
Volume 5 Issue 1

August 2014

Volume 5, Issue 1 August 2014

Editor: Steven Gordon
Associate Editors: Thomas Hacker, Holly Hirst, David Joiner,

Ashok Krishnamurthy, Robert Panoff,
Helen Piontkivska, Susan Ragan, Shawn Sendlinger,
D.E. Stevenson, Mayya Tokman, Theresa Windus

CSERD Project Manager: Patricia Jacobs. Managing Editor: Kristen
Ross. Web Development: Phil List. Graphics: Stephen Behun, Heather
Marvin.

The Journal Of Computational Science Education (JOCSE), ISSN 2153-4136,
is published quarterly in online form, with more frequent releases if submission
quantity warrants, and is a supported publication of the Shodor Education
Foundation Incorporated. Materials accepted by JOCSE will be hosted on the
JOCSE website, and will be catalogued by the Computational Science Education
Reference Desk (CSERD) for inclusion in the National Science Digital Library
(NSDL).

Subscription: JOCSE is a freely available online peer-reviewed publication
which can be accessed at http://jocse.org.

Copyright c©JOCSE 2014 by the Journal Of Computational Science Education,
a supported publication of the Shodor Education Foundation Incorporated.

kross
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE, a supported publication of the Shodor Education Foundation Inc.

6. CONCLUSIONS
Treating predictive model selection via GA in a regression
analysis course serves two very useful purposes. First, it
introduces students to the notion of evolutionary comput-
ing by blending its basic concepts within the very familiar
framework of of regression methods. This requires no back-
ground beyond some introductory statistics knowledge. Sec-
ond, it arms students, especially those with diverse interests
such as biology, sociology, economics and so on, with a very
powerful and cutting-edge method of model building. Addi-
tionally, the genetic algorithm approach combined with the
use of AIC is better at handling data in which collinearity
exist than the traditional selection methods such as forward,
backward, and stepwise selection. Although no formal study
of student performance was conducted, every student, even
the ones who perform less than perfect seem to relate to
the material much better than they do to the traditional
approaches. Course evaluations consistently indicate this
chapter as of the their favorite chapters. In fact several in-
dependent Study projects, two M.S. theses were produced
on the topic by the students who approach the instructor
after this chapter was covered.

7. REFERENCES
[1] Akaike, H. (1973). Information theory and an

extension of the maximum likelihood principle. In
B.N. Petrov and F. Csaki (Eds.), Second
international symposium on information theory,
Academiai Kiado, Budapest, 267-281.

[2] Boyce, D. E., Farhi, A., and Weischedel, R. (1974).
Optimal Subset Selection: Multiple Regression,
Interdependence, and Optimal Network Algorithms.
Springer- Verlag, New York.

[3]
http://www.generation5.org/content/1999/gaexample.asp?Print=1

[4] Fisher, R.A. (1930) The Genetical Theory of Natural
Selection Clarendon Press, Oxford.

[5] Goldberg, D. E.(1989) Genetic algorithms in search,
optimization, and machine learning. Reading, MA:
Addison-Wesley.

[6] Hocking, R. R. (1976). The analysis and selection
variables in linear regression, Biometrics, 32, 1044.

[7] Hocking, R. R. (1983). Developments in linear
regression methodology: 1959-1982, Technometrics,
25, 219-230.

[8] J. Holland. (1975) Adaptation in Natural and
Artificial Systems. The MIT Press.

[9] Mantel, N. (1970). Why stepdown procedures in
variables selection, Technometrics, 12, 591-612.

[10] Moses, L. E. (1986). Think and Explain with
Statistics, Addison-Wesley, Reading, MA.

[11] J. Whittingham, Philip A. Stephens, Richard B.
Bradbury and Robert P.Freckleton Why Do We Still
Use Stepwise Modelling in Ecology and Behaviour?
Journal of Animal Ecology, Vol. 75, No. 5 (Sep.,
2006), pp. 1182-1189

[12] Wilkinson, L. (1989). SYSTAT: The System for
Statistics, SYSTAT, Evanston, IL.

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 27

4.2.1 Methods/Procedures
As part of this empirical assessment, a demographic survey, three
usability surveys and a protocol analysis were given during the
semester. The usability surveys were administered twice before
switching environments and once afterwards. After the
environment switch, a protocol analysis was conducted on a small
group of students to study their mental model for operating a visual
or command line environment.

