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Introduction	  
 
The computational analysis of biological sequence data has become an essential enabling 
tool across the life sciences. The “genomic revolution” of the past decade or more would 
not have been possible, or at least would have been too slow to qualify as a “revolution” 
without a range of bioinformatics and computational biology tools. Arguably the most 
broadly and heavily used of all bioinformatics tools is the Basic Local Alignment Search 
Tool (BLAST, Altschul et. al. 1990 and 1997). This tool serves as the de facto first step 
in the analysis of any newly completed sequence. 
 
The sequence similarity search implemented by BLAST enables researchers to quickly 
discover structure, function and evolutionary information about newly produced sequence 
data. Using a tool to query a new, or poorly understood, sequence for similarity against 
the database of known sequences identifies biomolecules similar to the unknown 
sequence, many of which have been annotated with information about how they function 
in living systems. If the similarity is weak, the scientist at least has some leads to direct 
an experimental exploration of the function of the sequence or its gene product. If the 
similarity is strong, the scientist may have a very complete picture of the nature and 
origins of the molecule, without doing any time-consuming experiments. 
 
The dramatic advances in the speed and reliability of automated sequencing machines 
would have been for naught if our ability to interpret and understand these sequence data 
couldn’t keep pace. As more reference data becomes available in increasingly larger 
datasets, researchers are discovering additional ways to leverage the information acquired 
in comparing poorly understood sequences to those that are better understood. This 
means that the performance of BLAST and other computational tools must continue to 
improve in order to sustain and advance biomedical science. 
 

  The National Center for Biotechnology Information (NCBI, 
www.ncbi.nlm.nih.gov) has been maintaining repositories of biological data and 
developing and hosting computational tools to help scientists to utilize and discover the 
biological meaning in these data since its establishment in 1988. The NCBI BLAST 
portal (blast.ncbi.nlm.nih.gov) has been the primary interface to BLAST for most 



researchers. However, with advances in analytical approaches, proprietary interests and 
datasets, and growth in data volume, more users are opting to build their own BLAST 
installations using NCBI’s standalone BLAST or a variety of third party versions or 
variations on BLAST and similarity search, some of which will be mentioned in this 
module. 
 
As part of its support mission NCBI hosts many useful instructional materials, 
documentation and supporting tools. For example, the NCBI Handbook is available 
through the NCBI Bookshelf and provides an overview of the databases and search tools 
hosted by NCBI. The BLAST Help Manual and other documentation are available 
through the Help tab of the NCBI BLAST web page. The NCBI C++ Toolkit provides a 
number of libraries to facilitate the construction of custom applications using NCBI 
software and databases (the documentation manual is here).  
 
The goals of this module are to:  

1. Provide some background on the importance of biological sequence similarity 
2. Describe the basic BLAST algorithm 
3. Study the performance characteristics of the NCBI server-based and standalone 

BLAST software 
4. Consider and test a parallelization approach 
5. Study the performance of the mpiBLAST software as a function of the number of 

compute cores 
 

The	  Biology	  of	  Sequence	  Similarity	  
 
Similarity between biological sequences implies functional and evolutionary relatedness. 
This stems from the fact that DNA is the molecular repository for hereditary information 
in living cells. This information is stored in the sequence of four distinct chemical 
building blocks linked together end-to-end to form long strands of DNA. Various 
molecular components of the cell are able to interact with portions of the DNA and use 
the sequence of chemicals in the DNA to direct the production of other molecules that 
carry out the multitude of physical and chemical processes necessary to sustain life. 
 
While it makes sense that the ability to duplicate and disseminate the molecular 
instructions within the DNA with high-fidelity would be of paramount importance in 
perpetuating life, it turns out that a number of mechanisms for producing changes to the 
DNA have evolved as well. Apparently, the ability to adapt to changes in the natural 
world by altering the heritable molecular instructions for life is also important. 
 
These basic biological facts have made similarity search among the most widely used 
computational biology methods, and with sequence data accumulation currently 
outpacing Moore’s law (Nucleic acid in GenBank and Europe, genomic, and protein), 
this situation isn’t likely to change any time soon. 
 



One consequence of the discrete nature of biological sequence space is that these data are 
directly amenable to computational analysis. A number of metrics and algorithms based 
in statistics and probability have proven very successful in quantifying similarities and 
patterns among sequences. These methods effectively filter massive quantities of data 
down to a small number of sequences most likely to possess biologically meaningful 
similarity to the sequences being queried. As a result, scientists are able to focus their 
attention on the most informative comparisons among sequences. 
 
The first step in the analysis of virtually every newly assembled sequence is to carry out a 
similarity search against databases of known sequences to see what the new sequence 
looks like. The types of sequences that are found to be similar, and the degree of 
similarity can provide conclusive information as to the function and origins of the new 
sequence. Most significantly, this information can be obtained without committing the 
time and expenses required to characterize each sequence experimentally. 
 
