
BLAST-‐ing	 in	 Parallel:	 Enabling	 an	 Essential	 Computational	 Tool	 to	 Keep	
Pace	 with	 the	 Explosive	 Growth	 in	 Biological	 Sequence	 Data	

By	 Jeff	 Krause,	 Shodor,	 Durham,	 North	 Carolina	

and	 Michael	 Ly,	 University	 of	 Illinois,	 	
Urbana-‐Champaign,	 Illinois	

with	 contributions	 from	 Aaron	 Weeden	 	
and	 Jennifer	 Houchins,	 Shodor,	 Durham,	 North	 Carolina

Introduction	

The computational analysis of biological sequence data has become an essential enabling
tool across the life sciences. The “genomic revolution” of the past decade or more would
not have been possible, or at least would have been too slow to qualify as a “revolution”
without a range of bioinformatics and computational biology tools. Arguably the most
broadly and heavily used of all bioinformatics tools is the Basic Local Alignment Search
Tool (BLAST, Altschul et. al. 1990 and 1997). This tool serves as the de facto first step
in the analysis of any newly completed sequence.

The sequence similarity search implemented by BLAST enables researchers to quickly
discover structure, function and evolutionary information about newly produced sequence
data. Using a tool to query a new, or poorly understood, sequence for similarity against
the database of known sequences identifies biomolecules similar to the unknown
sequence, many of which have been annotated with information about how they function
in living systems. If the similarity is weak, the scientist at least has some leads to direct
an experimental exploration of the function of the sequence or its gene product. If the
similarity is strong, the scientist may have a very complete picture of the nature and
origins of the molecule, without doing any time-consuming experiments.

The dramatic advances in the speed and reliability of automated sequencing machines
would have been for naught if our ability to interpret and understand these sequence data
couldn’t keep pace. As more reference data becomes available in increasingly larger
datasets, researchers are discovering additional ways to leverage the information acquired
in comparing poorly understood sequences to those that are better understood. This
means that the performance of BLAST and other computational tools must continue to
improve in order to sustain and advance biomedical science.

 The National Center for Biotechnology Information (NCBI,
www.ncbi.nlm.nih.gov) has been maintaining repositories of biological data and
developing and hosting computational tools to help scientists to utilize and discover the
biological meaning in these data since its establishment in 1988. The NCBI BLAST
portal (blast.ncbi.nlm.nih.gov) has been the primary interface to BLAST for most

researchers. However, with advances in analytical approaches, proprietary interests and
datasets, and growth in data volume, more users are opting to build their own BLAST
installations using NCBI’s standalone BLAST or a variety of third party versions or
variations on BLAST and similarity search, some of which will be mentioned in this
module.

As part of its support mission NCBI hosts many useful instructional materials,
documentation and supporting tools. For example, the NCBI Handbook is available
through the NCBI Bookshelf and provides an overview of the databases and search tools
hosted by NCBI. The BLAST Help Manual and other documentation are available
through the Help tab of the NCBI BLAST web page. The NCBI C++ Toolkit provides a
number of libraries to facilitate the construction of custom applications using NCBI
software and databases (the documentation manual is here).

The goals of this module are to:

1. Provide some background on the importance of biological sequence similarity
2. Describe the basic BLAST algorithm
3. Study the performance characteristics of the NCBI server-based and standalone

BLAST software
4. Consider and test a parallelization approach
5. Study the performance of the mpiBLAST software as a function of the number of

compute cores

The	 Biology	 of	 Sequence	 Similarity	

Similarity between biological sequences implies functional and evolutionary relatedness.
This stems from the fact that DNA is the molecular repository for hereditary information
in living cells. This information is stored in the sequence of four distinct chemical
building blocks linked together end-to-end to form long strands of DNA. Various
molecular components of the cell are able to interact with portions of the DNA and use
the sequence of chemicals in the DNA to direct the production of other molecules that
carry out the multitude of physical and chemical processes necessary to sustain life.

While it makes sense that the ability to duplicate and disseminate the molecular
instructions within the DNA with high-fidelity would be of paramount importance in
perpetuating life, it turns out that a number of mechanisms for producing changes to the
DNA have evolved as well. Apparently, the ability to adapt to changes in the natural
world by altering the heritable molecular instructions for life is also important.

These basic biological facts have made similarity search among the most widely used
computational biology methods, and with sequence data accumulation currently
outpacing Moore’s law (Nucleic acid in GenBank and Europe, genomic, and protein),
this situation isn’t likely to change any time soon.

One consequence of the discrete nature of biological sequence space is that these data are
directly amenable to computational analysis. A number of metrics and algorithms based
in statistics and probability have proven very successful in quantifying similarities and
patterns among sequences. These methods effectively filter massive quantities of data
down to a small number of sequences most likely to possess biologically meaningful
similarity to the sequences being queried. As a result, scientists are able to focus their
attention on the most informative comparisons among sequences.