The number of students enrolled in the CS1 course was 179. There
were 46, 88, and 45 students enrolled in the IDLE, two VIM, and
honor sections respectively. Tables 21-27 list the numbers of
students who participated during each assessment.

4.2.2 Results
The demographics shown in Tables 21-24 respectively are a
representation of the CS1 student population (N=119) at the
beginning of the semester. However, there were students who
stopped attending class, dropped the CS1 course, or became
agitated with participating in this study. These factors influenced a
decrease in sample representations and student participation as the
semester progressed, especially during the final assessments of this
study.

Table 21. CS1 Demographics

Participants (N=119)

Major

Computer Science - 61%
Electrical Engineering - 3%
Computer Engineering - 3%
MIS - 1%
Math - 6%
Other - 22%
Double Major (including CS) - 1%
Double Major (excluding CS) - 3%

Classification

Freshmen - 40%
Sophomore - 32%
Junior - 19%
Senior - 8%
Other - 3%
*one student did not provide an answer

Programming
Experience

High School programming - 16%
Another College Course - 16%
No Prior Experience - 68%

*three students did not provide an answer

Table 22. CS1 Demographics - IDLE Section

IDLE Section (N=33)

Major

Computer Science - 85%
Electrical Engineering - 0%
Computer Engineering - 0%
MIS - 0%
Math - 6%
Other - 9%
Double Major (including CS) - 0%
Double Major (excluding CS) - 0%

Classification

Freshmen - 34%
Sophomore - 42%
Junior - 15%
Senior - 9%
Other - 0%

Programming
Experience

High School programming - 9%
Another College Course - 25%
No Prior Experience - 66%

Table 23. CS1 Demographics – VIM Sections

VIM Sections (N=46)

Major

Computer Science - 49%
Electrical Engineering - 2%
Computer Engineering - 0%
MIS - 2%
Math - 9%
Other - 29%
Double Major (including CS) - 2%
Double Major (excluding CS) - 7%
*one student did not provide an answer

Classification

Freshmen - 31%
Sophomore - 27%
Junior - 29%
Senior - 11%
Other - 2%
*one student did not provide an answer

Programming
Experience

High School programming - 11%
Another College Course - 9%
No Prior Experience - 80%

 Figure 16. IDLE-Python 3.2

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 39

Table 24. CS1 Demographics – Honor Section

Honor Section (N=40)

Major

Computer Science - 56%
Electrical Engineering - 5%
Computer Engineering - 7%
MIS - 0%
Math - 5%
Other - 27%
Double Major (including CS) - 0%
Double Major (excluding CS) - 3%

Classification

Freshmen - 55%
Sophomore - 28%
Junior - 10%
Senior - 3%
Other - 5%

Programming
Experience

High School programming - 25%
Another College Course - 17%
No Prior Experience - 58%

4.2.2.1 Usability
One of the attributes measured in this survey was Tool
Mishandling (Tables 25 and 26). Tool Mishandling was defined on
the basis of how often students found themselves making errors,
due to using IDLE or VIM incorrectly. This attribute was based on
a 7-point Likert scale (where 1 = absolutely often & 7 = absolutely
NOT often). The results discussed are strictly based on the
behavior of the non-honor sections.
In the IDLE section, the results from a one-way ANOVA indicated
a significant difference (p<0.05). Afterwards, T-tests indicated a
significant difference for two of the pairings: 1st vs. 3rd surveys
(p<0.05) and 2nd vs. 3rd surveys (p<0.01). The results indicated
two things: students in the IDLE section mishandled VIM more
often than IDLE and the mishandling of a tool increased
significantly after the switch. In the VIM sections, the results from
a one-way ANOVA and T-Tests showed no significant difference.
These results indicated students in the VIM sections did not
mishandle one tool more often than the other.

Table 25. Tool Mishandling Results – IDLE Section
 Avg = Average; SD = standard deviation

IDLE Section (IDLE to VIM)

Tool Survey N Avg StdDev
IDLE 1st 31 4.10 1.42

IDLE 2nd 26 4.42 1.36
VIM 3rd 13 3.08 1.75
The mean was calculated using weights from a 7-point Likert

scale, ranging from 1 = Absolutely Often to
7 = Absolutely Not Often

Table 26. Tool Mishandling Results – VIM Sections
 Avg = Average; SD = standard deviation

VIM Sections (VIM to IDLE)

Tool Survey N Avg StdDev
VIM 1st 29 3.90 1.40

VIM 2nd 49 4.22 1.21

IDLE 3rd 39 4.41 1.58
The mean was calculated using weights from a 7-point Likert

scale, ranging from 1 = Absolutely Often to
7 = Absolutely Not Often

When comparing the average mishandling score between both
groups after the environment switch (Table 27), the VIM sections
showed a significantly higher average than the IDLE section (p <
0.05). This indicated that the VIM sections mishandled IDLE less
often than the IDLE section did with VIM.

