immediate predecessor, Xn.  
That is, P(Xn+1 = x | Xn = xn, …, X2 = x2, X1 = x1) = P(Xn+1 = x | Xn = xn). 
 
Definition A transition matrix (Markov matrix, probability matrix, or stochastic 

matrix) is a matrix in which all the entries are nonnegative and the sum of the 
elements in each column is 1.  A Markov chain consists in a sequence of 
variables X1, X2, X3, … in which the value of any variable, Xn+1, only depends 
on the value of its immediate predecessor, Xn. 

 
 Suppose initially 90% of a group of Howler monkeys are eating and 10% resting, 

represented by the probability vector v0 = , where the components are nonnegative 

and sum to 1.  We can predict the percentage of monkeys eating and resting an hour later 
by evaluating Tv0, as follows: 
 

 v1 = Tv0 =  =  
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The calculations predict that at the next hour 56% will be eating, while 44% will be 
resting. 
 
Definition A probability vector is a vector whose components are nonnegative and sum 

to 1. 

 Using T and v1, we can predict the situation at hour 2, as follows: 
 

 v2 = Tv1 =  =  

 
Thus, we predict, 42.4% of the monkeys will be eating, and 57.6% resting. 
 Note that by substitution of v1 = Tv0 in v2 = Tv1, we see that v2 = T(v1) = T(Tv0) = 

TTv0 = T2v0.  Similarly, at the next hour, the vector is v3 = Tv2 = T(T2v0) = T3v0 = .  

In general, vn = Tnv0.  Table 1 presents several calculations for Tn and vn.  Notice that as n 

gets larger and larger, written n → ∞, Tn approaches, or converges to,  and vn 

converges to v = , an equilibrium or steady-state vector associated with T.  Thus, 

v is a probability vector with Tv = v where each coordinate of v is the long-term 
probability that the system will be in the corresponding state.  As time progresses, at any 
one time approximately one-third of the monkeys will be eating and two-thirds resting.  
Moreover, regardless of the starting vector giving the percentages in each category, with 
time the percentages will approach  and  for eating and resting, respectively.  
Even if all monkeys are eating initially, eventually about one-third will be eating at any 
one time.  When all the entries of a transition matrix are positive, it can be shown that Tn 
will converge to a matrix M and vn = Tnv0 will converge to a steady-state vector.  (We will 
cover a technique for calculating these limiting steady-state values shortly.) 
 
Definition An equilibrium or steady-state vector, v, of the Markov chain associated 

with the transition matrix T is a probability vector, where Tv = v. 

Table 1 Markov matrix, T, and probability vector, v, to several powers 
n vn = Tnvn-1 Tn 

0   

1   
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2   

3   

4   

10   

100   

Theorem 1 If all the entries of a Markov matrix are positive, then as n gets larger 
and larger, Tn converges to a matrix, M, and vn = Tnv0 converges to a vector, v = Mv0. 

Quick Review Question 8 Suppose baboons are observed to be eating (E), grooming 
(G), or resting (R).  A biologist records their activities every 15 minutes and estimates 
that if a baboon is eating at one period, at the next 15 minute period the animal will be 
eating or resting with the probabilities 0.3 and 0.6, respectively.  If grooming at one 
observation, in 15 minutes they are likely to be grooming with a 0.3 probability or eating 
with a 0.4 probability.  If resting at one time period, at the next observation the 
probabilities a baboon will still be resting or will instead be eating are 0.8 and 0.2, 
respectively. 

a. Using the order E, G, and R for rows and columns, develop a transition 
matrix, T, for this problem. 

b. Suppose when the study began, 30% of the baboons were eating, 10% were 
grooming, and 60% were resting.  Using the model from Part a, give estimates 
for the percentages of baboons in each state 15 minutes later. 

c. Using a computational tool, estimate the matrix to which Tn converges as n 
gets larger and larger.  

d. Using a computational tool, estimate the vector to which a probability vector 
for the system converges n goes to infinity. 

 Using a computational tool, we can calculate that the dominant eigenvalue of the 
Markov matrix, T, for the Howler monkey example is λ = 1, and a corresponding 
eigenvector is x = (-0.447214, -0.894427), so that, 

  =  
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Tx    =  λx 

The ratio of the first coordinate of x to the second coordinate is one-third to two-thirds.  
That is, if we add the coordinates of x, s = -0.447214 + -0.894427 = -1.34164, and divide 
the sum s into each coordinate of x, we obtain -0.447214/-1.34164 = 1/3 =  =  
and -0.894427/-1.34164 = 2/3 =  = .  These values are the exact proportions 
to which the components of vn = Tnvn-1 tend as n goes to infinity (see Table 1).  The vector 
x = (1/3, 2/3) = ( , ) = ( , ) is the equilibrium vector associated with 
the transition matrix T. 

Definition For square matrix M, the constant λ is an eigenvalue and v is an eigenvector 
if multiplication of the constant by the vector accomplishes the same results as 
multiplying the matrix by the vector, that is, the following equality holds: 

 
Mv = λv 
 

The dominant eigenvalue for a matrix is the largest eigenvalue for that matrix. 
 
 In general, λ = 1 is always an eigenvalue for the transition matrix of a Markov 
chain.  Moreover, if each of the components of the corresponding eigenvector x is 
nonnegative and s is the sum of these components, then (1/s)x is the equilibrium vector 
for T, and this vector is a probability vector.  If we start with a probability vector, v0, 
where each component gives the fraction in each corresponding state, such as eating (E) 
and resting/sleeping (R), then Tnv0 converges to v = (1/s)x as n becomes larger and larger.  
Moreover, each coordinate of this equilibrium vector, v, is the ultimate proportion of the 
corresponding state. 

Theorem 2 Suppose T is a Markov chain transition matrix.  Then, T has an 
eigenvalue λ = 1.  Moreover, if each of the components of the corresponding eigenvector, 
x, is nonnegative and s is the sum of these components, then (1/s)x is a steady-state 
vector for T. 

Theorem 3 Suppose T is a Markov chain transition matrix.  If Tn has all positive 
entries for some positive integer n, then T has a unique equilibrium vector v.  Moreover, 
if y is a probability vector, then Tny converges to v as n becomes larger and larger. 
(Agnew and Knapp, 2002) 

Quick Review Question 9 For the baboon example in Quick Review Question 8, using a 
computational tool, determine 

a. the dominant eigenvalue. 
b. the principal eigenvector. 
c. the steady-state vector associated with T. 
d. the ultimate percentages, expressed in whole numbers, in each state. 
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3. Bioinformatics and Markov Chains 

The Area 
A newly developing area of computational science, called bioinformatics, deals with the 
organization of biological data, such as in databases, and the analysis of such data, which 
often makes extensive use of probabilities.  Recently, enormous strides have been made 
in genetics, due in part to the power of bioinformatics and high performance computing.  
In the next few sections, we give some of the biological background that will enable us to 
discuss a number of bioinformatics examples, such as those involving Markov chains. 

Proteins 
Proteins are basic building blocks of life, performing many critical functions.  Some 
proteins are the fundamental, structural components of cells and tissue, while others 
(enzymes) are catalysts for chemical reactions.  A simple protein is a linear polymer or 
chain of amino acids. Table 2 lists the twenty amino acids common to proteins along 
with their one-letter and three-letter codes.  Each amino acid contains an amino group 
(-NH3

+) at one end and a carboxyl group (-COO-) at the other, connected by a carbon (α-
carbon).  A variable side-chain (R-group) and a hydrogen are attached to the α-carbon 
(see Figure 3).  The R-group is responsible for the chemical nature (acidic, nonpolar, etc.) 
of each amino acid.  Chains of amino acids are linked by peptide bonds, which form 
through the interaction of an amino group of one amino acid with the carboxyl group of 
another (see Figure 4).  This interaction results in condensation, or release of water. 
Because one end of a protein has a free amino group (N-terminal) and the other has a 
free carboxyl group (C-terminal), we can assign an orientation to the chain and list the 
amino acids from the “beginning” (N-terminal) of the chain to the “end” (C-terminal). 

Table 2 The twenty commonly occurring amino acids along with their one-letter and 
three-letter codes.  (Note: B is used when one cannot distinguish between D and N 
because of amino acid analytical processing.  Similarly, Z is used when it is ambiguous 
whether the amino acid is E or Q.  X represents an unknown or nonstandard amino acid.) 