The first step in the analysis of virtually every newly assembled sequence is to carry out a
similarity search against databases of known sequences to see what the new sequence
looks like. The types of sequences that are found to be similar, and the degree of
similarity can provide conclusive information as to the function and origins of the new
sequence. Most significantly, this information can be obtained without committing the
time and expenses required to characterize each sequence experimentally.

Alignment Scoring
In order to make an assessment of the degree of similarity between two sequences, it is
necessary to first align the sequences so as to bring into register those sequence
characters that are most likely to share homology, or common ancestry. The challenge is
that there are a large number of alignments possible for most biologically important
sequences. To distinguish between these possible alignments biologists have adopted
scoring methods that reflect the molecular processes that cause an organism’s DNA to
change across generations.

Figure	 1	 –	 The	 score	 of	 an	 alignment	 is	 obtained	 by	 summing	 the	 scores	 of	 each	 column	

in	 the	 alignment.	 The	 score	 for	 each	 column	 is	 assigned	 based	 on	 whether	 the	
characters	 are	 identical,	 mismatched,	 or	 a	 gap	 has	 been	 placed	 in	 one	 of	 the	 sequences.	
(from	 http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Alignment_Scores2.html)

Alignment scoring schemes assign more positive scores to aligned characters that reflect
more likely evolutionary events. For example, maintaining the character identity at a
sequence position is the most likely evolutionary event, so a column in an alignment that
includes the same character in each sequence would receive a positive score. Less

positive, or more negative scores are assigned to aligned characters that reflect less
common evolutionary events. For example, the substitution of one character with
another is less likely than maintaining the identity of a character, so a column with
mismatched characters receives a less positive, or more negative score than an identity.

Even more negative scores are given to columns in the alignment reflecting more
uncommon events. If it is necessary to introduce a gap into one of the aligned sequences
in order to maintain a good alignment at neighboring positions, this represents a
hypothesis that a character was either deleted in one sequence or inserted in the other.
Unfortunately, we can’t know which event occurred without seeing the corresponding
sequence from the most recent common ancestor of the aligned sequences so we refer to
this event as an indel. These events are less common than identities and substitutions and
are typically scored with a negative valued gap penalty.

A more realistic approach to scoring gaps is to impose a large penalty when a gap is
introduced. However, a smaller penalty is contributed when another gapped position is
appended to an existing gap. This reflects the biology that an insertion or deletion event
may be rare, however there is little difference in the likelihood of insertions or deletions
involving multiple characters. Including this biological detail in the scoring scheme
doubles the number of calculations involved in scoring alignments, since the score at an
alignment position will depend on the preceding position.

Problem # 1 – Scoring Alignments

Find the best scoring alignment between the following sequence pairs using the
scoring scheme below. To score an alignment, at each position look up the score in
the scoring matrix corresponding to the two aligned characters (assume the matrix is
symmetric, so the value at the intersection of column G with row C would be the
same as the value at the intersection of column C with row G). If a gap is introduced,
subtract the quantity (20 + (3 * length of indel)).

As an example, consider the sequences “CAT” and “CAAT”. Clearly these sequences
are of different length, so an indel will have to be introduced at some point. Keeping
the Cs aligned in the first position seems reasonable, and contributes 10 to the
alignment score. Likewise, keeping As aligned in the second position contributes
another 9. Now comes a decision point: if we align the T with an A this will subtract
12 from the alignment score, and we will then have to include an indel position
because of the mismatch in lengths of the two sequences with a cost of (20 + (3*1) =
43. This would give an alignment score of 10+9–12–23 = -16. If instead we put the
indel first so that the Ts line-up in the last position the score is 10+9–23+9 = 5. So
CA-T over CAAT is the higher scoring alignment.

Find the best scoring alignments for the sequence pairs:

a) GATGAG and GTGTG
b) CTCGAATTCCG and GTCCTCC
c) AAGATC and ATAAAGCCGTC

 A C G T
A 9

C -11 10

G -3 -12 10

T -12 -3 -11 9

Gap penalty = 20 + (3*length)

In general adding realistic details to the scoring scheme will add calculations to the
scoring algorithm. However, this will be required to produce biologically meaningful
results. For example, a number of distinct molecular processes can result in duplications,
inversions, translocations, and recombinations of genomic DNA sequences. As sequences
separated by greater stretches of evolutionary time are compared, scoring metrics
incorporating these slower (i.e., less frequent = less likely) evolutionary processes need to
be utilized in order to recognize these events when they occur.

There are important differences between nucleotide and protein sequence searches that
need to be taken into account when preparing to search. Since there are four nucleotides
in DNA, and twenty amino acids in protein, an identical match to a word four characters
in length (or any length, n) is much less likely to occur by chance in an amino acid
sequence than in a nucleotide sequence(1/20n vs 1/4n). This means that matches of a
given length within a protein sequence are more statistically significant, and therefore
more likely to be biologically meaningful. As a general rule, for sequences that are
known to code for a protein, the amino acid sequence should be used to search for similar
sequences in a protein database.