Alignment Scoring 
In order to make an assessment of the degree of similarity between two sequences, it is 
necessary to first align the sequences so as to bring into register those sequence 
characters that are most likely to share homology, or common ancestry. The challenge is 
that there are a large number of alignments possible for most biologically important 
sequences. To distinguish between these possible alignments biologists have adopted 
scoring methods that reflect the molecular processes that cause an organism’s DNA to 
change across generations. 
 
 

 
Figure	  1	  –	  The	  score	  of	  an	  alignment	  is	  obtained	  by	  summing	  the	  scores	  of	  each	  column	  

in	  the	  alignment.	  The	  score	  for	  each	  column	  is	  assigned	  based	  on	  whether	  the	  
characters	  are	  identical,	  mismatched,	  or	  a	  gap	  has	  been	  placed	  in	  one	  of	  the	  sequences.	  
(from	  http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Alignment_Scores2.html) 

 
Alignment scoring schemes assign more positive scores to aligned characters that reflect 
more likely evolutionary events. For example, maintaining the character identity at a 
sequence position is the most likely evolutionary event, so a column in an alignment that 
includes the same character in each sequence would receive a positive score. Less 



positive, or more negative scores are assigned to aligned characters that reflect less 
common evolutionary events. For example, the substitution of one character with 
another is less likely than maintaining the identity of a character, so a column with 
mismatched characters receives a less positive, or more negative score than an identity.  
 
Even more negative scores are given to columns in the alignment reflecting more 
uncommon events. If it is necessary to introduce a gap into one of the aligned sequences 
in order to maintain a good alignment at neighboring positions, this represents a 
hypothesis that a character was either deleted in one sequence or inserted in the other. 
Unfortunately, we can’t know which event occurred without seeing the corresponding 
sequence from the most recent common ancestor of the aligned sequences so we refer to 
this event as an indel. These events are less common than identities and substitutions and 
are typically scored with a negative valued gap penalty. 
 
A more realistic approach to scoring gaps is to impose a large penalty when a gap is 
introduced. However, a smaller penalty is contributed when another gapped position is 
appended to an existing gap. This reflects the biology that an insertion or deletion event 
may be rare, however there is little difference in the likelihood of insertions or deletions 
involving multiple characters. Including this biological detail in the scoring scheme 
doubles the number of calculations involved in scoring alignments, since the score at an 
alignment position will depend on the preceding position.  
 
Problem # 1 – Scoring Alignments 

Find the best scoring alignment between the following sequence pairs using the 
scoring scheme below. To score an alignment, at each position look up the score in 
the scoring matrix corresponding to the two aligned characters (assume the matrix is 
symmetric, so the value at the intersection of column G with row C would be the 
same as the value at the intersection of column C with row G). If a gap is introduced, 
subtract the quantity (20 + (3 * length of indel) ).  
 
As an example, consider the sequences “CAT” and “CAAT”. Clearly these sequences 
are of different length, so an indel will have to be introduced at some point. Keeping 
the Cs aligned in the first position seems reasonable, and contributes 10 to the 
alignment score. Likewise, keeping As aligned in the second position contributes 
another 9. Now comes a decision point: if we align the T with an A this will subtract 
12 from the alignment score, and we will then have to include an indel position 
because of the mismatch in lengths of the two sequences with a cost of (20 + (3*1) = 
43. This would give an alignment score of 10+9–12–23 = -16. If instead we put the 
indel first so that the Ts line-up in the last position the score is 10+9–23+9 = 5. So 
CA-T over CAAT is the higher scoring alignment. 

 
Find the best scoring alignments for the sequence pairs: 

a) GATGAG and GTGTG 
b) CTCGAATTCCG and GTCCTCC 
c) AAGATC and ATAAAGCCGTC 

 

 A C G T 
A 9    

C -11 10   

G -3 -12 10  

T -12 -3 -11 9 



 
Gap penalty = 20 + (3*length) 
 
In general adding realistic details to the scoring scheme will add calculations to the 
scoring algorithm. However, this will be required to produce biologically meaningful 
results. For example, a number of distinct molecular processes can result in duplications, 
inversions, translocations, and recombinations of genomic DNA sequences. As sequences 
separated by greater stretches of evolutionary time are compared, scoring metrics 
incorporating these slower (i.e., less frequent = less likely) evolutionary processes need to 
be utilized in order to recognize these events when they occur. 
 
There are important differences between nucleotide and protein sequence searches that 
need to be taken into account when preparing to search. Since there are four nucleotides 
in DNA, and twenty amino acids in protein, an identical match to a word four characters 
in length (or any length, n) is much less likely to occur by chance in an amino acid 
sequence than in a nucleotide sequence(1/20n vs 1/4n). This means that matches of a 
given length within a protein sequence are more statistically significant, and therefore 
more likely to be biologically meaningful. As a general rule, for sequences that are 
known to code for a protein, the amino acid sequence should be used to search for similar 
sequences in a protein database. 
 
Furthermore, there is more chemical and structural variation among amino acids. As a 
result some amino acids are able to replace others with little impact on the structure and 
function of the protein they are a part of. These conservative substitutions tend to be 
observed more frequently than those that disrupt structure or function. As we will see in 
the next section, BLAST looks for matching words between query and database sequence 
pairs. However, BLAST also looks for words that include conservative substitutions for 
characters in the query sequence. 
 