 
One-Letter 

Code 
Three-Letter 

Code 
Name 

A Ala Alanine 
R Arg Arginine 
N Asn Asparagine 
D Asp Aspartic Acid 
C Cys Cysteine 
Q Gln Glutamine 
E Glu Glutamic Acid 
G Gly Glycine 
H His Histidine 
I Ile Isoleucine 
L Leu Leucine 
K Lys Lysine 
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M Met Methionine 
F Phe Phenylalanine 
P Pro Proline 
S Ser Serine 
T Thr Threonine 
W Trp Tryptophan 
Y Tyr Tyrosine 
V Val Valine 

Figure 3 Structure of an amino acid (Rupp 2000) 

 

Figure 4 Chain of two amino acids  (Rupp 2000) 

 

Quick Review Question 10 
a. Give the name of the area of computational science that deals with the 

organization and the analysis of biological data. 
b. Give the number of amino acids common to proteins. 
 
Match each phrase in the following parts with the best term: 

α-carbon  amino acids  amino group  C-terminal 
carboxyl group  enzymes  N-terminal peptide bonds  
proteins R-group   

 
c. Basic building blocks of life 
d. Proteins that are catalysts for chemical reactions. 
e. A simple protein is a linear chain of these 
f. Free amino group that is the beginning of the chain of amino acids 
g. Free carboxyl group that is the end of the chain of amino acids 

Nucleic Acids 
In the cell, the nucleic acid DNA (deoxyribonucleic acid) contains the encoded 
information for the manufacture of all the proteins a cell needs.  However, DNA does not 
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oversee protein synthesis directly but acts through an intermediary nucleic acid, RNA 
(ribonucleic acid).  The RNA sequences subsequently specify the amino acid sequences 
of proteins.  Both DNA and RNA are polymers, or long chains, of molecules called 
nucleotides.  A nucleotide is a compound molecule made up of a sugar (either 
deoxyribose or ribose), a phosphate, and a nitrogen base (adenine (A), guanine (G), 
cytosine (C), and thymine (T) in DNA or uracil (U) in RNA).  A and G are purines, 
while C, T, and U are pyrimidines.  DNA is a double strand of nucleotides, whereas 
RNA is a single strand. Thus, we can say a particular DNA molecule has 300 bases or 
300 nucleotides.  As with proteins, because the backbone of a strand always has specific 
chemical structures at opposite ends, we can canonically give direction to the sequence of 
nucleotides (or bases) in a strand.   
 Bases in one strand may bond with bases in another. Because of their structure, A 
and T always bond together, and C and G always bond together.  Each pair is said to be 
made up of complementary bases and is referred to as a base pair (bp).  The number of 
such base pairs is use to describe the length of a DNA molecule. Because of pairing 
consistency, by knowing the sequence of bases in one strand, we can deduce the sequence 
of bases in the other strand through reverse complementation.  For example, suppose 
one sequence is s = ATGAC.  Because of the required pairing, A - T and C - G, we know 
the base pairs must appear as follows: 

s: A T G A C 
 | | | | | 
 T A C T G 

Quick Review Question 11 Match each phrase in the parts with the best term(s): 
 A  C DNA G protein 
 purine pyrimidine RNA T U 

 
a. Contains the encoded information that is stored to direct the manufacture of 

all the proteins a cell needs 
b. An intermediary nucleic acid in protein synthesis 
c. Compound molecule made of a sugar, a phosphate, and a nitrogen base 
d. Type of molecule in DNA and RNA sequences 
e. Bases in DNA 
f. Bases in RNA 
g. Purines 
h. Pyrimidines 
i. Always bonds with base A in DNA 
j. Always bonds with base A in RNA 
k. Always bonds with base C in DNA or RNA 
l. Always bonds with base T in DNA 
m. Always bonds with base U in RNA 
n. Always bonds with base G in DNA or RNA 

 In contrast to DNA, RNA is a single strand of nucleotides made up of ribose sugars 
and bases A, C, G, and U instead of the nitrogen base thymine (T) (see Table 3).  Several 
types of RNA with different functions exist in the cell. 
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Table 3 Bases in DNA and RNA 
Base Abbreviation Complement In DNA In RNA Group 

adenine A T in DNA, U in RNA yes yes purine 
cytosine C G yes yes pyrimidine 
guanine G C yes yes purine 
thymine T A yes no pyrimidine 
uracil U A no yes pyrimidine 

  
 A mutation in a DNA sequence can occur with the insertion or deletion of a base 
or the substitution of one base for another.  One type of substitution, called a transition, 
occurs between purines, from A to G or from G to A, or between pyrimidines, from T to 
C or vice versa.  A transversion substitution occurs between a purine and a pyrimidine 
or vice versa.  In a substitution, a transition is much more likely to occur than a 
transversion. 

Quick Review Question 12 Match each phrase in the parts with the best term(s): 
 deletion DNA insertion nucleotide  protein 
 purine pyrimidine RNA transition transversion 
 

a. Single strand of nucleotides 
b. Double strand of nucleotides 
c. DNA mutations 
d. Substitution between A and G or between T and C 
e. Substitution between purine and pyrimidine 
f. More likely substitution 

From Genes to Proteins 
For the genetic application of locating genes with Markov chain models and for some 
projects, we need some additional background concerning genes.  Each cell contains 
chromosomes, which are very long DNA molecules.  A gene is a contiguous section of a 
chromosome that encodes information to build a protein or an RNA molecule.  In 
humans, a gene is composed of about 10,000 base pairs (bp).  A chromosome contains 
genes and contiguous sections that are not part of any gene.  Some scientists believe that 
genes (coding sequences) compose only about 10% of a human chromosome.  The 
function of these non-gene bits of DNA is still debated.  Some are known to be important 
for regulation of gene expression and other are important for matching homologues and 
structure.  A complete set of chromosomes in a cell contains the organism's hereditary 
information and is called the genome.  For example, a human genome has 46 
chromosomes in 23 pairs. 
 For simplicity, we assume that a particular protein in an organism corresponds to 
exactly one gene.  In a gene, a sequence of three nucleotides (triplet) specifies an amino 
acid.  For example, the sequence ACG or ACA encodes the information for the amino 
acid Threonine (Thr) (See Table 2).  The genetic code represents such a correspondence 
between these triplets and the amino acids they specify.  With four base choices, a pair of 
bases could only encode information for (4)(4) = 16 amino acids.  With three bases, 
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(4)(4)(4) = 64 possible triplets exist.  Several, such as ACG and ACA, encode the same 
amino acid; and three sequences do not encode for any amino acid. 
 Protein synthesis is the process of using genetic code to direct the building of 
proteins.  Synthesis begins in the nucleus, where enzymes catalyze the production of a 
molecule of RNA, termed messenger RNA or mRNA.  Each DNA triplet specifies a 
complementary sequence of three nucleotides, which we call a codon, in the RNA.  The 
synthesis of RNA is called transcription.  During transcription, base pairing ensures 
formation of a strand of RNA that is complementary to the gene sequence with U 
replacing T. 

Quick Review Question 13 Match each phrase in the parts with the best term(s): 
 chromosome codon DNA gene  genome 
 mRNA protein synthesis transcription triplet tRNA 

 
a. Very long DNA molecule in a cell makes up a ________. 
b. A contiguous section of a chromosome that encodes information to build a 

protein or an RNA molecule is called a ________. 
c. A complete set of chromosomes contains an organism’s hereditary 

information and is called its ________. 
d. A sequence of three nucleotides in a gene is called a ________. 
e. A molecule of RNA produced in the nucleus that contains information to 

synthesize a protein is ________. 
f. Sequence of three nucleotides in RNA that is complementary to a DNA triplet 

is called a(n) ________. 
g. The synthesis of RNA is called ________. 

Locating Genes with Markov Models 
The most dependable method of discovering a gene in a new genome is observing a close 
homolog, or a gene from the same ancestral origin, in another organism.  However, when 
homologs to known genes do not exist, we must employ computational methods to help 
identify genes (Salzberg et al. 1998). 
 In mammals, the sequence of bases CG frequently transforms to (methyl-C)G and 
then mutates to TG.  Thus, the pair CG appears less that we would expect from random 
occurrences of C and G independently.  However, this process of transformation from 
CG to TG is suppressed in small regions, called CpG islands, upstream of, or before, 
many genes; so CpG islands can be employed to locate genes.  The "p" in "CpG" 
indicates a phosphate that links the two bases C and G in DNA.  The classical definition 
of a CpG island is a DNA segment of length 200 that has CG occurring 50% of the time 
and a ratio of observed-to-expected number of CpG's above 0.6  (Gardiner-Garden & 
Frommer 1987). 
 We can use Markov chains to determine whether a short segment of genomic data is 
from a CpG island or not.  First, we use training sequences that we know contain CpG 
islands, called positive ("+") samples, to derive for each base four probabilities—the 
probabilities that A, C, G, and T follow the base.  For example, consider the sequence 
ACGTCTATTC, which is exceptionally small for the sake of illustration.  To calculate 
the probability that T is followed by A, written as P(xi = A | xi-1 = T) or P(A | T), we 
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divide the number of occurrences of TA in the sequence, here 1, by the number of pairs 
that begin with T, here 4 (TC, TA, TT, and TC).  Thus, P(A | T) = ¼ = 0.25 for this 
sequence.  25% of the time the next base after T is A.  Moreover, the sum of the 
probabilities P(A | T) + P(C | T) + P(G | T) + P(T | T) = 0.25 + 0.50 + 0.00 + 0.25 = 1.00. 
 Figure 5a presents a transition matrix for such positive samples determined from 
60,000 nucleotides from a database of human DNA sequences with 48 CpG islands.  As 
in the example in the last paragraph, the sum of the elements on each row is 1.00, while 
the column sum is not necessarily 1.00.  In that matrix, the probability of the pair CG (or 
the probability that G occurs, given that C has just appeared) is 0.274, written as P+(xi = 
G | xi-1 = C) = P+(G | C) = 0.274.  We also employ training sequences for known negative 
("-") samples to derive another transition matrix, such as in Figure 5b.  Thus, for these 
training sequences, the probability that the sequence CG occurs in the positive samples 
with CpG islands is 0.274, while we find that such a sequence is much less likely 
(probability of P-(G | C) = 0.078) to occur in the negative samples that do not contain 
CpG islands. 