Furthermore, there is more chemical and structural variation among amino acids. As a
result some amino acids are able to replace others with little impact on the structure and
function of the protein they are a part of. These conservative substitutions tend to be
observed more frequently than those that disrupt structure or function. As we will see in
the next section, BLAST looks for matching words between query and database sequence
pairs. However, BLAST also looks for words that include conservative substitutions for
characters in the query sequence.

As with any data analysis procedure, the objective is to find a good balance between
sensitivity and selectivity so that true hits are found with few false positives. As the
biological data sets being analyzed become larger, it becomes essential to maintain the
desired analytical performance while increasing the rate at which data can be analyzed.

Sequence data has been accumulating at an exponential rate ever since sequencing was
developed in the 1970s, with the result that new sequences are queried against
increasingly larger databases. High-throughput sequencing of genomic DNA is
accelerating the accumulation of sequence data even further. And this technology is
enabling a range of new approaches to biological study that are advancing our
understanding at unprecedented rates, scales and levels of detail. For example, in
environmental metagenomics, all of the microbial creatures from an environmental
sample are sequenced in a single experiment, and similarity search and other
computational pattern finding methods are then used to sort and annotate the hereditary
material of multiple species. In expressed sequence tag (EST) screening the complete set
of expressed mRNAs for a cell or tissue can be sequenced in a single experiment. The
identity of each of these transcripts is then determined by similarity search against the

organism’s genome to allow scientists to understand, anticipate and intervene in changes
in the functional state of the cell, tissue or organism as it responds to changes in the
environment, disease or medical treatment.

As the size of the data sets being analyzed, and the number of comparisons being made
continue to increase, the rate of progress in contemporary biology is becoming more
closely associated with the rate at which high quality similarity search results can be
obtained. The potential to reduce the time to complete these calculations through parallel
computing is significant. The data intensive nature of this computation would suggest
that near linear speed-ups might be possible. The rest of this module will consider the
BLAST algorithm and the performance gains that have been observed through one
particular parallelization strategy.

The	 BLAST	 Algorithm	

Algorithms that are assured of finding an optimal scoring alignment between pairs of
sequences exist, however their time and memory requirements increase in a quadratic
manner, as the product of the lengths of the sequences being compared (order n x m, or
O(n2)). As described above, similarity search seeks to identify sequences homologous to
a query sequence from within a potentially large sequence database. Because a large
number of sequence comparisons are typically required, algorithms for optimal sequence
alignment are not practical for similarity search applications.

Instead of exhaustively finding the best alignment by scoring every possible alignment,
as the optimal alignment algorithms do, BLAST uses a heuristic approach. Heuristic
methods reduce the total number of calculations required to find a solution by using
insights from theory or practical experience to eliminate some of the possible solutions,
and the calculations required to evaluate them.

The insight that BLAST (and other similarity search tools) starts with is this: Sequences
with biologically meaningful similarity (homology) to the query sequence will posses
some stretches of perfect identity with the query. So, instead of determining the best
possible alignment score at every position in the sequence, BLAST takes the approach of
finding words of length w that are common to both sequences, and then extending these
matching words until the alignment falls below some user-defined threshold value. It
turns out that the compute time for this approach grows linearly with the length of the
sequences being compared, O(n), rather than quadratically.

Let’s take a closer look at the algorithm that BLAST uses to find sequences similar to a
query sequence(s) within a database. To make things clearer, we will conduct a search
using the server-based BLAST at the NCBI. This link should bring you to a page
resembling figure 2, on the following page. From tabs at the top of this page you have
access to “Recent Results” that you have produced using BLAST within the last 36
hours, “Saved Strategies” for conducting BLAST searches according to conditions that

you have specified, and the “Help” page, which provides links to extensive
documentation and tutorials, along with links to the standalone version of BLAST and
downloadable BLAST database files, which we will use later.

Figure	 2	 –	 The	 NCBI	 BLAST	 home	 page	

For this example we will search a protein database using a protein query sequence. In
order to do this, click on the “protein blast” link beneath the heading that says “Basic
BLAST … Choose a BLAST program to run.” The protein BLAST (BLASTp) page will
open and is pictured in figure 3, on the next page. This page allows us to specify inputs
and parameters for the BLAST search. Information about each of the inputs can be found
by clicking on the question mark near the input on the web page. In order to run a search
BLAST needs the following inputs:

1. A query sequence or batch – acceptable inputs include identifiers that uniquely
identify catalogued sequences, raw nucleotide or amino acid sequences, or
sequence files in FASTA or some other formats.

2. A sequence database – Server-based BLAST provides access to all of the major
sequence data repositories. The need to search against custom databases is one of
the motivations for downloading and running standalone BLAST.

3. Which BLAST algorithm – PSI and PHI BLAST will identify sequences with
similarities to patterns in the query sequence, instead of the characters in the
sequence.

Figure	 3	 –	 The	 BLASTp	 setup	 page	

In order to run a search, we will need a query sequence. Below is the amino acid
sequence for an enzyme called tryptophan synthase from the corn plant. This enzyme
catalyzes the last step in the set of biochemical reactions that assemble the amino acid
tryptophan, which is represented by a “W” in amino acid sequences (there are only two of
them in this sequence, one near the middle of the third line of the sequence, and one at
the seventh position of the fourth line of the sequence).