As with any data analysis procedure, the objective is to find a good balance between 
sensitivity and selectivity so that true hits are found with few false positives. As the 
biological data sets being analyzed become larger, it becomes essential to maintain the 
desired analytical performance while increasing the rate at which data can be analyzed. 
 
Sequence data has been accumulating at an exponential rate ever since sequencing was 
developed in the 1970s, with the result that new sequences are queried against 
increasingly larger databases. High-throughput sequencing of genomic DNA is 
accelerating the accumulation of sequence data even further. And this technology is 
enabling a range of new approaches to biological study that are advancing our 
understanding at unprecedented rates, scales and levels of detail. For example, in 
environmental metagenomics, all of the microbial creatures from an environmental 
sample are sequenced in a single experiment, and similarity search and other 
computational pattern finding methods are then used to sort and annotate the hereditary 
material of multiple species. In expressed sequence tag (EST) screening the complete set 
of expressed mRNAs for a cell or tissue can be sequenced in a single experiment. The 
identity of each of these transcripts is then determined by similarity search against the 



organism’s genome to allow scientists to understand, anticipate and intervene in changes 
in the functional state of the cell, tissue or organism as it responds to changes in the 
environment, disease or medical treatment. 
 
As the size of the data sets being analyzed, and the number of comparisons being made 
continue to increase, the rate of progress in contemporary biology is becoming more 
closely associated with the rate at which high quality similarity search results can be 
obtained. The potential to reduce the time to complete these calculations through parallel 
computing is significant. The data intensive nature of this computation would suggest 
that near linear speed-ups might be possible. The rest of this module will consider the 
BLAST algorithm and the performance gains that have been observed through one 
particular parallelization strategy. 
 
 

The	  BLAST	  Algorithm	  
 
Algorithms that are assured of finding an optimal scoring alignment between pairs of 
sequences exist, however their time and memory requirements increase in a quadratic 
manner, as the product of the lengths of the sequences being compared (order n x m, or 
O(n2)). As described above, similarity search seeks to identify sequences homologous to 
a query sequence from within a potentially large sequence database. Because a large 
number of sequence comparisons are typically required, algorithms for optimal sequence 
alignment are not practical for similarity search applications. 
 
Instead of exhaustively finding the best alignment by scoring every possible alignment, 
as the optimal alignment algorithms do, BLAST uses a heuristic approach. Heuristic 
methods reduce the total number of calculations required to find a solution by using 
insights from theory or practical experience to eliminate some of the possible solutions, 
and the calculations required to evaluate them. 
 
The insight that BLAST (and other similarity search tools) starts with is this: Sequences 
with biologically meaningful similarity (homology) to the query sequence will posses 
some stretches of perfect identity with the query. So, instead of determining the best 
possible alignment score at every position in the sequence, BLAST takes the approach of 
finding words of length w that are common to both sequences, and then extending these 
matching words until the alignment falls below some user-defined threshold value. It 
turns out that the compute time for this approach grows linearly with the length of the 
sequences being compared, O(n), rather than quadratically. 
 
Let’s take a closer look at the algorithm that BLAST uses to find sequences similar to a 
query sequence(s) within a database. To make things clearer, we will conduct a search 
using the server-based BLAST at the NCBI. This link should bring you to a page 
resembling figure 2, on the following page. From tabs at the top of this page you have 
access to “Recent Results” that you have produced using BLAST within the last 36 
hours, “Saved Strategies” for conducting BLAST searches according to conditions that 



you have specified, and the “Help” page, which provides links to extensive 
documentation and tutorials, along with links to the standalone version of BLAST and 
downloadable BLAST database files, which we will use later. 
 
 

 
Figure	  2	  –	  The	  NCBI	  BLAST	  home	  page	  

 
For this example we will search a protein database using a protein query sequence. In 
order to do this, click on the “protein blast” link beneath the heading that says “Basic 
BLAST … Choose a BLAST program to run.” The protein BLAST (BLASTp) page will 
open and is pictured in figure 3, on the next page. This page allows us to specify inputs 
and parameters for the BLAST search. Information about each of the inputs can be found 
by clicking on the question mark near the input on the web page. In order to run a search 
BLAST needs the following inputs: 

1. A query sequence or batch – acceptable inputs include identifiers that uniquely 
identify catalogued sequences, raw nucleotide or amino acid sequences, or 
sequence files in FASTA or some other formats. 

2. A sequence database – Server-based BLAST provides access to all of the major 
sequence data repositories. The need to search against custom databases is one of 
the motivations for downloading and running standalone BLAST. 



3. Which BLAST algorithm – PSI and PHI BLAST will identify sequences with 
similarities to patterns in the query sequence, instead of the characters in the 
sequence. 

 

 
Figure	  3	  –	  The	  BLASTp	  setup	  page	  

 
In order to run a search, we will need a query sequence. Below is the amino acid 
sequence for an enzyme called tryptophan synthase from the corn plant. This enzyme 
catalyzes the last step in the set of biochemical reactions that assemble the amino acid 
tryptophan, which is represented by a “W” in amino acid sequences (there are only two of 
them in this sequence, one near the middle of the third line of the sequence, and one at 
the seventh position of the fourth line of the sequence). 
 