Figure 5 Possible transition matrix for (a) positive and (b) negative samples  (Durbin et 
al. 1998) 

a        b       
    xi       xi  
  + A C G T    - A C G T 
  A 0.180 0.274 0.426 0.120    A 0.300 0.205 0.285 0.210 

 C 0.171 0.368 0.274 0.188   C 0.322 0.298 0.078 0.302 xi-1 
 G 0.161 0.339 0.375 0.125 

 

xi-1 
 

G 0.248 0.246 0.298 0.208 
  T 0.079 0.355 0.384 0.182    T 0.177 0.239 0.292 0.292 

 
Quick Review Question 14 Compute the transition matrix using the training 

sequence ACGTCTATTC. 
 

 We can now use Markov chains to determine if a short sequence, x = (x1x2x3…xn) is 
more likely to come from a positive or a negative sample by considering the ratio of the 
probability that the sequence is from a positive sample over the probability that the 
sequence is from a negative sample: 
 
  

 
If this ratio is greater than 1, the sequence is more likely to be from a CpG island. 
 To derive the formulas for the numerator and denominator, let us consider a very 
short sequence of four bases x = (x1x2x3x4).  Regardless of the positive or negative model, 
the probability that x occurs, P(x1x2x3x4) is P(x4 and x1x2x3), the probability of x4 and 
x1x2x3.  As we saw earlier P(x4 and x1x2x3) is P(x4|x1x2x3)⋅P(x1x2x3), the probability that x4 
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occurs given that the sequence x1x2x3 occurs immediately before it times the probability 
that x1x2x3 appears.  Thus, we have the following: 
 P(x1x2x3x4) = P(x4|x1x2x3)⋅P(x1x2x3)      (1) 
Now, with Markov chains, x4 only depends on the value of its immediate predecessor, x3, 
so that P(x4|x1x2x3) = P(x4|x3), and we can simplify Equation (1) as follows: 
 P(x1x2x3x4) = P(x4|x3)⋅P(x1x2x3)      (2) 
We then repeat the process to compute P(x1x2x3): 
 P(x1x2x3) = P(x3 and x1x2) = P(x3|x1x2)⋅P(x1x2) = P(x3|x2)⋅P(x1x2)  (3) 
Substituting (3) into (1), we have the following: 
  P(x1x2x3x4) = P(x4|x3)⋅P(x3|x2)⋅P(x1x2)     (4) 
Using the same reasoning, we have 
 P(x1x2) = P(x2|x1)⋅P(x1)       (5) 
and finally 
 P(x1x2x3x4) = P(x4|x3)⋅P(x3|x2)⋅P(x2|x1)⋅P(x1)    (6) 
The probability of the sequence x1x2x3x4 is "unzipped" from right to left as the product of 
probability of obtaining x4 given that x3 is immediately preceding, the probability of x3 
given x2 is immediately preceding, the probability of x2 given x1 immediately preceding, 
and the probability of x1.  Generalizing, we have the following formula: 
 P(x1x2x3…xn) = P(xn|xn-1)⋅P(xn-1|xn-2)⋅⋅⋅P(x3|x2)⋅P(x2|x1)⋅P(x1)  (7) 
The probability of x1, P(x1), is the proportion of the time x1 occurs in a sequence or the 
total number of occurrences of x1 over the total number of bases in the sequence.  For 
example, in Quick Review Question 6a, we determined that base C appears 7 times in the 
sequence s1 of 20 bases, so that P(C) = 7/20.  We use the training sequences to determine 
such probabilities.  Moreover, the Markov matrices as in Figure 5 contain the other 
probabilities.  Again, for the sake of example, suppose we have the probabilities of bases 
in training sequences that contain CpG islands as in Figure 6a. Then, we can calculate the 
probability that the sequence ACGTC is from a CpG island as follows: 
 P+(ACGTC) = P+(C|T) P+(T|G) P+(G|C) P+(C|A) P+(A) 
We calculate the first four probabilities using the transition matrix for the positive model 
in Figure 5a and the probability of A using Figure 6a, as follows: 
 P+(ACGTC)  = P+(C|T) P+(T|G) P+(G|C) P+(C|A) P+(A) 
    = 0.355 ⋅ 0.125 ⋅ 0.274 ⋅ 0.274 ⋅ 0.258 
    = 0.00085953 

Figure 6 Probability of bases for (a) positive (frequencies from gene-rich human 
chromosome 19) and (b) negative samples (frequencies from reference human genome 
sequence) (Guide 2010) 

a  b 
P+(A) = 0.258  
P+(C) = 0.242  
P+(G) = 0.242  
P+(T) = 0.259 

 P-(A) = 0.295  
P-(C) = 0.205  
P-(G) = 0.205  
P-(T) = 0.296 

 
 Similarly, we calculate the probability that ACGTC does not come from a CpG 
island using probabilities Figures 5b and 6b, as follows: 
 P-(ACGTC)  = P-(C|T) P-(T|G) P-(G|C) P-(C|A) P-(A) 



Markov Chains 8/29/11 18 

    = 0.239 ⋅ 0.208 ⋅ 0.078 ⋅ 0.205 ⋅ 0.295 
    = 0.00023449 
The calculations indicate a greater probability that ACGTC contains a CpG island than 
not.  Moreover, the quotient of the probabilities being larger than 1 also indicates a CpG 
island: 
  
  

 
Quick Review Question 15 Using the transition matrices from Figure 5 and 

probabilities from Figure 6, calculate the following: 
a. P+(CCGTCGA)  
b. P-( CCGTCGA) 
c. The quotient of Parts a and b 
d. Is CCGTCGA more likely to be from a CpG island or not? 
 

 However, the sequence ACGTC is much shorter than the usual sequence of 200 to 
250 bases.  If we were to multiply together 200 probabilities, each less than 1, the result 
would be on the order of 10-200.  To avoid such a small magnitude number, the use of 
division, and a large number of multiplications, we employ logarithms.  With the 
logarithm of a quotient being the difference of the logarithms, we can replace a division 
with a subtraction: 

  

Moreover, the log of a product is the sum of the logs: 
 ln(P+(ACGTC))  = ln(0.355 ⋅ 0.125 ⋅ 0.274 ⋅ 0.274 ⋅ 0.258) 
    = ln(0.355) + ln(0.125) + ln(0.274) + ln(0.274) + ln(0.258) 
    = -7.0591 
 
 ln(P-(ACGTC))  = ln(0.239 ⋅ 0.208 ⋅ 0.078 ⋅ 0.205 ⋅ 0.295) 
    = ln(0.239) + ln(0.208) + ln(0.078) + ln(0.205) + ln(0.295) 
    = -8.3581 
Thus, we have 
 ln(P+(ACGTC)) - ln(P-(ACGTC)) = -7.0591- -8.3581 = 1.2990 
We then normalize this score by dividing by the length of the sequence to obtain 1.2990/5 
= 0.2598.  The larger this length-normalized log-odds score is the more likely that the 
sequence is from a CpG island (Tang; Gropl and Huson 2005). 
 
