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6. CONCLUSIONS
Treating predictive model selection via GA in a regression
analysis course serves two very useful purposes. First, it
introduces students to the notion of evolutionary comput-
ing by blending its basic concepts within the very familiar
framework of of regression methods. This requires no back-
ground beyond some introductory statistics knowledge. Sec-
ond, it arms students, especially those with diverse interests
such as biology, sociology, economics and so on, with a very
powerful and cutting-edge method of model building. Addi-
tionally, the genetic algorithm approach combined with the
use of AIC is better at handling data in which collinearity
exist than the traditional selection methods such as forward,
backward, and stepwise selection. Although no formal study
of student performance was conducted, every student, even
the ones who perform less than perfect seem to relate to
the material much better than they do to the traditional
approaches. Course evaluations consistently indicate this
chapter as of the their favorite chapters. In fact several in-
dependent Study projects, two M.S. theses were produced
on the topic by the students who approach the instructor
after this chapter was covered.
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4.2.1 Methods/Procedures 
As part of this empirical assessment, a demographic survey, three 
usability surveys and a protocol analysis were given during the 
semester. The usability surveys were administered twice before 
switching environments and once afterwards. After the 
environment switch, a protocol analysis was conducted on a small 
group of students to study their mental model for operating a visual 
or command line environment.  

The number of students enrolled in the CS1 course was 179.  There 
were 46, 88, and 45 students enrolled in the IDLE, two VIM, and 
honor sections respectively. Tables 21-27 list the numbers of 
students who participated during each assessment. 

4.2.2 Results 
The demographics shown in Tables 21-24 respectively are a 
representation of the CS1 student population (N=119) at the 
beginning of the semester. However, there were students who 
stopped attending class, dropped the CS1 course, or became 
agitated with participating in this study. These factors influenced a 
decrease in sample representations and student participation as the 
semester progressed, especially during the final assessments of this 
study.  

 
Table 21. CS1 Demographics 

Participants (N=119) 

 
Major 

Computer Science - 61% 
Electrical Engineering - 3% 
Computer Engineering - 3% 
MIS - 1% 
Math - 6% 
Other - 22% 
Double Major (including CS) - 1% 
Double Major (excluding CS) - 3% 

 
Classification 

Freshmen - 40% 
Sophomore - 32% 
Junior - 19% 
Senior - 8% 
Other - 3% 
*one student did not provide an answer 

 
Programming 
Experience 

High School programming - 16% 
Another College Course - 16% 
No Prior Experience - 68% 
 
*three students did not provide an answer 

 

 

Table 22. CS1 Demographics  - IDLE Section 

IDLE Section (N=33) 

 
Major 

Computer Science - 85% 
Electrical Engineering - 0% 
Computer Engineering - 0% 
MIS - 0% 
Math - 6% 
Other - 9% 
Double Major (including CS) - 0% 
Double Major (excluding CS) - 0% 

 
Classification 

Freshmen - 34% 
Sophomore - 42% 
Junior - 15% 
Senior - 9% 
Other - 0% 

 
Programming 
Experience 

High School programming - 9% 
Another College Course - 25% 
No Prior Experience - 66% 

 

Table 23. CS1 Demographics – VIM Sections  

VIM Sections (N=46) 

 
Major 

Computer Science - 49% 
Electrical Engineering - 2% 
Computer Engineering - 0% 
MIS - 2% 
Math - 9% 
Other - 29% 
Double Major (including CS) - 2% 
Double Major (excluding CS) - 7% 
*one student did not provide an answer 

 
Classification 

Freshmen - 31% 
Sophomore - 27% 
Junior - 29% 
Senior - 11% 
Other - 2% 
*one student did not provide an answer 

 
Programming 
Experience 

High School programming - 11% 
Another College Course - 9% 
No Prior Experience - 80% 

 
 

 
 Figure 16. IDLE-Python 3.2 
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Table 24. CS1 Demographics – Honor Section 

 

Honor Section (N=40) 

 
Major 

Computer Science - 56% 
Electrical Engineering - 5% 
Computer Engineering - 7% 
MIS - 0% 
Math - 5% 
Other - 27% 
Double Major (including CS) - 0% 
Double Major (excluding CS) - 3% 

 
Classification 

Freshmen - 55% 
Sophomore - 28% 
Junior - 10% 
Senior - 3% 
Other - 5% 

 
Programming 
Experience 

High School programming - 25% 
Another College Course - 17% 
No Prior Experience - 58% 

 
4.2.2.1 Usability 
One of the attributes measured in this survey was Tool 
Mishandling (Tables 25 and 26). Tool Mishandling was defined on 
the basis of how often students found themselves making errors, 
due to using IDLE or VIM incorrectly. This attribute was based on 
a 7-point Likert scale (where 1 = absolutely often & 7 = absolutely 
NOT often). The results discussed are strictly based on the 
behavior of the non-honor sections.  
In the IDLE section, the results from a one-way ANOVA indicated 
a significant difference (p<0.05). Afterwards, T-tests indicated a 
significant difference for two of the pairings: 1st vs. 3rd surveys 
(p<0.05) and 2nd vs. 3rd surveys (p<0.01). The results indicated 
two things: students in the IDLE section mishandled VIM more 
often than IDLE and the mishandling of a tool increased 
significantly after the switch. In the VIM sections, the results from 
a one-way ANOVA and T-Tests showed no significant difference. 
These results indicated students in the VIM sections did not 
mishandle one tool more often than the other. 