>gi|1174778|sp|P43283.1|TRPB1_MAIZE RecName: Full=Tryptophan synthase beta chain 1; AltName: Full=Orange pericarp 1 
GRFGGKYVPETLMHALTELENAFHALATDDEFQKELDGILKDYVGRESPLYFAERLTEHYKRADGTGPLI 
YLKREDLNHRGAHKINNAVAQALLAKRLGKQRIIAETGAGQHGVATATVCARFGLQCIIYMGAQDMERQA 
LNVFRMKLLGAEVRAVHSGTATLKDATSEAIRDWVTNVETTHYILGSVAGPHPYPMMVREFHKVIGKETR 
RQAMHKWGGKPDVLVACVGGGSNAMGLFHEFVEDQDVRLIGVEAAGHGVDTDKHAATLTKGQVGVLHGSM 
SYLLQDDDGQVIEPHSISAGLDYPGVGPEHSFLKDIGRAEYDSVTDQEALDAFKRVSRLEGIIPALETSH 



ALAYLEKLCPTLPDGVRVVLNCSGRGDKDVHTASKYLDV 
 
This sequence is in a format called FASTA, which is a holdover from a tool for similarity 
search that preceded BLAST. You will notice that this sequence is comprised of two 
portions. On the first line is a greater than symbol “>” followed by some numbers and 
information that describe this sequence. This is the header line. Everything that follows 
the header line is interpreted as sequence information, until the end of the file. The large 
text box on the BLASTp setup page is for the query sequence. You can copy and paste 
the entire sequence (including header line), a portion of the sequence, or one of the 
sequence identifiers that NCBI can use to find the sequence (“gi|1174778” on the header 
line). 
 
BLAST provides default values for everything except a query sequence. Having entered a 
query sequence (or sequence identifier), the search can be started by clicking on the large 
“BLAST” button on the bottom of the page. 
 
You may also notice a link below the BLAST button that says “Algorithm parameters”. 
While all of these parameters provide the user with greater control of the search process 
and the results obtained, the two parameters that will always impact search time and 
results are the “Expect threshold” and the “Word size”. To understand the effects of 
these parameters, lets consider what happens when BLAST search is initiated by clicking 
the big “BLAST” button. 
 

 
Figure	  4	  –	  Algorithm	  parameters	  for	  BLASTp 

 



Build	  word	  lists	  
Instead of aligning sequence pairs, the BLAST algorithm looks for words of a user 
specified length (w), which are present in both the query and database sequence. In order 
to accomplish this, BLAST first carries out a hashing of the sequence data, converting 
the sequences to word lists (see figure 5 below). All of the possible words of the specified 
length with the appropriate alphabet (amino acids, or nucleotides) are first enumerated as 
a look-up table. Then, for each sequence, starting at the first position and proceeding to 
the end of the sequence (-w+1), the sequence ID and starting position of each word in the 
sequence are recorded with the corresponding word in the look-up table. The result is a 
list of words associated with the sequence ID and starting positions of all of the words 
that occurred within the sequence recorded. 
 

 
Figure	  5	  –	  Hashing	  sequences	  to	  word	  lists	  to	  identify	  word	  matches.	  Two	  nucleotide	  sequences,	  
S1	  and	  S2	  are	  hashed	  into	  a	  list	  of	  words	  of	  length	  (w)	  =	  2.	  The	  sequence	  identity	  and	  position	  of	  
each	  word	  is	  recorded.	  Word	  look-‐ups	  with	  occurrences	  in	  both	  sequences	  are	  then	  identified.	  

 
Traditionally, the database comprises much more sequence data than the query (though 
this is less true now than in the past). Construction of the look-up table for the database is 
a pre-processing step, which will only be done once for a given database. BLAST saves 
the look-ups for each database it uses so that they will not have to be reconstructed for 
each search. At NCBI these database look-ups are constructed off-line and the BLAST 
servers have access to the latest builds for searching. 
 

Identify	  seeds	  
Once word lists for all of the sequences have been constructed, finding matches involves 
going down the list of words present in the query sequences and looking to see if there 
are any occurrences in the list for the database sequence. 
 

Extend	  seeds	  
Having identified all word matches between a query/database sequence pair, the next step 
is to extend an alignment in both directions from the matching words. This step 
resembles the optimal pairwise alignment algorithms that were described as too slow for 



similarity search. They are still the best way of producing high-quality alignments in 
regions deemed of high enough potential value to dedicate the necessary compute cycles. 
The speed gains in the BLAST algorithm result from filtering out low value regions, not 
worth extending, based on the absence of matching word pairs. 
 