Definition The length-normalized log-odds score for a sequence x is 

  

  
Quick Review Question 16 Calculate the length-normalized log-odds score for the 

sequence CCGTCGA of Quick Review Question 15. 
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A High Performance Computing Approach to Locating Genes 
With a long DNA sequence, computing the length-normalized log-odds score for each 
segment of 200 bases involves an enormous amount of computation.  For example, the 
genome for Escherichia coli (E. coli) contains over 5.5 million base pairs, and, thus, over 
5.5 million segments of length 200.  Computation with the human genome is even more 
daunting with about 3 billion nucleotides (International 2004). 
 Fortunately, computing the scores for each segment of 200 bases is embarrassingly 
parallel on a high performance system; we can divide computation into many completely 
independent experiments with virtually no communication except for the initial 
communication of transition matrices, base probabilities, and sections of the DNA 
sequence.  Thus, we can have multiple nodes on a cluster running the same program with 
different sequences or sections of a larger sequence and with their own output files.  After 
completion, we can use the scores to predict locations of CpG islands.  Because of the 
embarrassingly parallel nature of this approach with limited communication, the problem 
scales quite well; so that for a long sequence, the parallel version of the program can run 
faster with more processes.  Projects 6-8 explore the speedup involved with a HPC 
version of this program. 
 The Blue Waters website contains serial and parallel versions of a scoring program 
in MATLAB with the Parallel Toolbox and in C with MPI.  Running the MATLAB 
programs on a MacBook Pro with input data of a segment of 10,000 bases of E. coli, the 
serial version took approximately 17 seconds, while the parallel version using two cores 
was almost twice as fast, taking about 9 seconds. 
 
Definition  An embarrassingly parallel algorithm can divide computation into 

many completely independent parts with virtually no communication. 

GeneMark 
The technique of locating genes from the previous section "Locating Genes with Markov 
Models" is a 1st-order Markov model because the method predicts each base using one 
preceding base in the DNA sequence.  For this method, as in Figure 5a, with positive 
training sequences that contain CpG islands, 42 = 16 probabilities of base y occurring 
given base x immediately preceding were calculated.  Similarly, as in Figure 5b, 16 
probabilities were obtained using negative training sequences that do not contain such 
islands.  Moreover, as in Figure 6, the probabilities of each base occurring in a positive 
sequence and in a negative sequence were required, resulting in an additional 4 + 4 = 8 
probabilities. 
 The gene-finding program GeneMark, which is a 5th-order Markov model, 
employs five previous bases to predict a base.  Compared to the 32 probabilities in Figure 
5, GeneMark must use 46 = 4096 probabilities for positive and 4096 for negative training 
sequences.  Moreover, comparable to Figure 6, the program must also compute the 
probability of each sequence of 5 bases occurring in positive and negative training 
sequence, or 2(45) = 2048 probabilities.  Thus, GeneMark calculates 4096 + 4096 + 2048 
= 10,240 probabilities from the training sequences alone.  Project 6 discusses the 
GeneMark algorithm in greater detail. 
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High Performance Computing and Bioinformatics 
As with locating genes, biological systems provide us with complexity that challenges 
our ability to interpret data.  To help unravel these complexities, the Human Genome 
Project set out to map all of the human genome, no simple goal if we consider that our 
genetic code consists of 20,000-25,000 genes, composed of about 3 billion nucleotides.  
It is remarkable that the program completed the mapping of the human genome in only 
13 years, the last chromosome completed and published in 2006.  Now, this tremendous 
accomplishment seems like the “easy part” in our attempts to unravel the complexities of 
ourselves.  The data generated by this project, which is now combined with data from the 
genomes of other organisms, is accumulating with ever increasing volume and 
complexity.  To analyze this data and derive any understanding will require the 
development of genomic-scale technologies.   Even with such technologies, biological 
research in this area is likely to take decades. 
 A few of the research areas of genetics that will be pursued and expanded include 
(Human Genome 2012): 

• Gene number, exact locations, and functions 
• Gene regulation 
• DNA sequence organization 
• Chromosomal structure and organization 
• Noncoding DNA types, amount, distribution, information content, and functions 
• Coordination of gene expression, protein synthesis, and post-translational events 
• Interaction of proteins in complex molecular machines 
• Predicted vs. experimentally determined gene function 
• Evolutionary conservation among organisms 
• Protein conservation (structure and function) 
• Proteomes (total protein content and function) in organisms 
• Correlation of SNPs (single-base DNA variations among individuals) with health 

and disease 
• Disease-susceptibility prediction based on gene sequence variation 
• Genes involved in complex traits and multigene diseases 
• Complex systems biology, including microbial consortia useful for environmental 

restoration 
• Developmental genetics, genomics 

 
 If we consider just one of these areas—cataloguing the complete human proteome—
we might consider the sequencing of the human genome as a relatively straightforward 
task.  The proteome is the set of proteins that are produced and expressed in the cells of 
our bodies and is of vastly greater size and complexity than the sequences of the human 
genome.  Furthermore, unlike the genome, which is somewhat fixed with time, the 
proteome is not static and varies considerably with aging in response to various cell 
signals and other externally derived stimuli.  Such studies will require the use 
sophisticated mathematical and computer techniques and enormous amounts of 
computational power. 
 High-performance computing (HPC) has generally been lightly applied to 
biological problems, but with the size and complexity of biological systems, those days 
are quickly ending.  For instance, during the middle of the 1990’s, French researchers had 
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spent two years searching for the gene associated with the rare genetic disorder (X-
linked) adrenoleukodystrophy.  The defective gene leads to demyelination of the neurons 
of the brain and progressive decrease in function of the adrenal gland.  The childhood 
version of this disease leads to coma and death within 10 years of the appearance of the 
first symptoms (Adrenoleukodystrophy 2011). The scientists had performed the available 
techniques (chromosome fragmentation, high-throughput sequencing) and aligned the 
bases for the chromosome, but still could not localize the functional gene.  They 
contacted the computational team at Oak Ridge National Laboratory, who entered the 
sequence information into GRAIL™ (a suite of tools for sequence recognition).  By 
applying the statistical and pattern recognition tools of this suite, the computer found the 
gene within two minutes (Mysteries 1999). 
 To handle the enormous amounts of data, it will certainly be necessary to apply 
high-performance/distributed computing power.  Oehmen and Cannon (2008) suggested 
three directed ways HPC is applied to biological systems: 

1. High throughput data analysis and data mining (pattern recognition) – needed 
for the tremendous amounts of data from genome sequencing, cell imaging 
and proteomics 

2. HPC Grid and Cluster Computing – large-scale simulations, integrating 
models that span various time and spatial scales 

3. Network Inference / Graphical Analysis—mapping behavior of biological 
systems onto a network/graph, which will allow us to infer from the 
mathematical representation various features and relationships of the system 

Exercises 
NOTE:  Answers to exercises with boxed numbers appear after the Exercises section in 
the section Answers to Selected Exercises. 
 
1. In this problem we consider the animal community on a vertical rock wall of a 

middle intertidal zone.  Suppose we have data for large (> 2 cm) and small (≤ 2 cm) 
mussels Mytilus californianus (B and SMC, respectively), goose barnacles 
Pollicipes polymerus (PP), and other crustaceans (Other).  Suppose at a fixed point 
the transition probabilities from ecological state B to ecological states B, SMC, and 
PP are 0.84, 0.04, and 0.03, respectively; from SMC to B, SMC, and PP are 0.55, 
0.26, and 0.03, respectively; from PP to B, SMC, and PP are 0.40, 0.06, and 0.35, 
respectively; and from other to B, SMC, and PP are 0.15, 0.07, and 0.02, 
respectively. 
a. Develop the 4-by-4 transition matrix for this model, where the sum of the 

elements in each row is 1.0. 
b. Determine the equilibrium vector. 
c. Interpret the results. 

 
2. The Jukes-Cantor Model for DNA sequence evolution uses a constant α for the 

probability of substitution of one base for a different base, such as G for T. 
a. Under this model, give the formula for the probability that a base at a 

particular position does not mutate from one evolutionary time step to the 
next. 
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b. Give the general transition matrix for this model. 
c. Give the transition matrix in the situation where α = 0.25, and determine the 

ultimate distribution of bases. 
d. Give the transition matrix in the situation where α = 0.3, and determine the 

ultimate distribution of bases. 
e. Give the transition matrix in the situation where α = 0.1, and determine the 

ultimate distribution of bases. 
f. Determine the ultimate distribution of bases for the general matrix of Part b. 
g. What conclusions do you draw from your calculations? 
 

3. The Kimura model for DNA sequence evolution gives a higher probability for a 
transition (probability α) than a transversion (probability β) with α > β.  (Sinha 
2007) 
a. Under this model, give the formula for the probability that a base at a 

particular position does not mutate from one evolutionary time step to the 
next. 

b. Give the general transition matrix for this model. 
c. Give the transition matrix in the situation where α = 0.25 and β = 0.10, and 

determine the ultimate distribution of bases. 
d. Determine the ultimate distribution of bases for the general matrix of Part b. 
e. What conclusions do you draw from your calculations? 