>gi|1174778|sp|P43283.1|TRPB1_MAIZE RecName: Full=Tryptophan synthase beta chain 1; AltName: Full=Orange pericarp 1
GRFGGKYVPETLMHALTELENAFHALATDDEFQKELDGILKDYVGRESPLYFAERLTEHYKRADGTGPLI
YLKREDLNHRGAHKINNAVAQALLAKRLGKQRIIAETGAGQHGVATATVCARFGLQCIIYMGAQDMERQA
LNVFRMKLLGAEVRAVHSGTATLKDATSEAIRDWVTNVETTHYILGSVAGPHPYPMMVREFHKVIGKETR
RQAMHKWGGKPDVLVACVGGGSNAMGLFHEFVEDQDVRLIGVEAAGHGVDTDKHAATLTKGQVGVLHGSM
SYLLQDDDGQVIEPHSISAGLDYPGVGPEHSFLKDIGRAEYDSVTDQEALDAFKRVSRLEGIIPALETSH

ALAYLEKLCPTLPDGVRVVLNCSGRGDKDVHTASKYLDV

This sequence is in a format called FASTA, which is a holdover from a tool for similarity
search that preceded BLAST. You will notice that this sequence is comprised of two
portions. On the first line is a greater than symbol “>” followed by some numbers and
information that describe this sequence. This is the header line. Everything that follows
the header line is interpreted as sequence information, until the end of the file. The large
text box on the BLASTp setup page is for the query sequence. You can copy and paste
the entire sequence (including header line), a portion of the sequence, or one of the
sequence identifiers that NCBI can use to find the sequence (“gi|1174778” on the header
line).

BLAST provides default values for everything except a query sequence. Having entered a
query sequence (or sequence identifier), the search can be started by clicking on the large
“BLAST” button on the bottom of the page.

You may also notice a link below the BLAST button that says “Algorithm parameters”.
While all of these parameters provide the user with greater control of the search process
and the results obtained, the two parameters that will always impact search time and
results are the “Expect threshold” and the “Word size”. To understand the effects of
these parameters, lets consider what happens when BLAST search is initiated by clicking
the big “BLAST” button.

Figure	 4	 –	 Algorithm	 parameters	 for	 BLASTp

Build	 word	 lists	
Instead of aligning sequence pairs, the BLAST algorithm looks for words of a user
specified length (w), which are present in both the query and database sequence. In order
to accomplish this, BLAST first carries out a hashing of the sequence data, converting
the sequences to word lists (see figure 5 below). All of the possible words of the specified
length with the appropriate alphabet (amino acids, or nucleotides) are first enumerated as
a look-up table. Then, for each sequence, starting at the first position and proceeding to
the end of the sequence (-w+1), the sequence ID and starting position of each word in the
sequence are recorded with the corresponding word in the look-up table. The result is a
list of words associated with the sequence ID and starting positions of all of the words
that occurred within the sequence recorded.

Figure	 5	 –	 Hashing	 sequences	 to	 word	 lists	 to	 identify	 word	 matches.	 Two	 nucleotide	 sequences,	
S1	 and	 S2	 are	 hashed	 into	 a	 list	 of	 words	 of	 length	 (w)	 =	 2.	 The	 sequence	 identity	 and	 position	 of	
each	 word	 is	 recorded.	 Word	 look-‐ups	 with	 occurrences	 in	 both	 sequences	 are	 then	 identified.	

Traditionally, the database comprises much more sequence data than the query (though
this is less true now than in the past). Construction of the look-up table for the database is
a pre-processing step, which will only be done once for a given database. BLAST saves
the look-ups for each database it uses so that they will not have to be reconstructed for
each search. At NCBI these database look-ups are constructed off-line and the BLAST
servers have access to the latest builds for searching.

Identify	 seeds	
Once word lists for all of the sequences have been constructed, finding matches involves
going down the list of words present in the query sequences and looking to see if there
are any occurrences in the list for the database sequence.

Extend	 seeds	
Having identified all word matches between a query/database sequence pair, the next step
is to extend an alignment in both directions from the matching words. This step
resembles the optimal pairwise alignment algorithms that were described as too slow for

similarity search. They are still the best way of producing high-quality alignments in
regions deemed of high enough potential value to dedicate the necessary compute cycles.
The speed gains in the BLAST algorithm result from filtering out low value regions, not
worth extending, based on the absence of matching word pairs.

The original BLAST algorithm would extend on every word match, and even allowed for
conservative substitutions in the case of amino acid sequences (browse the BLAST
documentation here). However, the gapped BLAST algorithm adopted the “two-hit”
method, which requires that two non-overlapping word pairs must occur within a
specified distance of one another along the same diagonal of an alignment matrix before
extension is initiated (see figure 6 below). An alignment matrix is a representation of the
alignment of two sequences where one sequence is arrayed across the top of a grid, and
the other down the left side, so that areas of correspondence between the two sequences
appear as diagonals from top left to bottom right.

