
Matrix Multiplication with CUDA — A basic
introduction to the CUDA programming model

Assessment

Robert Hochberg

April 5, 2012



Assessment of Student Knowledge

1. Understanding the Theory: A student who can answer the Test of Con-
cepts question as well as the Practice 1 and Practice 2 questions in the
text has likely understood the idea of counting paths in graphs, matrix multi-
plication, and how they are related. No CUDA knowledge could be inferred,
though.

2. Basic Understanding of CUDA: Students who can solve Largest Matries
and Test of CUDA Acuity have mastered the basic ideas of programming
in CUDA. Students who successfully solve Explorations with Pascal’s Tri-
angle problem have also demonstrated proficiency at C programming and the
idea of putting jobs on the card for the card to solve. To test the ability to
write original programs, it is recommended that you continue with the module
“Dynamic Programming with CUDA - Part I” freely available at the same site
as this module.

3. Comfort with the Environment: Students who can work through Practice
3 in the text and Largest Matrices are probably comfortable with the modify-
compile-run cycle of development.

1



Solutions

1. Test of Concepts: Here is the matrix showing the number of paths of length
4 between the pairs of vertices of a graph:

9 3 6 11 1
3 15 8 7 11
6 8 8 8 6

11 7 8 15 3
1 11 6 3 9


• How many vertices does the graph have?

• Assume that the vertices of the graph are labeled A, B, C, . . . and that
the rows and columns are given alphabetically. Show that there are 208
paths of length 8 from A to B in that graph.

The number of vertices in the graph is the same as the number of rows and
columns of the matrix, which is 5. To find the number of paths of length 8,
simply square the“paths of length 4” matrix. The result is shown below.

248 208 220 336 120
208 468 324 340 336
220 324 264 324 220
336 340 324 468 208
120 336 220 208 248


2. Largest Matrices: The program ’deviceQuery’ is included with the CUDA

SDK. It gives you specifications on the CUDA-enabled card(s) installed in your
system. Run this program to find out how much RAM your card has, and use
this to determine the theoretical largest value N for which you can multiply
two N × N matrices on your card, and hold the product. Then compare this
theoretical value with the actual largest N for which multShare N N N returns
with no errors.

It is the amount of global memory that restricts the sizes of the matrices that
you can multiply. For square matrices of size N ×N with integer entries, you’d
need (Number of matrices) * (Entries / Matrix) * (Bytes / Entry) = 3 × N2 ×
4 = 12N2 bytes of memory. So on my Mac, for example, running an NVIDIA
GeForce GT 330M with 256MB of memory, I could multiply square matrices of
size

√
256, 000, 000/12 ≈ 4618.

2



3. Test of CUDA Acuity: Modify the code for the shared memory version
of the program so that it works even if the dimensions of the matrices are
not multiples of the size of the thread blocks. Use the code for the no-shared
memory version as a model.

Since each kernel thread is responsible for computing one element in the product
matrix, the only modification needed is to add a test at the start of each thread
whereby the thread tests whether it lies within the matrix or not. For example, if
the block size is 16×16 and we are multiplying matrices of size 50×50, then we’d
launch a 4×4 grid of blocks. At startup, each thread will check which element of
the product matrix it corresponds to. For example it would evaluate blockIdx.x
* blockDim.x + threadIdx.x to find which column it belongs to, and if it is 50
or greater, the thread will terminate immediately. A similar computation would
be done for the row. The result is that only those threads corresponding to
matrix elements will perform their calculations and save to the product matrix
in global memory.

4. Explorations with Pascal’s Triangle The matrix on the left below contains
the entries of Pascal’s Triangle. The left column and the main diagonal consist
of ones, all entries above the main diagonal are zeros, and each other entry is
the sum of the entry directly above it and the entry diagonally above and to
the left. The matrix on the right is the same, except that the diagonals are
alternately positive and negative.

• What is the product of the two matrices given here?

• Modify multShare.c so that it generates larger versions of these two
matrices and verify that the program produces the correct product.

• How large can your matrices get while still using integers?

• modify the code to use long ints or doubles, so that you can multiply
larger matrices. Now how large can your matrices be and still produce
the correct result?

3





1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
1 3 3 1 0 0 0 0
1 4 6 4 1 0 0 0
1 5 10 10 5 1 0 0
1 6 15 20 15 6 1 0
1 7 21 35 35 21 7 1


·



1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0

1 −2 1 0 0 0 0 0
−1 3 −3 1 0 0 0 0

1 −4 6 −4 1 0 0 0
−1 5 −10 10 −5 1 0 0

1 −6 15 −20 15 −6 1 0
−1 7 −21 35 −35 21 −7 1


The product of these matrices will always be the identity matrix, that is, the
matrix having ones on the main diagonal and zeros everywhere else. With 64-
bit integers or floats, it is possible to get to about the 66th row, depending on
implementation.

4