Answers to Selected Exercises 

1. a.  

 
b. (0.25, 0.25, 0.25, 0.25) 
 

2. a. 1 - 3α 
 

b.  

 

d.   
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 with (0.25, 0.25, 0.25, 0.25) ultimate distribution of bases 
 

3. a. 1 - α - 2β 

Projects 
Develop a sequential or a high-performance computing version of each of the projects 
below. 
1. Epithelial tissue, composed of layers of cells, is a covering or lining.  For example, 

the outer portion of the skin, linings of the gastro-intestinal system and the lungs, 
and the outer surface of the cornea are all epithelial tissue.  Usually when a cell 
divides, the daughter cells have one less side than the parent cell but neighboring 
cells gain sides.  It has been observed that virtually no cells are triangular. 

  Markov chains can be used to model cell shape, specifically the number of 
sides of their 2D polygonal structure, in dividing sheets of epithelial cells.  A 
Markov chain model for the number of sides in dividing sheets of epithelial cells 
hypothesizes that the distribution of sides from a dividing cell to two daughter cells 
follows a binomial distribution with its coefficients from Pascal's triangle, as 
indicated in Table 4.  The table gives a model of the relative odds of a cell of one 
shape becoming a cell of another shape after division of that cell and its neighbors.  
For example, the value in row 7, column 8 is 6; and the sum of the values in column 
8 is 16.  Thus, 6/16 is the probability that a cell with 8 sides will become a cell with 
7 sides after its and its neighbors' divisions.  The table incorporates the distribution 
of sides of a dividing cell to its daughter cells and the observed average gain of one 
side from the division of neighbors. (Gibson, Patel, Nagpal, Perrim, 2006), (Gibson, 
Patel, Nagpal, Perrim, Supplementary 2006) 

Table 4 A model of the relative odds of a cell of one shape becoming a cell of another 
shape after division of that cell and its neighbors 
   Before Division 
   4 5 6 7 8 9 10 
 4        
 5 1 1 1 1 1 1  
 6  1 2 3 4 5  
 7   1 3 6 10  
 8    1 4 10  
 9     1 5  
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a. Develop a Markov chain model for the number of sides in dividing sheets of 
epithelial cells where the state of a cell is its number of sides, s > 3.  In 
developing the model, draw a state diagram, form a transition matrix, 
determine the stable equilibrium percentages for categories of the number of 
cell sides, and the average number of sides.   

b. Validate the model by comparing these percentages and this average with 
observations from time-lapse microscopy of three very different animals: 
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Drosophila wing disk epithelium, the outer epidermis of the fresh water 
cnidarian Hydra, and the tadpole tail epidermis of the frog Xenopus (see Table 
5).  Employ a histogram for your comparisons. 

c. Based on your work, are the scientists who developed this model justified in 
concluding that "the distribution of polygonal cell types in epithelia is not a 
result of cell packing, but rather a direct mathematical consequence of cell 
proliferation"? 

 

Table 5 Observed number of cell sides in Drosophila wing disk epithelium, the outer 
epidermis of the fresh water cnidarian Hydra, and the tadpole tail epidermis of the frog 
Xenopus  (Gibson, Patel, Nagpal, Perrim, 2006) 
  Number of Cell Sides 
  3 4 5 6 7 8 9 10 
 Drosophila  0 64 606 993 437 69 3 0 
 Hydra 0 16 159 278 125 23 1 0 
 Xenopus 2 40 305 451 191 52 8 2 
 
2. H. S. Horn used Markov chains to model succession in a forest, perhaps from a 

virgin forest or from a forest after a catastrophic event, such as fire.  Using a tree-
by-tree replacement process with synchronous replacement of all trees by a new 
generation, he assumed that "the probability that a given species will be replaced by 
another given species is proportional to the number of saplings of the latter in the 
understory of the former."  Besides synchrony, he makes additional simplifying 
assumptions, such as sapling abundance predicts survival to reach the canopy and 
transition probabilities are constant.  A study of Institute Woods in Princeton, New 
Jersey, yielded the data in Table 6. 

Table 6 Transition matrix for Institute Woods in Princeton: percent saplings under 
various species of trees; BTA - Big tooth aspen, GB - Gray birch, SF - Sassafras, BG - 
Blackgum, SG - Sweetgum, WO - White oak, OK - Red oak, HI - Hickory, TU - 
Tuliptree, RM - Red maple, BE - Beech (from Table 1, p. 199, Horn, 1975) 
 
  BTA GB SF BG SG WO OK HI TU RM BE  

BTA 3 - 3 1 - - - - - - -  
GB 5 - 1 1 - - - - - - -  
SF 9 47 10 3 16 6 2 1 2 13 -  
BG 6 12 3 20 0 7 11 3 4 10 2  
SG 6 8 6 9 31 4 7 1 4 9 1  
WO - 2 3 1 0 10 6 3 - 2 1  
OK 2 8 10 7 7 7 8 13 11 8 1  
HI 4 0 12 6 7 3 8 4 7 19 1  
TU 2 3 - 10 5 14 8 9 9 3 8  
RM 60 17 37 25 27 32 33 49 29 13 6  

Sapling 
species 
(%) 

BE 3 3 15 17 7 17 17 17 34 23 80  
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Species 
Counts 

 104 837 68 80 662 71 266 223 81 489 405  

 
a. Using the Table 6 data, develop a Markov chain model of this forest's 

succession and determine the stable equilibrium percentages. 
b. Using the distribution of species in the last row of Table 7 as the initial 

distribution and the transition matrix from Part a, plot the estimated number of 
trees of each species for 20 generations. 

c. Trees, however, do not have the same life expectancy, as Table 7 indicates.  
Thus, Horn weighted (i.e., multiplied) the stationary distribution by the 
longevities in the table, normalized the result (i.e., divide by the sum of the 
components), and obtained percentages (i.e., multiplied by 100).  Perform 
these calculations on your stable equilibrium distribution to obtain an age-
corrected distribution, which is the analog of a climax community. 

Table 7 Longevity (years) of trees in Institute Woods (from Table 2, p. 200, Horn, 
1975) 
 BTA GB SF BG SG WO OK HI TU RM BE 
 80 50 100 150 200 300 200 250 200 150 300 

 
d. Calculate the relative invasiveness of each species as the sum of the percent 

saplings under other trees divided by the maximum such sum.  That is, to 
calculate this metric, for each row, calculate the row sum minus the diagonal 
element; find the maximum of these sums; and divide each row sum minus the 
diagonal element by this maximum.  Discuss how the beech's ability to invade 
under other species is evident in the probabilities of Table 6. 

e. Evaluate a metric for each species' resistance to invasion by other species as 
follows: Calculate the sum of percentages of other saplings under its canopy 
(column sum excluding diagonal element); determine the minimum such sum; 
and for each species, compute this minimum divided by the sum of 
percentages of other saplings under its canopy.  Discuss how the beech's 
resistance to invasion by other species is evident in the probabilities of Table 
6. 

f. Calculate a metric for each species' self-replacement as the percentage of its 
own saplings under its canopy (diagonal element) divided by the maximum 
such percentage (maximum diagonal element).  Discuss how the beech's 
copious self-replacement is evident in the probabilities of Table 6. 

g. Compare your results to those of Horn's data for several sub-forests of varying 
ages in Institute Woods (see Table 8).  

h. Discuss the climax abundance of each species in relationship to its possession 
of the characteristics of Parts d, e, and f. 

Table 8 "The empirical approach results from independent measurements of 639 trees 
in stands that have been fallow for at least the number of years indicated.  The 
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percentages are of total basal area, calculated from diameters measured at breast height." 
(from Table 2, p. 200, Horn, 1975) 
Years 
fallow 

BTA GB SF BG SG WO OK HI TU RM BE 

25 0 49 2 7 18 0 3 0 0 20 1 
65 26 6 0 45 0 0 12 1 4 6 0 

150 - - 0 1 5 0 22 0 0 70 2 
350 - - - 6 - 3 - 0 14 1 76 

  
3. Fecal shedding is the elimination of a pathogen through an animal's fecal matter.  

Because many diseases spread by fecal shedding, an understanding of the dynamics 
of contagiousness is important in disease prevention and control.  (Ivanek et al. 
2007) used Markov chain models to study in dairy cattle the dynamics of fecal 
shedding of the pathogen Listeria monocytogenes (LM), a bacterium that causes 
listeriosis, a disease of the central nervous system.  Models with two states, 
shedding (of LM) and non-shedding, were developed for overall (all subtypes) L. 
monocytogenes shedding considering various combinations of time-dependent risk 
factors, or covariates that can change with time.  These covariates include silage 
(feed) contaminated with LM and stress, such as from antiparasitic treatment. 