Figure	 6	 –	 The	 two-‐hit	 criterion	 in	 gapped	 BLAST	 requires	 that	 at	 least	 two	 matched	 word	 pairs	
must	 occur	 along	 a	 diagonal	 of	 an	 alignment	 matrix	 in	 order	 for	 extension	 to	 be	 carried	 out.	

(from	 Chao and Zhang, 2008)

As its name suggests, gapped BLAST also differed from the original BLAST in that it
was able to include gaps in the alignment during the extension phase, although the two-
hit criteria selects in favor of regions that will not require gaps between the word pairs. In
both versions of the algorithm, the extension is continued until the alignment falls below
a scoring threshold as measured with the scoring scheme specified as an input to the
search. The aligned positions are scored by adding up the score across all of the aligned
positions, and each position’s score is determined by a value in the scoring matrix, when
characters are aligned, or by a gap penalty.

Record	 all	 high-‐scoring	 segment	 pairs	
The only results that are saved by BLAST are those that meet the criteria that their expect
value (e-value) is less than the expect threshold parameter (from the alignment
parameters page, figure 4). The expect value represents the number of alignments as good
as the one observed that would be expected by chance. Reducing the expect threshold
would reduce the number of random hits stored in the results, but it would also reduce the
number of distantly related sequences that we would find.

By the time the expect threshold comes into play, the majority of the computation for the
query/database sequence pair has already been carried out. As a result, this parameter has
less of an effect on the run time for the search, but it has a large effect on the size of the
results list, and the degree of similarity to the query within the results. While it may seem
that one would always want to opt for a very small expect threshold, one valuable feature
of conducting similarity searches is often the identification of less-clearly-related
sequences in the database.

Rank	 and	 report	 results	
Once the results have been saved, BLAST is able to report them in various formats,
depending, among other things, on whether they are intended for human or machine
consumption. The NCBI Handbook chapter on BLAST provides an excellent description
of the standard BLAST results report as well as the alternative formats available.

Standalone	 BLAST	 Exercise	

Installing Standalone BLAST on a linux x64 cluster (cluster.earlham.edu)
refer to ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.23/user_manual.pdf for full
documentation

1. Create	 a	 directory	 in	 your	 home	 directory	 to	 install	 BLAST	 locally:	 	
	
cd ~

mkdir Standalone_Blast

cd Standalone_Blast

2. Get	 the	 VMD	 source	 file	
	
wget
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.23/
ncbi-blast-2.2.23+-x64-linux.tar.gz

3. ‘Untar’	 the	 file	 and	 create	 a	 directory	 for	 databases	
	
tar xzf ncbi-blast-2.2.23+-x64-linux.tar.gz

mkdir db	

4. Get	 a	 database	 file	 from	 ftp://ftp.ncbi.nlm.nih.gov/blast/db	
	
cd db

wget [url]

tar xf [file_name.tar.gz] or gunzip [file_name.gz]

**eg. wget ftp://ftp.ncbi.nlm.nih.gov/blast/db/nt.00.tar.gz
**eg. tar xf nt.00.tar.gz

5. Look	 for	 a	 gene	 you	 want	 to	 search	 for	 at	
http://www.ncbi.nlm.nih.gov/genbank/	 and	 then	 copy	 and	 paste	 the	
FASTA	 sequence	 into	 a	 file	
	
cd ..

mkdir query

mkdir results

cd query

vim test

copy and paste your fasta sequence in the test file you
just created

**eg. Drosoph Homeobox

	
6. If	 the	 cluster	 you	 are	 using	 requires	 you	 to	 use	 a	 PBS	 scheduler,	 create	 a	

PBS	 submission	 script	
	
cd ..

vim blast.qsub

Add	 these	 lines	 to	 the	 file:	
#PBS -l nodes=1
#PBS -o OUTPUT
#PBS -e ERROR

cd $PBS_O_WORKDIR

./ncbi-blast-2.2.23+/bin/blastn -db
~/Standalone_Blast/db/[db_file_name] -query
~/Standalone_Blast/query/test

**eg. ./ncbi-blast-2.2.23+/bin/blastn -db
~/Standalone_Blast/db/nt.00 -query
~/Standalone_Blast/query/test

	
7. Submit	 your	 job	 to	 the	 scheduler	

	
qsub blast.qsub

	
8. Check	 the	 results	

	
cat results/results.txt

Inside the results file you should find information on the score of the match, the expect, the
number of identities, and the gaps. You should also see a graphic representation of the alignment.
An example of the result file is shown below.