The original BLAST algorithm would extend on every word match, and even allowed for 
conservative substitutions in the case of amino acid sequences (browse the BLAST 
documentation here). However, the gapped BLAST algorithm adopted the “two-hit” 
method, which requires that two non-overlapping word pairs must occur within a 
specified distance of one another along the same diagonal of an alignment matrix before 
extension is initiated (see figure 6 below). An alignment matrix is a representation of the 
alignment of two sequences where one sequence is arrayed across the top of a grid, and 
the other down the left side, so that areas of correspondence between the two sequences 
appear as diagonals from top left to bottom right.  
 

 
Figure	  6	  –	  The	  two-‐hit	  criterion	  in	  gapped	  BLAST	  requires	  that	  at	  least	  two	  matched	  word	  pairs	  
must	  occur	  along	  a	  diagonal	  of	  an	  alignment	  matrix	  in	  order	  for	  extension	  to	  be	  carried	  out.	  

(from	  Chao and Zhang, 2008) 
 
As its name suggests, gapped BLAST also differed from the original BLAST in that it 
was able to include gaps in the alignment during the extension phase, although the two-
hit criteria selects in favor of regions that will not require gaps between the word pairs. In 
both versions of the algorithm, the extension is continued until the alignment falls below 
a scoring threshold as measured with the scoring scheme specified as an input to the 
search. The aligned positions are scored by adding up the score across all of the aligned 
positions, and each position’s score is determined by a value in the scoring matrix, when 
characters are aligned, or by a gap penalty. 
 



Record	  all	  high-‐scoring	  segment	  pairs	  
The only results that are saved by BLAST are those that meet the criteria that their expect 
value (e-value) is less than the expect threshold parameter (from the alignment 
parameters page, figure 4). The expect value represents the number of alignments as good 
as the one observed that would be expected by chance. Reducing the expect threshold 
would reduce the number of random hits stored in the results, but it would also reduce the 
number of distantly related sequences that we would find. 
 
By the time the expect threshold comes into play, the majority of the computation for the 
query/database sequence pair has already been carried out. As a result, this parameter has 
less of an effect on the run time for the search, but it has a large effect on the size of the 
results list, and the degree of similarity to the query within the results. While it may seem 
that one would always want to opt for a very small expect threshold, one valuable feature 
of conducting similarity searches is often the identification of less-clearly-related 
sequences in the database. 
 

Rank	  and	  report	  results	  
Once the results have been saved, BLAST is able to report them in various formats, 
depending, among other things, on whether they are intended for human or machine 
consumption. The NCBI Handbook chapter on BLAST provides an excellent description 
of the standard BLAST results report as well as the alternative formats available. 
 
 

Standalone	  BLAST	  Exercise	  
 
Installing Standalone BLAST on a linux x64 cluster (cluster.earlham.edu) 
refer to ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.23/user_manual.pdf for full 
documentation 

1. Create	  a	  directory	  in	  your	  home	  directory	  to	  install	  BLAST	  locally:	  	  
	  
cd ~ 
 
mkdir Standalone_Blast 
 
cd Standalone_Blast 
 

2. Get	  the	  VMD	  source	  file	  
	  
wget 
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.23/
ncbi-blast-2.2.23+-x64-linux.tar.gz 
 



3. ‘Untar’	  the	  file	  and	  create	  a	  directory	  for	  databases	  
	  
tar xzf ncbi-blast-2.2.23+-x64-linux.tar.gz 
 
mkdir db	  
 

4. Get	  a	  database	  file	  from	  ftp://ftp.ncbi.nlm.nih.gov/blast/db	  
	  
cd db 
 
wget [url] 
 
tar xf [file_name.tar.gz] or gunzip [file_name.gz] 
 
**eg. wget ftp://ftp.ncbi.nlm.nih.gov/blast/db/nt.00.tar.gz 
**eg. tar xf nt.00.tar.gz 
 

5. Look	  for	  a	  gene	  you	  want	  to	  search	  for	  at	  
http://www.ncbi.nlm.nih.gov/genbank/	  and	  then	  copy	  and	  paste	  the	  
FASTA	  sequence	  into	  a	  file	  
	  
cd .. 
 
mkdir query 
 
mkdir results 
 
cd query 
 
vim test 
 
copy and paste your fasta sequence in the test file you 
just created 
 
**eg. Drosoph Homeobox 

	  
6. If	  the	  cluster	  you	  are	  using	  requires	  you	  to	  use	  a	  PBS	  scheduler,	  create	  a	  

PBS	  submission	  script	  
	  
cd .. 
 
vim blast.qsub 
 



Add	  these	  lines	  to	  the	  file:	  
#PBS -l nodes=1 
#PBS -o OUTPUT 
#PBS -e ERROR 
 
cd $PBS_O_WORKDIR 
 
./ncbi-blast-2.2.23+/bin/blastn -db 
~/Standalone_Blast/db/[db_file_name] -query 
~/Standalone_Blast/query/test 
 
**eg. ./ncbi-blast-2.2.23+/bin/blastn -db 
~/Standalone_Blast/db/nt.00 -query 
~/Standalone_Blast/query/test 

	  
7. Submit	  your	  job	  to	  the	  scheduler	  

	  
qsub blast.qsub 

	  
8. Check	  the	  results	  

	  
cat results/results.txt 

 

Inside the results file you should find information on the score of the match, the expect, the 
number of identities, and the gaps. You should also see a graphic representation of the alignment.  
An example of the result file is shown below. 
 