  Using data and statistics and considering the situations of presence or absence 
of contaminated silage and stress, the scientists estimated the probability of fecal 
shedding or non-shedding one day (time t -1) leading to the presence or absence of 
LM in a cow's feces the next day (time t).  Thus, they determined 23 = 8 
probabilities (see Table 9).  With 1 indicating presence and 0 absence of each of the 
three conditions (contaminated silage, stress, and fecal shedding) the day before, 
Table 9 gives the probabilities of fecal shedding of LM.  For example, the first two 
rows under the headings, consider the situation in which silage contamination and 
stress did not exist at time t -1.  In this case, the probability of changing from a non-
shedding state at time t - 1 to a shedding state at time t is p01 = P(shedding at time t | 
non-shedding at time t - 1) = 0.038, while the probability of remaining in a 
shedding state is p11 = P(shedding at time t | shedding at time t - 1) = 0.116.  Using 
these two probabilities, we can develop a 2-by-2 Markov matrix.  In Table 9, each 
pair of rows below the headings results in a different model. 

Table 9 For all subtypes of Listeria monocytogenes, presence (1) or absence (0) of 
overall LM contamination of silage, stress, and LM fecal shedding at time t - 1 with the 
probability of LM fecal shedding the next day (time t) 

 At time t -1 At time t 
Subtypes Silage Stress Fecal Probability of 

 Contam.  Shedding Fecal Shedding 
All 0 0 0 p01 = 0.038 

 0 0 1 p11 = 0.116 
 0 1 0 p01 = 0.174 
 0 1 1 p11 = 0.410 
 1 0 0 p01 = 0.358 
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 1 0 1 p11 = 0.648 
 1 1 0 p01 = 0.746 
 1 1 1 p11 = 0.907 

 

a. Develop four Markov chain models  for each covariant situation in 

Table 9.  Starting with an initial distribution at time t = 0 of 100% non-
shedding cows.  For each situation, plot the percent of shedding cows from 
day 0 through day 10.  Determine the long-term distributions, which give the 
equilibrium probabilities of being in non-shedding and shedding states, or the 
eventual proportion of time in each state.  Discuss the results. 

b. The time spent in a state of this model has a geometric distribution.  If the 
initial day (day 0) is non-shedding, the probability of the next day (day 1) 
being non-shedding, or the proportion of time of a non-shedding day 1, is p00; 
the probability of days 1 and 2 being non-shedding is p00p00 = (p00)2; the 
probability of days 1-3 being non-shedding is (p00)3; etc.  Thus, the mean time 
spent in the non-shedding state over a period of n - 1 days is 1 + p00 + (p00)2 

+…+ (p00)n - 1.  This sum is a finite geometric series, which equals .  As 

n goes to infinity, (p00)n goes to 0 because 0 ≤ p00 < 1.  Thus, for a Markov 
chain model of Part a, we can estimate the mean time for a cow to spend in a 

non-shedding state as .  Similarly, we can estimate the time for a cow 

to spend in a shedding state as 1/(1 - p11).  Make such estimates for each of the 
covariant situations in Table 9, and discuss the results. 

c. The models of Part a are homogenous Markov chain models, which use the 
same transition matrix throughout.  However, we can employ a non-
homogenous Markov chain model, where we vary the transition matrix 
depending on the presence or absence of the time-varying covariates 
(contaminated silage and stress).  Thus, for a real or assumed pattern of time-
varying covariates, by employing the appropriate transition matrices, we can 
examine the changing distributions.  Develop a program to accept a sequence 
of time-varying covariates for a period of 20 days and to plot the percentage 
of shedding cows versus day.  Discuss the results for several patterns. 

 
4. For this project, download the PAM1 matrix, PAM1.dat, in Table 10 and the 

frequency data, freq.dat, in Table 11.  Finding similar sequences in genomic 
databases can help us determine the biochemistry, physiology, and function of a 
gene or the protein it produces.  In searching such databases, algorithms produce 
scores that allow us to differentiate sequences that are related to a query sequence 
from those that are not. One of the main algorithms for database searching is 
BLAST (Basic Local Alignment Search Tool) (BLAST 2012), which uses a PAM 
(Point Accepted Mutations) scoring matrix. In the 1970s, a research team lead by 
Margaret Dayhoff carefully studied the evolution of sequences of amino acids.  
PAM or PAM 1 is the length of time for 1% of the amino acids to mutate.  One 
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estimate is that a PAM is about a million years.  The PAM1 matrix is a Markov 
chain transition matrix with column and row headings of the amino acids where 
entries represent the amount of evolution over one PAM period of time, or for one 
mutation per hundred amino acids.  Thus, the ij element is the probability that the 
amino acid in the ith row will replace the amino acid in the jth column after the 
evolutionary time PAM.  A PAM120 matrix, which BLAST uses, contains 
information on the amount of evolution over 120 PAM periods of time.  We can 
obtain this matrix by raising the PAM1 matrix to the 120th power. Use a 
computational tool as needed to complete the following parts.  (Shiflet, 2002) 
a. The values are multiplied by 10,000 for clarity.  For example, the element in 

the first row for Ala (A) and third column for Asn (N) is 3.  Thus, the 
probability that the amino acid Asn mutates to the amino acid Ala in about a 
million years (one PAM epoch) is 3/10,000 = 0.0003 = 0.03%.  Draw a partial 
state diagram using the four amino acids in the top left corner of the matrix. 

Table 10 PAM1 matrix with values multiplied by 10,000.  The element in row i, 
column j is the probability that row i's amino acid will replace column j's amino acid in 1 
PAM. "(Adapted from Figure 82. Atlas of Protein Sequence and Structure, Suppl 3, 1978, 
M.O. Dayhoff, ed. National Biomedical Research Foundation, 1979.")  

 A R N D C Q E G H I L K M F P S T W Y V 
A 9867 2 9 10 3 8 17 21 2 6 4 2 6 2 22 35 32 0 2 18 
R 1 9913 1 0 1 10 0 0 10 3 1 19 4 1 4 6 1 8 0 1 
N 4 1 9822 36 0 4 6 6 21 3 1 13 0 1 2 20 9 1 4 1 
D 6 0 42 9859 0 6 53 6 4 1 0 3 0 0 1 5 3 0 0 1 
C 1 1 0 0 9973 0 0 0 1 1 0 0 0 0 1 5 1 0 3 2 
Q 3 9 4 5 0 9876 27 1 23 1 3 6 4 0 6 2 2 0 0 1 
E 10 0 7 56 0 35 9865 4 2 3 1 4 1 0 3 4 2 0 1 2 
G 21 1 12 11 1 3 7 9935 1 0 1 2 1 1 3 21 3 0 0 5 
H 1 8 18 3 1 20 1 0 9912 0 1 1 0 2 3 1 1 1 4 1 
I 2 2 3 1 2 1 2 0 0 9872 9 2 12 7 0 1 7 0 1 33 

L 3 1 3 0 0 6 1 1 4 22 9947 2 45 13 3 1 3 4 2 15 
K 2 37 25 6 0 12 7 2 2 4 1 9926 20 0 3 8 11 0 1 1 
M 1 1 0 0 0 2 0 0 0 5 8 4 9874 1 0 1 2 0 0 4 
F 1 1 1 0 0 0 0 1 2 8 6 0 4 9946 0 2 1 3 28 0 
P 13 5 2 1 1 8 3 2 5 1 2 2 1 1 9926 12 4 0 0 2 
S 28 11 34 7 11 4 6 16 2 2 1 7 4 3 17 9840 38 5 2 2 
T 22 2 13 4 1 3 2 2 1 11 2 8 6 1 5 32 9871 0 2 9 

W 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 9976 1 0 
Y 1 0 3 0 3 0 1 0 4 1 1 0 0 21 0 1 1 2 9945 1 
V 13 2 1 1 3 2 2 3 3 57 11 1 17 1 3 2 10 0 2 9901 

 
b. Calculate PAM120, M.  The matrix is usually written with each element 

multiplied by 100 and rounded to the nearest integer. 
c. Each element of the PAM120 scoring matrix, S, which BLAST uses, is 

obtained using the following formula: 
  Sij = round(10 log10(Mij / fi)), 
 where fi is the frequency of the amino acid in row i and M is the PAM120 

matrix from Part b.  We will compute S, called a log odds scoring matrix, 
using the frequencies in Table 11.  Because we do not know what came first, 
make this matrix symmetric, using the values on and below the diagonal. For 
example, the score for a mutation over 120 PAM periods from R to N should 
be the same as the mutation over that period from N to R.  (Momand 2006)  

Table 11 Normalized frequencies of amino acids (Nakhleh 2010) 
Ala Arg Asn Asp Cys Gln Glu Gly His Ile 
8.7% 4.1% 4.0% 4.7% 3.3% 3.8% 5.0% 8.9% 3.4% 3.7% 
 
Leu Lys Met Phe Pro Ser Thr Trp Tyr Val 
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8.5% 8.1% 1.5% 4.0% 5.1% 7.0% 5.8% 1.0% 3.0% 6.5% 
 
d. Write a function to return the relative position of an amino acid parameter.  