Table 27. Tool Mishandling Results (after environment switch)
Avg = Average; SD = standard deviation

Section Tool N Avg StdDev

IDLE VIM 13 3.08 1.75

VIM IDLE 39 4.41 1.58

The mean was calculated using weights from a 7-point Likert
scale, ranging from 1 = Absolutely Often to

7 = Absolutely Not Often

For further details about these results and other attributes
measured during the usability assessment, see our paper published
in the Proceedings of the Human Factors and Ergonomics
Society 56th Annual Meeting [7].

4.2.2.2 Protocol Analysis
This assessment was conducted during the week of the
environment switch. The structure of this assessment allowed for
the collection of both qualitative data and first-hand information
about the CS1 students’ mental model for programming. The
objective was to determine whether certain features within these
respective environments could shape the students’ mental model
for programming. The selection process for this assessment was
based on random volunteers.
There were seven students who volunteered to participate in this
study (all from non-honor sections); four were enrolled in the VIM
sections and three were registered in the IDLE section. The same
programming assignment was given to each student. Table 28
provides background information about each student. Similar to
the assignment given during the CS1 lab study, the students had to
write a program that converted 700 days into y years, m months,
and d days remaining. A video camera was used to record the
behavior of each student while completing this assignment. During
the recording, each student had to “think aloud” about their
approach for writing this program using their new environment.
Each student was given 30 minutes to complete the assignment.

Volume 5, Issue 1 Journal of Computational Science Education

40 ISSN 2153-4136 August 2014

Table 28. Subject Background Information
 *Student #4 was in the IDLE section but chose to use VIM in the course;

**Student #6 was repeating the CS1 course;

Each student who used VIM in this study (original IDLE users)
indicated prior exposure to some form of programming before
taking CS1. Each student from the VIM sections indicated
otherwise. After conducting this assessment, the results showed
that the students from the VIM sections had less challenges with
using IDLE. Two of these particular students completed their
assignment within the allotted time. The other two students’
inability to complete the assignment was due to the difficulty of
the assignment rather than IDLE. The three students from the
IDLE section were not able to complete the assignment due to the
challenges of using and understanding the VIM command editor.
Table 29 provides a summarized description of the subjects’
behavior during assessment.

Table 29. Subject Behavior

Another notable observation from this assessment relates to the
subjects’ tendency of reverting back to familiar procedures from
their original tool if they felt lost or confused while using the new
one. For example, the recording showed two of the original IDLE
users attempting to use the menu bar of the command terminal
assuming that VIM possessed relative features to IDLE. One of the
original VIM users began using the command terminal to interpret
her program when she felt unsure about performing this procedure
in IDLE, but managed to complete this assignment.

We concluded from this assessment that feature sets in
programming environments could play a role in shaping a novice’s
perception of programming. This study also showed that visual
environments could potentially enable students to develop an
inaccurate depiction of programming. For further detail about the
results from this assessment, see our paper published in the
Proceedings of the 50th Annual ACM Southeast Conference [6].

4.2.3 Discussion
Students from the IDLE section showed a significant decrease in
their ability to use a different tool after being exposed to IDLE.
However, students from the VIM sections showed a slight increase
in their ability to use a different tool after their exposure to VIM.
After switching environments, the mean score for mishandling
tools in the VIM sections remained significantly higher than the
IDLE section. These results also support the findings from the
protocol analysis. Participants from the IDLE section found it
more challenging to transition to a command line tool after using
IDLE, while students in the VIM sections had a better transitioning
to a visual tool after exposure to VIM.

5. CONCLUSION
The objective of this article was to study visual environments and
their potential effect on students who are learning to program.
Prior studies have shown that visual environments can have both
productive and unprofitable effects on a student’s ability to
become accustomed to programming. From our studies, it was
shown that visual environments could provide students with a
lower learning curve for operation, while having the potential of
placing limitations on their mental depiction of programming.