Score =  200 bits (108),  Expect = 5e-48 
 Identities = 184/220 (83%), Gaps = 8/220 (3%) 
 Strand=Plus/Minus 
 
Query  1998   AGACAGGCAT-CCAAAAAACGACGGAAGTCCCGCACAGCCTTCACCAACCACCAAATCTA  2056 
              ||||| || | |||| || ||||| || || ||||| ||||||||||||||||||||||| 
Sbjct  30696  AGACA-GCCTCCCAAGAAGCGACGAAAATCACGCACCGCCTTCACCAACCACCAAATCTA  30638 
 
Query  2057   CGAGCTGGAAAAGAGGTTTTTGTACCAGAAATACCTCTCACCGGCTGACAGAGACCAGAT  2116 
              ||||||||| ||| | ||| |||||||||| |||||||||||||| ||||| |||||||| 
Sbjct  30637  CGAGCTGGAGAAGCGCTTTCTGTACCAGAAGTACCTCTCACCGGCCGACAGGGACCAGAT  30578 
 
Query  2117   AGCACAGCAGC-TGGGGCTGACCAATGCGCAGGTCATCACCTGGTTCCAGAACCG-ACGG  2174 
               || ||| ||| | ||  ||||||| || ||||||||||| ||||| |||||| | | |  
Sbjct  30577  CGCCCAG-AGCCTAGGTTTGACCAACGCACAGGTCATCACATGGTTTCAGAACAGGA-GA  30520 
 
Query  2175   GCCAAGCTCAAGAGAGATCTGGAGGAGA-TGAAGGCGGAC  2213 
              ||||||||||||||||| || || || | ||||||||||| 
Sbjct  30519  GCCAAGCTCAAGAGAGACCTAGACGA-ACTGAAGGCGGAC  30481 

 



Parallelizing	  BLAST	  
 

Introduction 
 

The sequence databases have continuously grown over the years, to the point that some 
no longer fit within the memory of a single computer. At the same time, the number of 
queries that may be needed for accurate comparisons of sequences has also increased. To 
overcome these hurdles, researchers have leveraged high performance computing 
(HPC) to provide a way for multiple computers, each with their own memory, to work in 
tandem. 
 
HPC utilizes the concept of parallelism, in which multiple computers work concurrently 
to solve a problem faster or to solve a bigger problem. In order for multiple computers to 
work in tandem, they must have a way of synchronizing, such that they are able to 
communicate the data that results from the calculations they perform. One method for 
doing this is to use a technique called message passing, in which computers are 
connected via a network over which they can pass messages that contain data used for the 
execution of the problem. A standard for message passing is provided by the Message 
Passing Interface (MPI). MPI provides tools for splitting a program among multiple 
processes, which are software entities that execute tasks in parallel. In this lesson we will 
consider the MPI version of BLAST, mpiBLAST. 
 
mpiBLAST works by fragmenting, or partitioning, the BLAST database, splitting it up 
into smaller chunks. One MPI process known as the master sends the fragments of the 
database to the rest of the MPI processes, known as workers. Each worker performs a 
query to its fragment of the database and sends the result back to the master. If there are 
more fragments still to process, the master sends them to the workers as the workers 
become available. This paradigm of workload distribution is commonly called the 
Master/Worker Model and while it also has many applications to HPC outside of 
mpiBLAST it is certainly not the only workload distribution paradigm for MPI programs.  

	  

mpiBLAST	  Exercise	  
 
Using mpiBLAST on a linux x64 cluster (cluster.earlham.edu) 
refer to www.mpiblast.org/Docs/Install for full documentation 

1. Create	  a	  .ncbirc	  file	  in	  your	  home	  directory	  	  
	  
cd ~ 
 
vim .ncbirc 
 

2. Copy	  the	  following	  lines	  into	  the	  .ncbirc	  file,	  but	  replace	  “mly”	  with	  your	  
username	  	  



	  
[mpiBLAST] 
Shared=/cluster/home/mly/shared/ 
Local=/tmp/mpiblast/ 
 

3. This	  following	  step	  is	  only	  needed	  if	  mpiBLAST	  is	  not	  loaded	  by	  default	  
on	  the	  cluster	  
 
module load mpiblast 
 

4. Get	  a	  database	  file	  at	  ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/	  
 
mkdir mpiblast 
 
cd mpiblast 
 
mkdir db 

	  
cd db 
 
wget [url] 
 
tar xf [file_name.tar.gz] or gunzip [file_name.gz] 
 
**eg. wget 
ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/drosoph.nt.gz 
**eg. gunzip drosoph.nt.gz 
 

5. Format	  the	  database	  file,	  specifying	  the	  number	  of	  fragments	  to	  use	  
	  
mpiformatdb -i [filepathofdb] --nfrags=[Number of Frags] 
 