For example, N is the third amino acid listed in Table 10, so the function 
returns 3. 

e. Write a function to accept two amino acids, such as N and A, as arguments 
and to return the corresponding PAM120 score using the PAM120 scoring 
matrix, S, from Part c. 

f. The BLAST algorithm searches a database for sequences that have a “good,” 
non-gapping local alignment with a segment of the query sequence.  The 
program starts by breaking the query sequence into all possible sequential 
triplets, or 3-mers, or words of length 3.  For example, if the query sequence 
is s = RHQMN, we have three 3-mers, RHQ, HQM, and QMN.   

  Write a function that has a query sequence parameter and returns a list of 
all its 3-mers. 

g. The BLAST program obtains the evolutionary scores for all possible 
(20)(20)(20) = 8,000 amino acid triplets in relation to each of the 3-mers in 
the query sequence and compiles a list of all words that have a score greater 
than or equal to a certain threshold parameter.  For example, using the 
PAM250 scoring matrix in Table 12, the scoring of QMN relative to pairs 
QMN, DLL, QSW, and BME is 12, 3, -2, and 8, respectively, as the following 
computations indicate: 
Q  M  N   
Q  M  N   
4 + 6 + 2 = 12 
       
Q  M  N   
D  L  L   
2 + 4 + (-3) = 3 
       
Q  M  N   
Q  S  W   
4 + (-2) + (-4) = -2 
       
Q  M  N   
B  M  E   
1 + 6 + 1 = 8 

 
 If the user picks a threshold value of 5, the program would select QMN and 

BME and other 3-mers but not DLL and QSW as evolutionary matches. 
  Develop a function to accept two 3-mers and to return the evolutionary 

PAM120 score.  These scores will differ from those in Table 12. 

Table 12 The PAM250 scoring matrix for amino acids.  B is used when one cannot 
distinguish between D and N because of amino acid analytical processing.  Similarly, Z is 
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used when it is ambiguous whether the amino acid is E or Q.  X represents an unknown 
or nonstandard amino acid.  Thus, the matrix has 23 rows and 23 columns. 
        A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  B Z X 
     A  2 
     R -2  6 
     N  0  0  2 
     D  0 -1  2  4 
     C -2 -4 -4 -5 12 
     Q  0  1  1  2 -5  4 
     E  0 -1  1  3 -5  2  4 
     G  1 -3  0  1 -3 -1  0  5 
     H -1  2  2  1 -3  3  1 -2  6 
     I -1 -2 -2 -2 -2 -2 -2 -3 -2  5 
     L -2 -3 -3 -4 -6 -2 -3 -4 -2  2  6 
     K -1  3  1  0 -5  1  0 -2  0 -2 -3  5 
     M -1  0 -2 -3 -5 -1 -2 -3 -2  2  4  0  6 
     F -4 -4 -4 -6 -4 -5 -5 -5 -2  1  2 -5  0  9 
     P  1  0 -1 -1 -3  0 -1 -1  0 -2 -3 -1 -2 -5  6 
     S  1  0  1  0  0 -1  0  1 -1 -1 -3  0 -2 -3  1  2 
     T  1 -1  0  0 -2 -1  0  0 -1  0 -2  0 -1 -3  0  1  3 
     W -6  2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4  0 -6 -2 -5 17 
     Y -3 -4 -2 -4  0 -4 -4 -5  0 -1 -1 -4 -2  7 -5 -3 -3  0 10 
     V  0 -2 -2 -2 -2 -2 -2 -1 -2  4  2 -2  2 -1 -1 -1  0 -6 -2  4 
     B  0 -1  2  3 -4  1  2  0  1 -2 -3  1 -2 -5 -1  0  0 -5 -3 -2  2 
     Z  0  0  1  3 -5  3  3 -1  2 -2 -3  0 -2 -5  0  0 -1 -6 -4 -2  2 3 
     X  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 0 0 
        A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  B Z X 

 
h. Develop a function to have three parameters, a 3-mer (mer), a list of 3-mers 

(merLst), and a threshold value (threshold), and to return a list of all 3-mers 
from merLst whose evolutionary score relative to mer is greater than or equal 
to threhold.  For example, as Part g illustrates, if mer is QMN, merLst is 
{QMN, DLL, QSW, BME}, and threshold is 5, then the function returns 
{QMN, BME}.  Use the PAM120 scoring matrix from Part c. 

i. Write a function to return a list of the 8,000 possible amino acid triplets. 
j. The second step in the BLAST algorithm is to scan the database for locations 

of high scoring words from the first step (see Part g).  For example, the high 
scoring word BME occurs at location 6 in the sequence 
NRSQHBMELDLDMFPMST. 

  Develop a function that has as parameters a list of 3-mers (merLst) and a 
sequence (sequence) and that returns a list of integer starting locations for all 
occurrences 3-mers from merLst in sequence. 

k. The third step of the BLAST algorithm is to extend each of the seeds in both 
directions until the subsequence score reaches a maximum value according to 
the matrix scoring.  Using a heuristic, the program stops an extension if the 
score falls below a certain amount less than the highest score so far.  For 
example, suppose the query sequence is in part …SRMCDRHQMNCFPS…, 
and the program located high scoring word RHQ in the database sequence 
…NRSQHRHQLDLDMF….  Table 13 shows how we extend from the seed 
RHQ to find a segment pair (DRHQMN and HRHQLD) with a maximum 
PAM250 score (1 + 6 + 6 + 4 + 4 + 2 = 23).  DRHQMN and HRHQLD are a 
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locally maximal segment pair, or a segment from the query sequence and a 
segment from a database sequence with a score that cannot become larger 
through shrinking or expanding the segments.  We repeat this extension 
process for all seeds looking for all segment pairs with scores above some 
threshold.  The algorithm is fast in part because it does not consider gaps and 
uses heuristics involving threshold values. 

  Develop a function that has parameters of two sequences and an integer 
starting location and returns a list containing the starting location, length, and 
PAM 120 score (see Part c) of a locally maximal segment pair. 

Table 13 Finding the locally maximal segment pair from sequences 
SRMCDRHQMNCFPS and NRSQHRHQLDLDMF, starting at location 6 and using the 
PAM250 scoring matrix 
In query: S D M C D R H Q M N C F P S 
In database: N R S Q H R H Q L D L D M F 
PAM250 Score: 1 -1 -2 -5 1 6 6 4 4 2 -6 -6 -2 -3 

 
l. Write a program to implement the BLAST algorithm as presented in this 

project.  Input should include a query sequence, a list of database sequences, 
and a threshold value.  Obtain sequences from a BLAST database at NCBI 
(BLAST 2012). 

 
5. (Prerequisite:  (Shiflet and Shiflet 2009), sections on "Cellular Automaton 

Simulation," "Boundary Conditions," and Growth Algorithm) The Stepping Stone 
Model is useful in the study of genetics.  For the model, we start with an n-by-n 
grid (matrix) with each cell (element) having one of k integer values.  Repeatedly, 
we select a cell at random and select one of its eight neighbors at random.  We then 
change the value at the cell to be the value of the selected neighbor.  Periodic 
boundary conditions are employed.  A grid represents a state of the system.  Thus, 
with each grid having n2 cells and each cell having k possible values, the system has 

 possible states.  For example, a small 10-by-10 grid with values only of 0 and 1 
has  = 1.2677 ⋅ 1030 possible states.  A transition matrix with this number 
of states would have an excessive number of elements:  1030 ⋅ 1030 =  1060 elements.  
However, we can employ cellular automaton simulations to simulate the Markov 
chain (Grinstead and Snell 2003). 
a. Develop the Stepping Stone Model using n = 20 and k = 2 (values num1 = 1 

and num2 = 2).  Employ a random initial configuration, where the probability 
of p for one of the cell values, num1.  Using visualizations of the grid with 
white representing one cell value and black representing the other, develop an 
animation.  Run the animation a number of times with different values of p 
and observe regions of color and the ultimate "winner."  Does the winner 
seem related to p?  Discuss the results. 

b. Repeat Part a without the animation but plotting the number of each color at 
each time step. Discuss the results. 
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c. Use HPC for this part.  Repeat Part a without the animation.  Develop a 
simulation for a large constant number of time steps and calculate the number 
of cells with value num1 on completion.  For each p value from 0 to 1, varying 
by 0.1, run the simulation 100 times and compute the average number of cells 
with final value num1. Plot the average versus p. Does the winner seem 
related to p?  Discuss the results. 

d-f. Repeat Parts a, b, and c, respectively, using k > 2. 
 