In the first study, the familiarity of features in IDLE and
PyScripter possibly played a role in lowering the learning curve for
the students in the CS1-lab course. By the same token, some of
these features may have placed a limitation on the skills that the
IDLE students in the CS1 course acquired during the second study.
Table 30 summarizes the outcomes from both studies.
The question remains of whether visual environments are “ideal”
for teaching students how to program. Even though prior studies
have shown visual environments to promote student retention [15],
positive attitudes [9], and motivation [11] during exposure, our
findings show that these environments may also cause students to
develop a faulty mental model for programming. These results also
support Chen and Marx’s reasoning for moving their students from
an IDE to command line programming [2]. Certain visual
environments may be too restrictive for learning specific
programming concepts and procedures. In this case, it may be
necessary for students to be exposed to other programming
environments that are more inclined to round out their skill sets.
As an alternative solution, it may be appropriate to train students to
understand the implied behavior of visual environments. For
instance, students may need to receive appropriate training for
understanding programming procedures before being exposed to a

Student Gender Ethnicity
Prior

Programming
Experience

Environment
(after switch)

S1 M Caucasian None IDLE

S2 M Caucasian HTML VIM

S3 M Caucasian HTML VIM

S4 F African
American None IDLE**

S5 F Caucasian None IDLE

S6 F African
American VIM* VIM

S7 M African
American

VI, C++,
Java, Fortran VIM

Student
Completed
Assignment
YES NO

Reason for NOT Completing
Assignment

S1 X

S2 X
S2 spent the entire time trying to
understand the functionality of the
VIM editor.

S3 X
S3 spent most of her time trying to
understand the functionality of the
VIM editor.

S4 X

S4 struggled with understanding how
to approach the assignment; She
encountered several syntactical
errors and struggled with correcting
them.

S5 X

S6 X

S6 struggled with understanding how
to approach the assignment; She
encountered semantic errors, which
was due to her inability to determine
the appropriate conversions for her
program.

S7 X
S7 spent most of his time trying to
understand the functionality of the
VIM editor.

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 41

Table 30. Study Outcomes

visual environment. By understanding these underlying factors, it
may be possible for a student to avoid the acquisition of a faulty
mental model for programming while also being able to make a
smoother transition to other types of environments.

5.1 Threats to Validity
There are potential threats that could affect the validity of our
findings from these studies. One threat is the finite set of
environments that were evaluated during these assessments. Every
visual environment that is used to teach programming was not
evaluated during these studies. Instead, our studies were conducted
while using theories, prior conclusions, and anecdotal evidence as
point of references. Another threat relates to the short-term
duration of the CS1 Lab study. This particular study was only
composed of a one-day assessment. A third issue relates to the low
students samples during the latter assessments in the CS1 lecture
course. As previously mentioned, there were students who stopped
attending class, dropped the course, or showed agitation toward
participation in this study due to the repeated assessments.

5.2 Future Work
One future work is to improve student participation during these
empirical assessments. This could be done by adjusting the
amount of instruments employed during a study to obtain a high
number of responses at a consistent level. A related future work is
to assess students at particular times of the semester when the
attendance rate tends to be high on a consistent basis.

Another area of future work relates to the actual programming
environments. Some of the environments used during the CS1 lab

and lecture studies consisted of tools primarily for Python
programming. A primary future work is to apply evaluations to
environments outside of the Python language.

6. FUNDING SOURCE
This work was conducted independent of any financial support.

7. REFERENCES
[1] Beaubouef, T. & Mason, J. (2005). Why the High Attrition Rate for

Computer Science Students: Some Thoughts and Observations.
SIGCSE Bulletin, 37(2), 103-106.

[2] Chen, Z. & Marx, D. (2005). Experiences with Eclipse IDE in
programming courses. Journal of Computing Sciences in Colleges,
21(2), 104-112.

[3] Crosby, M. E. & Stelovsky, J. (1990). How Do We Read Algorithms?
A Case Study. Computer 23(1) 24-35.

[4] Depasquale, P. J. (2003) Implications on the Learning of
Programming Through the Implementation of Subsets in Program
Development Environments. Doctoral Thesis. UMI Order Number:
AAI3095195., Virginia Polytechnic Institute and State University.