**e.g. mpiformatdb -i ~/mpiblast/db/drosoph.nt --nfrags=3    

	  
6. Look	  for	  a	  gene	  you	  want	  to	  search	  for	  at	  

http://www.ncbi.nlm.nih.gov/genbank/	  and	  then	  copy	  and	  paste	  the	  
FASTA	  sequence	  into	  a	  file	  
	  
cd .. 
 
mkdir query 
 
mkdir results 



 
cd query 
 
vim test 
 
copy and paste your FASTA sequence in the test file you 
just created 
 
**e.g. Drosoph Homeobox 
 

7. Create	  a	  PBS	  Batch	  submission	  script	  
	  
cd .. 
 
vim mpiblast.qsub 
 

Add	  these	  lines	  to	  the	  file	  –	  the	  values	  for	  “nodes=”	  and	  “-‐np”	  should	  be	  the	  
same	  as	  the	  value	  you	  picked	  for	  –nfrags	  above	  
	  
#PBS -l nodes=3 
#PBS -o OUTPUT 
#PBS -e ERROR 
 
module load mpiblast 
cd $PBS_O_WORKDIR 
 
mpirun -bynode -hostfile $PBS_NODEFILE -np 3 mpiblast -p 
blastn -d [dbname] -i ~/mpiblast/query/test -o 
~/mpiblast/results/results.txt 
 
**e.g. mpirun -bynode -hostfile $PBS_NODEFILE -np 3 
mpiblast -p blastn -d drosoph.nt -i ~/mpiblast/query/test -
o ~/mpiblast/results/results.txt 

	  
8. Submit	  your	  job	  to	  the	  scheduler	  

 
qsub mpiblast.qsub 
 

9. Check	  the	  results	  
	  
cat results/results.txt 

The results file should be similar to the one obtained in the Standalone 
BLAST exercise. 



	  
	  

10. See	  how	  long	  it	  took	  to	  run	  
	  
cat ERROR 
 

This should show something like the following: 
 
Total Execution Time: 0.773756 
 
 

Helpful Links 

http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/unix_setup.html 
http://openwetware.org/wiki/Wikiomics:BLAST_tutorial 
http://telliott99.blogspot.com/2009/12/blast-‐ncbirc-‐file.html 
http://debianclusters.org/index.php/Using_mpiBLAST 
http://www.ncbi.nlm.nih.gov/genbank/ 
ftp://ftp.ncbi.nlm.nih.gov/blast/db/ 

 

	  

Scaling	  mpiBLAST	  
 

Introduction	  
 
As supercomputers (the biggest, fastest computers in the world) become larger and 
faster, the total number of cores (processing units that comprise computer chips) 
available to an HPC application is increasing. In order to take advantage of a greater 
number of cores, an application must be able to scale well, to not only run correctly on a 
larger supercomputer, but also to better utilize the additional cores that supercomputer 
provides. Scaling an algorithm usually comes in two forms: strong scaling, in which the 
same sized problem is run over more cores, and weak scaling, in which the amount of 
work per core is kept the same while the problem size and the number of cores is 
increased. In general, strong scaling means we can solve a problem faster by using more 
cores, while weak scaling means we can solve a bigger problem with more cores in the 
same amount of time it would take to solve a smaller problem with fewer cores. In the 
context of sequence alignment, strong scaling means we can receive faster results from 
our database queries by utilizing more cores, while weak scaling means we can perform 
larger queries over bigger databases with more cores in the same amount of time it would 
take us to perform smaller queries over smaller databases with fewer cores. Since each 
processor has a decreasing amount of work to perform as the number of processors 



increases in strong scaling, there is usually a threshold number of processors beyond 
which performance decreases due to the predominance of communication costs over 
computation costs.  By way of contrast, the goal in weak scaling is to increase the 
problem size as the number of processors increases in order that each processor needs to 
perform approximately the same amount of computation.  In the exercise below we will 
examine how well mpiBLAST helps us achieve strong scaling. 

	  
 

Strong	  Scaling	  Exercise	  
 
Strong Scaling of mpiBLAST on a linux x64 cluster (cluster.earlham.edu) 
refer to www.mpiblast.org/Docs/Install for full documentation 

1. Complete	  the	  mpiBLAST	  Exercise	  above	  	  
	  

2. Format	  the	  database	  file	  to	  use	  the	  number	  of	  fragments	  that	  
corresponds	  to	  the	  maximum	  number	  of	  cores	  over	  which	  we	  will	  scale	  

 
mpiformatdb -i [filepathofdb] --nfrags=[Number of Frags] 
 
**e.g. mpiformatdb -i ~/mpiblast/db/drosoph.nt --nfrags=12    

	  
3. Edit	  the	  PBS	  Batch	  submission	  script	  to	  start	  with	  1	  node	  (4	  cores)	  

 
cd ~/mpiblast 
 
vim mpiblast.qsub 
 

Change	  the	  file	  to	  contain	  these	  lines	  –	  note	  that	  we	  changed	  the	  value	  of	  
“nodes=”,	  added	  “ppn=”,	  and	  changed	  the	  value	  of	  “-‐np”.	  	  This	  will	  cause	  a	  job	  
to	  run	  with	  4	  MPI	  processes	  on	  4	  cores.	  
	  