Score = 200 bits (108), Expect = 5e-48
 Identities = 184/220 (83%), Gaps = 8/220 (3%)
 Strand=Plus/Minus

Query 1998 AGACAGGCAT-CCAAAAAACGACGGAAGTCCCGCACAGCCTTCACCAACCACCAAATCTA 2056
 ||||| || | |||| || ||||| || || ||||| |||||||||||||||||||||||
Sbjct 30696 AGACA-GCCTCCCAAGAAGCGACGAAAATCACGCACCGCCTTCACCAACCACCAAATCTA 30638

Query 2057 CGAGCTGGAAAAGAGGTTTTTGTACCAGAAATACCTCTCACCGGCTGACAGAGACCAGAT 2116
 ||||||||| ||| | ||| |||||||||| |||||||||||||| ||||| ||||||||
Sbjct 30637 CGAGCTGGAGAAGCGCTTTCTGTACCAGAAGTACCTCTCACCGGCCGACAGGGACCAGAT 30578

Query 2117 AGCACAGCAGC-TGGGGCTGACCAATGCGCAGGTCATCACCTGGTTCCAGAACCG-ACGG 2174
 || ||| ||| | || ||||||| || ||||||||||| ||||| |||||| | | |
Sbjct 30577 CGCCCAG-AGCCTAGGTTTGACCAACGCACAGGTCATCACATGGTTTCAGAACAGGA-GA 30520

Query 2175 GCCAAGCTCAAGAGAGATCTGGAGGAGA-TGAAGGCGGAC 2213
 ||||||||||||||||| || || || | |||||||||||
Sbjct 30519 GCCAAGCTCAAGAGAGACCTAGACGA-ACTGAAGGCGGAC 30481

Parallelizing	 BLAST	

Introduction

The sequence databases have continuously grown over the years, to the point that some
no longer fit within the memory of a single computer. At the same time, the number of
queries that may be needed for accurate comparisons of sequences has also increased. To
overcome these hurdles, researchers have leveraged high performance computing
(HPC) to provide a way for multiple computers, each with their own memory, to work in
tandem.

HPC utilizes the concept of parallelism, in which multiple computers work concurrently
to solve a problem faster or to solve a bigger problem. In order for multiple computers to
work in tandem, they must have a way of synchronizing, such that they are able to
communicate the data that results from the calculations they perform. One method for
doing this is to use a technique called message passing, in which computers are
connected via a network over which they can pass messages that contain data used for the
execution of the problem. A standard for message passing is provided by the Message
Passing Interface (MPI). MPI provides tools for splitting a program among multiple
processes, which are software entities that execute tasks in parallel. In this lesson we will
consider the MPI version of BLAST, mpiBLAST.

mpiBLAST works by fragmenting, or partitioning, the BLAST database, splitting it up
into smaller chunks. One MPI process known as the master sends the fragments of the
database to the rest of the MPI processes, known as workers. Each worker performs a
query to its fragment of the database and sends the result back to the master. If there are
more fragments still to process, the master sends them to the workers as the workers
become available. This paradigm of workload distribution is commonly called the
Master/Worker Model and while it also has many applications to HPC outside of
mpiBLAST it is certainly not the only workload distribution paradigm for MPI programs.

	

mpiBLAST	 Exercise	

Using mpiBLAST on a linux x64 cluster (cluster.earlham.edu)
refer to www.mpiblast.org/Docs/Install for full documentation

1. Create	 a	 .ncbirc	 file	 in	 your	 home	 directory	 	
	
cd ~

vim .ncbirc

2. Copy	 the	 following	 lines	 into	 the	 .ncbirc	 file,	 but	 replace	 “mly”	 with	 your	
username	 	

	
[mpiBLAST]
Shared=/cluster/home/mly/shared/
Local=/tmp/mpiblast/

3. This	 following	 step	 is	 only	 needed	 if	 mpiBLAST	 is	 not	 loaded	 by	 default	
on	 the	 cluster	

module load mpiblast

4. Get	 a	 database	 file	 at	 ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/	

mkdir mpiblast

cd mpiblast

mkdir db

	
cd db

wget [url]

tar xf [file_name.tar.gz] or gunzip [file_name.gz]

**eg. wget
ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/drosoph.nt.gz
**eg. gunzip drosoph.nt.gz

5. Format	 the	 database	 file,	 specifying	 the	 number	 of	 fragments	 to	 use	
	
mpiformatdb -i [filepathofdb] --nfrags=[Number of Frags]

**e.g. mpiformatdb -i ~/mpiblast/db/drosoph.nt --nfrags=3

	
6. Look	 for	 a	 gene	 you	 want	 to	 search	 for	 at	

http://www.ncbi.nlm.nih.gov/genbank/	 and	 then	 copy	 and	 paste	 the	
FASTA	 sequence	 into	 a	 file	
	
cd ..

mkdir query

mkdir results

cd query

vim test

copy and paste your FASTA sequence in the test file you
just created

**e.g. Drosoph Homeobox

7. Create	 a	 PBS	 Batch	 submission	 script	
	
cd ..

vim mpiblast.qsub

Add	 these	 lines	 to	 the	 file	 –	 the	 values	 for	 “nodes=”	 and	 “-‐np”	 should	 be	 the	
same	 as	 the	 value	 you	 picked	 for	 –nfrags	 above	
	
#PBS -l nodes=3
#PBS -o OUTPUT
#PBS -e ERROR

module load mpiblast
cd $PBS_O_WORKDIR

mpirun -bynode -hostfile $PBS_NODEFILE -np 3 mpiblast -p
blastn -d [dbname] -i ~/mpiblast/query/test -o
~/mpiblast/results/results.txt

**e.g. mpirun -bynode -hostfile $PBS_NODEFILE -np 3
mpiblast -p blastn -d drosoph.nt -i ~/mpiblast/query/test -
o ~/mpiblast/results/results.txt

	
8. Submit	 your	 job	 to	 the	 scheduler	

qsub mpiblast.qsub

9. Check	 the	 results	
	
cat results/results.txt

The results file should be similar to the one obtained in the Standalone
BLAST exercise.