Table 25. Tool Mishandling Results – IDLE Section 
       Avg = Average; SD = standard deviation 

IDLE Section (IDLE to VIM) 

Tool Survey N Avg StdDev 
IDLE 1st 31 4.10 1.42 

IDLE 2nd 26 4.42 1.36 
VIM 3rd 13 3.08 1.75 
The mean was calculated using weights from a 7-point Likert 

scale, ranging from 1 = Absolutely Often to                                    
7 = Absolutely Not Often 

 

Table 26. Tool Mishandling Results – VIM Sections 
                         Avg = Average; SD = standard deviation 

VIM Sections (VIM to IDLE) 

Tool Survey N Avg StdDev 
VIM 1st 29 3.90 1.40 

VIM 2nd 49 4.22 1.21 

IDLE 3rd 39 4.41 1.58 
The mean was calculated using weights from a 7-point Likert 

scale, ranging from 1 = Absolutely Often to                                    
7 = Absolutely Not Often 

 
When comparing the average mishandling score between both 
groups after the environment switch (Table 27), the VIM sections 
showed a significantly higher average than the IDLE section (p < 
0.05). This indicated that the VIM sections mishandled IDLE less 
often than the IDLE section did with VIM. 

Table 27. Tool Mishandling Results  (after environment switch) 
Avg = Average; SD = standard deviation 

Section Tool N Avg StdDev 

IDLE VIM 13 3.08 1.75 

VIM IDLE 39 4.41 1.58 

The mean was calculated using weights from a 7-point Likert 
scale, ranging from 1 = Absolutely Often to                                    

7 = Absolutely Not Often 

 

For further details about these results and other attributes 
measured during the usability assessment, see our paper published 
in the Proceedings of the Human Factors and Ergonomics 
Society 56th Annual Meeting [7]. 

4.2.2.2 Protocol Analysis 
This assessment was conducted during the week of the 
environment switch. The structure of this assessment allowed for 
the collection of both qualitative data and first-hand information 
about the CS1 students’ mental model for programming. The 
objective was to determine whether certain features within these 
respective environments could shape the students’ mental model 
for programming. The selection process for this assessment was 
based on random volunteers.  
There were seven students who volunteered to participate in this 
study (all from non-honor sections); four were enrolled in the VIM 
sections and three were registered in the IDLE section. The same 
programming assignment was given to each student. Table 28 
provides background information about each student. Similar to 
the assignment given during the CS1 lab study, the students had to 
write a program that converted 700 days into y years, m months, 
and d days remaining. A video camera was used to record the 
behavior of each student while completing this assignment. During 
the recording, each student had to “think aloud” about their 
approach for writing this program using their new environment. 
Each student was given 30 minutes to complete the assignment.  
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Table 28. Subject Background Information 
 *Student #4 was in the IDLE section but chose to use VIM in the course; 

**Student #6 was repeating the CS1 course; 

 

Each student who used VIM in this study (original IDLE users) 
indicated prior exposure to some form of programming before 
taking CS1. Each student from the VIM sections indicated 
otherwise. After conducting this assessment, the results showed 
that the students from the VIM sections had less challenges with 
using IDLE. Two of these particular students completed their 
assignment within the allotted time. The other two students’ 
inability to complete the assignment was due to the difficulty of 
the assignment rather than IDLE. The three students from the 
IDLE section were not able to complete the assignment due to the 
challenges of using and understanding the VIM command editor. 
Table 29 provides a summarized description of the subjects’ 
behavior during assessment.  

Table 29.  Subject Behavior 

Another notable observation from this assessment relates to the 
subjects’ tendency of reverting back to familiar procedures from 
their original tool if they felt lost or confused while using the new 
one. For example, the recording showed two of the original IDLE 
users attempting to use the menu bar of the command terminal 
assuming that VIM possessed relative features to IDLE. One of the 
original VIM users began using the command terminal to interpret 
her program when she felt unsure about performing this procedure 
in IDLE, but managed to complete this assignment. 

We concluded from this assessment that feature sets in 
programming environments could play a role in shaping a novice’s 
perception of programming. This study also showed that visual 
environments could potentially enable students to develop an 
inaccurate depiction of programming. For further detail about the 
results from this assessment, see our paper published in the 
Proceedings of the 50th Annual ACM Southeast Conference [6]. 

4.2.3 Discussion 
Students from the IDLE section showed a significant decrease in 
their ability to use a different tool after being exposed to IDLE. 
However, students from the VIM sections showed a slight increase 
in their ability to use a different tool after their exposure to VIM. 
After switching environments, the mean score for mishandling 
tools in the VIM sections remained significantly higher than the 
IDLE section. These results also support the findings from the 
protocol analysis. Participants from the IDLE section found it 
more challenging to transition to a command line tool after using 
IDLE, while students in the VIM sections had a better transitioning 
to a visual tool after exposure to VIM. 