#PBS -l nodes=1:ppn=4 
#PBS -o OUTPUT 
#PBS -e ERROR 
 
module load mpiblast 
cd $PBS_O_WORKDIR 
 
mpirun -bynode -hostfile $PBS_NODEFILE -np 4 mpiblast -p 
blastn -d [dbname] -i ~/mpiblast/query/test -o 
~/mpiblast/results/results.txt 
 



**e.g. mpirun -bynode -hostfile $PBS_NODEFILE -np 4 
mpiblast -p blastn -d drosoph.nt -i ~/mpiblast/query/test -
o ~/mpiblast/results/results.txt 

	  
4. Submit	  your	  job	  to	  the	  scheduler	  

 
qsub mpiblast.qsub 

	  
5. Check	  how	  long	  it	  took	  to	  run	  with	  4	  cores	  

	  
cat ERROR 
 

This should show something like the following: 
 

Total Execution Time: 1.96301 
 

6. Record	  the	  runtime	  in	  a	  table	  for	  later	  
	  
4 cores 1.96301 seconds 

	  
7. Edit	  the	  PBS	  Batch	  submission	  script	  to	  run	  with	  2	  nodes	  (8	  cores)	  

 
vim mpiblast.qsub 

Change the values of “nodes and “-np” to match the following: 
 
#PBS -l nodes=2:ppn=4 
... 
 
mpirun -bynode -hostfile $PBS_NODEFILE -np 8 ... 
 

8. Submit	  your	  job	  to	  the	  scheduler	  
 
qsub mpiblast.qsub 

	  
9. Check	  how	  long	  it	  took	  to	  run	  with	  8	  cores	  

	  
cat ERROR 
 

10. Record	  the	  runtime	  in	  the	  table	  
	  



4 cores 1.96301 seconds 

8 cores 1.1743 seconds 

	  
11. Edit	  the	  PBS	  Batch	  submission	  script	  to	  run	  with	  3	  nodes	  (12	  cores)	  

 
vim mpiblast.qsub 

Change the values of “nodes and “-np” to match the following: 
 
#PBS -l nodes=3:ppn=4 
... 
 
mpirun -bynode -hostfile $PBS_NODEFILE -np 12 ... 
 

12. Submit	  your	  job	  to	  the	  scheduler	  
 
qsub mpiblast.qsub 

	  
13. Check	  how	  long	  it	  took	  to	  run	  with	  12	  cores	  

	  
cat ERROR 
 

14. Record	  the	  runtime	  in	  the	  table	  
	  
4 cores 1.96301 seconds 

8 cores 1.1743 seconds 

12 cores 1.16777 seconds 

	  
15. Repeat	  for	  values	  of	  16,	  20,	  24,	  28,	  32,	  36,	  40,	  44,	  and	  48	  cores.	  	  Fill	  in	  

these	  values	  in	  the	  table	  
	  
4 cores 1.96301 seconds 

8 cores 1.1743 seconds 

12 cores 1.16777 seconds 

16 cores 0.162758 seconds 



20 cores 1.72543 seconds 

24 cores 1.39609 seconds 

28 cores 1.74212 seconds 

32 cores 1.71794 seconds 

36 cores 1.71004 seconds 

40 cores 1.92373 seconds 

44 cores 2.0182 seconds 

48 cores 2.07888 seconds 

 
If we create a plot of the data above, we get the following: 
 

 
 

From this, we can conclude that this particular problem scales strongly up to 16 cores 
because the amount of computation per processor descreases unless the problem size is 
also increased. Beyond this, the execution time begins to increase rather than decrease. 
This is likely due to communication overhead in the program, or the time spent waiting 
for MPI processes to communicate with each other rather than doing meaningful 
calculations. As the number of processes increases, the number of necessary 
communications also increases, thus increasing the communication overhead. 
 
 
 
 



Scoring	  Rubric	  
 
Problem #1 can be graded, answers as follows: 

a) GATGAG over G-TGTG   
b) CTCGAATTCCG over GTCCTCC---- 
c) ---AAGATC-- over ATAAAGCCGTC 

Each of the results.txt files from the Standalone BLAST and mpiBLAST exercises 
can be handed in for a grade.  The table from the strong scaling exercise can also be 
handed in for a grade. 
 
Suggested grading:  10 points for Problem #1, 30 points for each of the exercise 
deliverables, for a total of 100 points. 

 
 
 

Possible Extensions	  
	  

1.  Explore running standalone BLAST and mpiBLAST with different-sized databases.  
How does this affect the execution time of a query?  Perform a weak scaling exercise 
– vary the size of the database as you vary the number of cores.  What is the result? 
 

2. Explore running standalone BLAST and mpiBLAST with different-sized queries on a 
single database.  How does this affect the execution time?  Perform a weak scaling 
exercise – vary the size of the query as you vary the number of cores.  What is the 
result? 

 
3. Explore running standalone BLAST and mpiBLAST with different word sizes (e.g. 2, 

3, 4) using the -word_size argument to blastn.  Does mpiBLAST scale the same 
with different word sizes? 
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