	
	

10. See	 how	 long	 it	 took	 to	 run	
	
cat ERROR

This should show something like the following:

Total Execution Time: 0.773756

Helpful Links

http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/unix_setup.html
http://openwetware.org/wiki/Wikiomics:BLAST_tutorial
http://telliott99.blogspot.com/2009/12/blast-‐ncbirc-‐file.html
http://debianclusters.org/index.php/Using_mpiBLAST
http://www.ncbi.nlm.nih.gov/genbank/
ftp://ftp.ncbi.nlm.nih.gov/blast/db/

	

Scaling	 mpiBLAST	

Introduction	

As supercomputers (the biggest, fastest computers in the world) become larger and
faster, the total number of cores (processing units that comprise computer chips)
available to an HPC application is increasing. In order to take advantage of a greater
number of cores, an application must be able to scale well, to not only run correctly on a
larger supercomputer, but also to better utilize the additional cores that supercomputer
provides. Scaling an algorithm usually comes in two forms: strong scaling, in which the
same sized problem is run over more cores, and weak scaling, in which the amount of
work per core is kept the same while the problem size and the number of cores is
increased. In general, strong scaling means we can solve a problem faster by using more
cores, while weak scaling means we can solve a bigger problem with more cores in the
same amount of time it would take to solve a smaller problem with fewer cores. In the
context of sequence alignment, strong scaling means we can receive faster results from
our database queries by utilizing more cores, while weak scaling means we can perform
larger queries over bigger databases with more cores in the same amount of time it would
take us to perform smaller queries over smaller databases with fewer cores. Since each
processor has a decreasing amount of work to perform as the number of processors

increases in strong scaling, there is usually a threshold number of processors beyond
which performance decreases due to the predominance of communication costs over
computation costs. By way of contrast, the goal in weak scaling is to increase the
problem size as the number of processors increases in order that each processor needs to
perform approximately the same amount of computation. In the exercise below we will
examine how well mpiBLAST helps us achieve strong scaling.

	

Strong	 Scaling	 Exercise	

Strong Scaling of mpiBLAST on a linux x64 cluster (cluster.earlham.edu)
refer to www.mpiblast.org/Docs/Install for full documentation

1. Complete	 the	 mpiBLAST	 Exercise	 above	 	
	

2. Format	 the	 database	 file	 to	 use	 the	 number	 of	 fragments	 that	
corresponds	 to	 the	 maximum	 number	 of	 cores	 over	 which	 we	 will	 scale	

mpiformatdb -i [filepathofdb] --nfrags=[Number of Frags]

**e.g. mpiformatdb -i ~/mpiblast/db/drosoph.nt --nfrags=12

	
3. Edit	 the	 PBS	 Batch	 submission	 script	 to	 start	 with	 1	 node	 (4	 cores)	

cd ~/mpiblast

vim mpiblast.qsub

Change	 the	 file	 to	 contain	 these	 lines	 –	 note	 that	 we	 changed	 the	 value	 of	
“nodes=”,	 added	 “ppn=”,	 and	 changed	 the	 value	 of	 “-‐np”.	 	 This	 will	 cause	 a	 job	
to	 run	 with	 4	 MPI	 processes	 on	 4	 cores.	
	
#PBS -l nodes=1:ppn=4
#PBS -o OUTPUT
#PBS -e ERROR

module load mpiblast
cd $PBS_O_WORKDIR

mpirun -bynode -hostfile $PBS_NODEFILE -np 4 mpiblast -p
blastn -d [dbname] -i ~/mpiblast/query/test -o
~/mpiblast/results/results.txt

**e.g. mpirun -bynode -hostfile $PBS_NODEFILE -np 4
mpiblast -p blastn -d drosoph.nt -i ~/mpiblast/query/test -
o ~/mpiblast/results/results.txt

	
4. Submit	 your	 job	 to	 the	 scheduler	

qsub mpiblast.qsub

	
5. Check	 how	 long	 it	 took	 to	 run	 with	 4	 cores	

	
cat ERROR

This should show something like the following:

Total Execution Time: 1.96301

6. Record	 the	 runtime	 in	 a	 table	 for	 later	
	
4 cores 1.96301 seconds

	
7. Edit	 the	 PBS	 Batch	 submission	 script	 to	 run	 with	 2	 nodes	 (8	 cores)	

vim mpiblast.qsub

Change the values of “nodes and “-np” to match the following:

#PBS -l nodes=2:ppn=4
...

mpirun -bynode -hostfile $PBS_NODEFILE -np 8 ...