[5] Dillon E., Anderson M., & Brown M. (2012). Comparing Feature
Assistance Between Programming Environments and Their Effect on
Novice Programmers. Journal for Computing Sciences in Colleges,
27(5), 69-77.

[6] Dillon E., Anderson M., & Brown M. (2012). Comparing Mental
Models of Novice Programmers when using Visual and Command
Line Environments. In Proceedings of the 50th Annual ACM
Southeast Conference, 142-147.

[7] Dillon E., Anderson M., & Brown M. (2012). Studying the Novice’s
Perception of Visual Vs. Command Line Programming Tools in CS1.
In Proceedings of the Human Factors and Ergonomics Society 56th
Annual Meeting, vol. 56(1), 605-609.

[8] Guzdial, M. (2004). Programming environments for novices. In
Computer Science Education Research. S. Fincher and M. Petre
(Eds.). Swets and Zeitlinger. Chapter 3.

[9] Hagan, D., & Markham, S. (2000). Teaching Java with the BlueJ
environment. In 17th Annual Proceedings of Austrailian Society for
Computers in Learning in Tertiary Education.

[10] Kelleher, C. & Pausch, R. (2005). Lowering the barriers to
programming: A taxonomy of programming environments and
languages for novice programmers. ACM Computing Surveys. 37(2),
83-137.

[11] Kelleher, C. Pausch, R., & Kiesler, S. (2007). Storytelling alice
motivates middle school girls to learn computer programming. In
Proceedings of the SIGCHI conference on Human factors in
computing systems, 1455-1464.

[12] Lewis, M. (2010). How programming environment shapes perception,
learning and goals: logo vs. scratch. In Proceedings of the 41st ACM
technical symposium on Computer Science Education, 346-350.

[13] Maloney,J., Peppler K., Kafai, Y., Resnick, M., & Rusk, N. (2008).
Programming by choice: urban youth learning programming with
scratch. SIGCSE Bulletin, 40(1), 367-371.

[14] McWhorter, W. I.& O'Connor, B. C. (2009). Do LEGO®
Mindstorms® motivate students in CS1?. In Proceedings of the 40th
ACM Technical Symposium on Computer Science Education. 438-
442.

[15] Moskal, B., Lurie, D. & Cooper, S. (2004). Evaluating the
effectiveness of a new instructional approach. In Proceedings of the
35th ACM Technical Symposium on Computer Science Education,
75-79.

Study 1

Outcome Reason

Visual environments can
initially impose a lower
learning curve

The IDLE group completed
their programming tasks
significantly faster than their
counterparts who used
Notepad despite having less
prior experience and a lower
self-efficacy for
programming.

Students in the PyScripter
and Notepad groups had more
prior programming with using
IDEs and command line
environments respectively,
however the PyScripter group
completed their programming
tasks significantly faster.

Study 2

Outcome Reason

Visual environments may
impose a greater challenge
for a student to directly
transition to a command
line environment

From the usability
assessment, it was found
that the students from the
IDLE section showed a
significant decrease in their
ability to use VIM after
being exposed to IDLE.

From the protocol analysis,
it was found that all of the
IDLE participants were
unable to complete their
tasks due to struggling with
using and understanding the
VIM editor.

Volume 5, Issue 1 Journal of Computational Science Education

42 ISSN 2153-4136 August 2014

[16] Ramalingam, V. & Wiedenbeck, S. (1997). An empirical
study of novice program comprehension in the imperative and
object-oriented styles. In Papers Presented At the Seventh
Workshop on Empirical Studies of Programmers,124-139.

[17] Sharp, H., Rogers, Y., & Preece, J. (2007). Interaction Design:
Beyond Human-Computer Interaction . Hoboken, NJ: John Wiley &
Sons Inc.

[18] Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. L.
(1999). A comparison of the comprehension of object-oriented and
procedural programs by novice programmers. Interacting with
Computers, 11(3), 255-282.

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 43

	Characterizing Ligand Interactions in Wild-type and Mutated HIV-1 Proteases_2
	joiner_2012_b_final
	educpaper_editing_new
	Dillon 2014 (with suggested revisions)
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	content_Volume5_Issue1.pdf
	Characterizing Ligand Interactions in Wild-type and Mutated HIV-1 Proteases_2
	joiner_2012_b_final
	educpaper_editing_new
	Dillon 2014 (with suggested revisions)
	Blank Page
	Blank Page
	Blank Page

	Blank Page