6. Download the serial and parallel cpg programs and associated data files from the 

Blue Waters site.  Using commands tic and toc, time the serial program cpg.c with 
data sets ecoli-sequence.txt that contains a genomic subsequence of E. coli and 
ProbabilitiesEcoli.txt that stores the probability matrices (see comments at the 
beginning of cpg.c or cpgParallel.c).  Repeat the timings using the parallel program 
cpgParallel.c for an increasing number of processes, n.  Plot the speedup factor, 
S(n), versus the number of processes, n, where the speedup factor S(n) is as 
follows: 

 S(n) =  

 
 Usually, the maximum speedup possible with n processes is S(n) = n, which we call 

linear speedup. This situation is achieved when the time required for execution 
with n processes is 1/n of the time for execution on a sequential computer.  Linear 
speedup is rarely achieved because of overhead factors, such as communications, 
times when some processes are idle, and additional computations required for the 
parallel version.  Describe the shape of the graph, and discuss how well the problem 
scales to larger numbers of processes. 

 
7. From the Blue Waters site, download ProbabilitiesHuman.txt, which contains the 

probabilities from Tables 7 and 6, respectively.  Also, download all or part of the 
DNA sequence on chromosome 19 of the human genome at 
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?ORG=hum&MAPS=ideogr,est,loc
&LINKS=ON&VERBOSE=ON&CHR=19. 
a. Employ the techniques of the section on "Locating Genes" to score each 

subsequence of length 200.  Have your program determine the most likely 
candidates for subsequences being in CpG islands. Do your candidates occur 
in CpG islands as indicated at http://genome.ucsc.edu/cgi-
bin/hgTracks?position=chr19:571325-
583493&hgsid=264592883&knownGene=pack&hgFind.matches=uc002loy.3
?  As of this writing (5/23/12), such areas appear in green on the diagram 
(Homo Sapiens 2001; UCSC 2009). 

b. Using this data set, repeat Project 6. 
 
8. From the Blue Waters site, download AE005174v2.txt (from AE005174v2.fas at 

http://www.genome.wisc.edu/sequencing/o157.htm), which contains the DNA 
sequence for Escherichia coli (E. coli), and 
Escherichia_coli_O157H7_plasmid_pO157.txt, which contains training data 
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generated by generated by GeneMarkSPlusRBS on E. coli O157H7 as described in 
the section on GeneMark (Borodovsky Laboratory 2005).  GeneBank at NCBI 
contains sequence information on "Escherichia coli O157:H7 EDL933, complete 
genome" (http://www.ncbi.nlm.nih.gov/nuccore/AE005174).  By clicking on any of 
the gene links, create a data file of a sequence of 200 bases immediately before one 
of the genes and create another data file of a sequence of 200 bases inside a gene 
(Escherichia coli 2001; Enterohaemorrhagic 2001). 
a. Using the algorithm described in the section on "GeneMark" to score each 

sequence as containing or not containing a CpG island.  Employ the first 
column of data in Escherichia_coli_O157H7_plasmid_pO157.txt. 

b. Using this data set, repeat Project 6. 
 
9. Download Escherichia_coli_O157H7_plasmid_pO157.txt, which is described in the 

previous project.  For homogeneous Markov models involving genomic 
sequences, probabilities are not dependent upon sequence location, while for 
inhomogeneous Markov models they are.  A reading frame breaks a sequence of 
nucleotides into codons.  Because we can start the alignment in three possible 
places an mRNA strand, three possible reading frames exist for such a strand.  For 
example, suppose mRNA contains the sequence of bases AACTGTTAG….  We 
could have the reading frame begin with AAC, as in AAC-TGT-TAG…; or one 
base further with ACT-GTT-AG…; or two bases beyond with CTG-TTA-G….  
Because DNA has two strands, one complementary to the other, we have six 
possible reading frames from which transcription can occur.  As described in the 
section on "GeneMark," develop a program that generates transition matrices and 
probabilities for the six possible reading frames for training sequences and select 
the model with the highest score.  The GeneMark program considers seven 
possibilities, these six and a model of non-coding DNA. 

 
10. For this project, download J_SNP.dat.  SNPs (pronounced "snips"), single 

nucleotide polymorphisms, are variations in DNA sequence where one nucleotide in 
the sequence is changed.  In human beings, SNPs occur every 100 to 300 bases 
(SNP 2012). (Lieberman et al 2011) studied an outbreak of the bacterial pathogen 
Burkholderia dolosa among 14 individuals with cystic fibrosis.  Their data contains 
the sequences for 112 samples taken over 16 years.  In the patient id, the letter, such 
as "J", indicates the patient; the number after the first dash indicates the year after 
the start of the study; the number after the second dash is the month; and the small 
letter is a sample.  Thus, identifier J_11_8 is a sample for patient J taken 11 years 
and 4 months after the start of the study.  Sometimes difficulties occur in 
identifying a nucleotide.  The following are nucleotide designations besides A, C, 
T, and G with their meaning in parentheses: R (A or G), Y (C or T), S (G or C), W 
(A or T), K (G or T), M (A or C), B (C or G or T), D (A or G or T), H (A or C or 
T), V (A or C or G), N (any base), - (gap).  Create transition matrix using J-11-8 to 
J-11-11, and using this matrix, estimate the ultimate distribution of bases. 

Answers to Quick Review Questions 
1. ¼ = 0.25 = 25% 
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2. 0.75 = 1 - 0.25 = 1 - P(T); alternatively, 0.75 = P(A) + P(C) + P(G). 
3. ½ = 0.5 = 50% 
4. 0.13 = 0.10 + 0.04 - 0.01 
5. 1/16 = (¼)(¼)  
6. a. 7/20 = 0.35 

b. 5/20 = 0.25 
c. 2/20 = 0.10 
d. 2/7 = 0.286 because C occurs in s1 7 times 
e. 2/7 = (2/20) / (7/20) 
f. They are equal. 

7. a. P(Xn+1 = E | Xn = R) = 0.2 
b. P(Xn+1 = R | Xn = R) = 0.8 = 1 - 0.2 

8. a.  

b. E: 25%, G: 6%, R: 69% because the product of T from Part a and (0.3, 0.1, 
0.6), expressed as a column vector, is (0.25, 0.6, 0.69), expressed as a column 
vector. 

c.  

d. (0.229508, 0.0327869, 0.737705) 
9. a. 1 

b. Any nonzero multiple of (-0.296799, -0.0423999, -0.953998) 
c. (0.229508, 0.0327869, 0.737705) obtained by multiplying the vector from 

Part b by one over the sum of its elements, s = -1.2932  
d. E: 23%, G: 3%, R: 74% obtained by expressing as percentages the elements of 

the vector from Part c 
10. a. bioinformatics 

b. 20 
c. proteins 
d. enzymes 
e. amino acids 
f. N-terminal 
g. C-terminal 

11. a. DNA 
b. RNA 
c. nucleotide 
d. nucleotide 
e. A, G, C, T 
f. A, G, C, U 
g. A, G 
h. C, T, U 
i. T 
j. U 
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k. G 
l. A 
m. A 
n. C 

12. a. RNA 
b. DNA 
c. deletion, insertion, transition, transversion 
d. transition 
e. transversion 
f. transition 

13. a. chromosome 
b. gene 
c. genome 
d. triplet 
e. mRNA 
f. codon 
g. transcription 

14.  
    xi  
   A C G T 
  A 0.00 0.50 0.00 0.50 

 C 0.00 0.00 0.50 0.50 xi-1 
 G 0.00 0.00 0.00 1.00 

  T 0.25 0.50 0.00 0.25 
15. a. P+( CCGTCGA) = 4.7767⋅10-5 = 0.368⋅0.274⋅0.125⋅0.355⋅0.274⋅0.161⋅0.242 

b. P-( CCGTCGA) = 4.5822⋅10-6 = 0.298⋅0.078⋅0.208⋅0.239⋅0.078⋅0.248⋅0.205 
c. 10.4245 
d. CCGTCGA more likely to be from a CpG island because the quotient is 

greater than 1. 
16. 0.3349 = ln((0.368⋅0.274⋅0.125⋅0.355⋅0.274⋅0.161⋅0.242)/ 
 (0.298⋅0.078⋅0.208⋅0.239⋅0.078⋅0.248⋅0.205))/7 = (ln(0.368) + ln(0.274) + ln(0.125) 

+ ln(0.355) + ln(0.274) + ln(0.161) + ln(0.242) - ln(0.298) - ln(0.078) - ln(0.208) - 
ln(0.239) - ln(0.078) - ln(0.248) - ln(0.205) ) / 7 
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