8. Submit	 your	 job	 to	 the	 scheduler	

qsub mpiblast.qsub

	
9. Check	 how	 long	 it	 took	 to	 run	 with	 8	 cores	

	
cat ERROR

10. Record	 the	 runtime	 in	 the	 table	
	

4 cores 1.96301 seconds

8 cores 1.1743 seconds

	
11. Edit	 the	 PBS	 Batch	 submission	 script	 to	 run	 with	 3	 nodes	 (12	 cores)	

vim mpiblast.qsub

Change the values of “nodes and “-np” to match the following:

#PBS -l nodes=3:ppn=4
...

mpirun -bynode -hostfile $PBS_NODEFILE -np 12 ...

12. Submit	 your	 job	 to	 the	 scheduler	

qsub mpiblast.qsub

	
13. Check	 how	 long	 it	 took	 to	 run	 with	 12	 cores	

	
cat ERROR

14. Record	 the	 runtime	 in	 the	 table	
	
4 cores 1.96301 seconds

8 cores 1.1743 seconds

12 cores 1.16777 seconds

	
15. Repeat	 for	 values	 of	 16,	 20,	 24,	 28,	 32,	 36,	 40,	 44,	 and	 48	 cores.	 	 Fill	 in	

these	 values	 in	 the	 table	
	
4 cores 1.96301 seconds

8 cores 1.1743 seconds

12 cores 1.16777 seconds

16 cores 0.162758 seconds

20 cores 1.72543 seconds

24 cores 1.39609 seconds

28 cores 1.74212 seconds

32 cores 1.71794 seconds

36 cores 1.71004 seconds

40 cores 1.92373 seconds

44 cores 2.0182 seconds

48 cores 2.07888 seconds

If we create a plot of the data above, we get the following:

From this, we can conclude that this particular problem scales strongly up to 16 cores
because the amount of computation per processor descreases unless the problem size is
also increased. Beyond this, the execution time begins to increase rather than decrease.
This is likely due to communication overhead in the program, or the time spent waiting
for MPI processes to communicate with each other rather than doing meaningful
calculations. As the number of processes increases, the number of necessary
communications also increases, thus increasing the communication overhead.

Scoring	 Rubric	

Problem #1 can be graded, answers as follows:

a) GATGAG over G-TGTG
b) CTCGAATTCCG over GTCCTCC----
c) ---AAGATC-- over ATAAAGCCGTC

Each of the results.txt files from the Standalone BLAST and mpiBLAST exercises
can be handed in for a grade. The table from the strong scaling exercise can also be
handed in for a grade.

Suggested grading: 10 points for Problem #1, 30 points for each of the exercise
deliverables, for a total of 100 points.

Possible Extensions	
	

1. Explore running standalone BLAST and mpiBLAST with different-sized databases.
How does this affect the execution time of a query? Perform a weak scaling exercise
– vary the size of the database as you vary the number of cores. What is the result?

2. Explore running standalone BLAST and mpiBLAST with different-sized queries on a
single database. How does this affect the execution time? Perform a weak scaling
exercise – vary the size of the query as you vary the number of cores. What is the
result?

3. Explore running standalone BLAST and mpiBLAST with different word sizes (e.g. 2,

3, 4) using the -word_size argument to blastn. Does mpiBLAST scale the same
with different word sizes?

References	

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local

alignment search tool. Journal of Molecular Biology, 215(3), 403-410.
doi:10.1006/jmbi.1990.9999

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., &
Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Research, 25(17), 3389-3402.

Chao, X.M. and Zhang L. (2008). Homology Search Tools. In Sequence Comparison:
Theory and Methods, p.63-79.

Darling, A., Carey, L. & Feng W. (2003) The Design, Implementation, and Evaluation of
mpiBLAST. 4th International Conference on Linux Clusters: The HPC
Revolution in conjunction with ClusterWorld Conference & Expo.

Deonier, R. C., Tavaré, S., & Waterman, M. S. (2005). Rapid Alignment Methods:
FASTA and BLAST. In Computational Genome Analysis: An Introduction (1st
ed.). Springer, p.167-194.

Lin, H., Balaji, P., Poole, R., Sosa, C., Ma, X. & Feng, W. (2008) Massively Parallel
Genomic Sequence Search on the Blue Gene/P Architecture. IEEE/ACM SC2008:
The International Conference on High-Performance Computing, Networking, and
Storage.

Madden, T. (2003) The BLAST Sequence Analysis Tool. In The NCBI handbook
[Internet]. McEntyre, J. and Ostell, J. Eds. Bethesda (MD): National Library of
Medicine (US), National Center for Biotechnology Information. Available from
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=handbook&part=ch16

Wu, X. and Tseng, C.W. (2006). Searching Sequence Databases Using High-
Performance BLASTs. In Parallel Computing for Bioinformatics and
Computational Biology: Models, Enabling Technologies, and Case Studies.
Wiley-Interscience, p.211-232.