5. CONCLUSION 
The objective of this article was to study visual environments and 
their potential effect on students who are learning to program. 
Prior studies have shown that visual environments can have both 
productive and unprofitable effects on a student’s ability to 
become accustomed to programming. From our studies, it was 
shown that visual environments could provide students with a 
lower learning curve for operation, while having the potential of 
placing limitations on their mental depiction of programming.  

In the first study, the familiarity of features in IDLE and 
PyScripter possibly played a role in lowering the learning curve for 
the students in the CS1-lab course. By the same token, some of 
these features may have placed a limitation on the skills that the 
IDLE students in the CS1 course acquired during the second study. 
Table 30 summarizes the outcomes from both studies.  
The question remains of whether visual environments are “ideal” 
for teaching students how to program.  Even though prior studies 
have shown visual environments to promote student retention [15], 
positive attitudes [9], and motivation [11] during exposure, our 
findings show that these environments may also cause students to 
develop a faulty mental model for programming. These results also 
support Chen and Marx’s reasoning for moving their students from 
an IDE to command line programming [2]. Certain visual 
environments may be too restrictive for learning specific 
programming concepts and procedures. In this case, it may be 
necessary for students to be exposed to other programming 
environments that are more inclined to round out their skill sets. 
As an alternative solution, it may be appropriate to train students to 
understand the implied behavior of visual environments. For 
instance, students may need to receive appropriate training for 
understanding programming procedures before being exposed to a  

Student Gender Ethnicity 
Prior 

Programming 
Experience 

Environment 
(after switch) 

S1 M Caucasian None IDLE 

S2 M Caucasian HTML VIM 

S3 M Caucasian HTML VIM 

S4 F African 
American None IDLE** 

S5 F Caucasian None IDLE 

S6 F African 
American VIM* VIM 

S7 M African 
American 

VI, C++, 
Java, Fortran VIM 

Student 
Completed 
Assignment 
YES           NO 

Reason for NOT Completing 
Assignment 

S1 X   

S2  X 
S2 spent the entire time trying to 
understand the functionality of the 
VIM editor. 

S3  X 
S3 spent most of her time trying to 
understand the functionality of the 
VIM editor. 

S4  X 

S4 struggled with understanding how 
to approach the assignment; She 
encountered several syntactical 
errors and struggled with correcting 
them.  

S5 X   

S6  X 

S6 struggled with understanding how 
to approach the assignment; She 
encountered semantic errors, which 
was due to her inability to determine 
the appropriate conversions for her 
program.  

S7  X 
S7 spent most of his time trying to 
understand the functionality of the 
VIM editor. 
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Table 30.  Study Outcomes 

visual environment. By understanding these underlying factors, it 
may be possible for a student to avoid the acquisition of a faulty 
mental model for programming while also being able to make a 
smoother transition to other types of environments.   

5.1 Threats to Validity 
There are potential threats that could affect the validity of our 
findings from these studies. One threat is the finite set of 
environments that were evaluated during these assessments. Every 
visual environment that is used to teach programming was not 
evaluated during these studies. Instead, our studies were conducted 
while using theories, prior conclusions, and anecdotal evidence as 
point of references. Another threat relates to the short-term 
duration of the CS1 Lab study. This particular study was only 
composed of a one-day assessment. A third issue relates to the low 
students samples during the latter assessments in the CS1 lecture 
course. As previously mentioned, there were students who stopped 
attending class, dropped the course, or showed agitation toward 
participation in this study due to the repeated assessments.  

5.2 Future Work 
One future work is to improve student participation during these 
empirical assessments.  This could be done by adjusting the 
amount of instruments employed during a study to obtain a high 
number of responses at a consistent level. A related future work is 
to assess students at particular times of the semester when the 
attendance rate tends to be high on a consistent basis. 

Another area of future work relates to the actual programming 
environments. Some of the environments used during the CS1 lab 

and lecture studies consisted of tools primarily for Python 
programming. A primary future work is to apply evaluations to 
environments outside of the Python language. 
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Study 1 

Outcome  Reason 
 

 

 

 

Visual environments can 
initially impose a lower 
learning curve 

The IDLE group completed 
their programming tasks 
significantly faster than their 
counterparts who used 
Notepad despite having less 
prior experience and a lower 
self-efficacy for 
programming.  

Students in the PyScripter 
and Notepad groups had more 
prior programming with using 
IDEs and command line 
environments respectively, 
however the PyScripter group 
completed their programming 
tasks significantly faster.   

 
 
 
 

Study 2 

Outcome Reason 
 

 

 

Visual environments may 
impose a greater challenge 
for a student to directly 
transition to a command 
line environment  

From the usability 
assessment, it was found 
that the students from the 
IDLE section showed a 
significant decrease in their 
ability to use VIM after 
being exposed to IDLE.  

From the protocol analysis, 
it was found that all of the 
IDLE participants were 
unable to complete their 
tasks due to struggling with 
using and understanding the 
VIM editor.   
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