
Teaching Students to Program Using Visual
Environments: Impetus for a Faulty Mental Model?

ABSTRACT
When learning to program, students are typically exposed to either
a visual or command line environment. Visual environments are
usually adopted to help engage students with programming due to
their user-friendly feature capabilities. This article explores the
effect of using visual environments such as Integrated
Development Environments and syntax-free tools to teach students
how to program.

Prior studies have shown that some visual environments can have a
productive impact on a student’s ability to learn and become
engaged with programming. However, the functional behavior of
visual environments may cause a student to develop a faulty
mental model for programming. One possible reason is due to the
fixed set of skills that a student acquires upon initial exposure to
programming while using a visual environment.
Two systematic studies were conducted for exposing students to
programming in introductory courses using both visual and
command line environments. From the first study, it was found
that visual environments can initially impose a lower learning
curve for students. However, the second study revealed that visual
environments may present a challenge for students to directly
transfer their acquired skills to other programming environments
after initial exposure.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: Interaction
styles; K.3.2 [Computers and Education]: Computer science
education

General Terms
Design, Human Factors

Keywords
Visual Environments, Human-Computer Interaction, Education,
Learning

1. INTRODUCTION
Programming can be considered a skill for solving problems
computationally. However, teaching students how to program has
been a challenge. It has been argued that students sometimes fail to
develop an accurate mental model for programming [3, 18].
Because of this deficiency, students can encounter programming as
a barrier and in many cases leave fields that typically view this
skill as a necessity. For example, Computer Science departments
generally face the challenge of retaining incoming majors.
Beaubouef and Mason detailed many factors that could cause
students to leave Computer Science with one being the lack of
skills for problem solving [1].

Attention has been placed on ways to improve a student’s ability to
learn and apply programming skills. One area of focus has been
programming environments. Guzdial advocates “the greatest
contributions to be made in this field are not in building yet more
novice programming environments but figuring out how to study
the ones we have” [8]. Kelleher and Pausch noted that
programming environments have been built since the 1960s with
the purpose of making programming accessible to people of
various ages and backgrounds [10]. Visual environments like
integrated development environments (IDEs) and syntax-free tools
have become more common for teaching programming. There
have also been efforts to expose and engage students at earlier
learning stages to programming using visual environments [11, 12,
13].

Because of their functional behavior, there is the potential concern
whether visual environments cause students to develop a faulty
mental model for programming. Visual environments are typically
constructed in a way that hides basic programming behaviors (ex.
compilation, debugging, and execution) under a GUI interface.
This style of construction can restrict students from direct exposure
to essential programming concepts and functionalities. For
instance, syntax-free tools like Alice and Scratch can cause a
student to learn a limited set of programming skills by restricting
exposure to code syntax, program compilation, and file systems.
IDEs can provide program compilation and file system scaffolding,
but disguises these and related behaviors as GUI options that are
embedded into a menu item, widget, or icon. It has been found
that students can depend too much on the GUI options that an IDE
offers with insufficient understanding of what they are doing [2].
This article explores visual environments and their potential effect
on a student’s productivity for programming. Section 2 discusses
prior studies regarding visual environments and their effect on
students. Section 3 expounds upon the construction, feature sets,
and operation behavior of visual environments. Section 4 shows

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Copyright ©JOCSE, a
supported publication of the Shodor Education Foundation Inc.

Edward Dillon
Clemson University

School of Computing (HCC Division)
 100 McAdams Hall

 Clemson, SC 29634
(864) 656-1266

edillon@g.clemson.edu

Monica Anderson-Herzog
The University of Alabama

Department of Computer Science
Box 870290

Tuscaloosa, AL 35487-0290
205-348-1667

anderson@cs.ua.edu

Marcus Brown
The University of Alabama

Department of Computer Science
Box 870290

Tuscaloosa, AL 35487-0290
205-348-5243

mbrown@cs.ua.edu

Volume 5, Issue 1 Journal of Computational Science Education

28 ISSN 2153-4136 August 2014

two studies that were conducted to evaluate student behavior when
a visual environment is used to teach programming. Section 5
gives the conclusion, threats to validity, and future work for this
research.

2. RELATED WORK
Previous studies have shown the impact of using visual
environments to teach students how to program. Below is a
summary of studies that evaluated visual environments and their
effect on students at introductory stages of programming (Figure
1). Measurements that were used to evaluate these environments
were either subjective (ex. attitudes, motivation) or objective (ex.
retention rates, time on task).

Figure 1. Prior Evaluations of Visual Environments and their

Effect on Novices
Moskal, Lurie, and Cooper [15] measured the effect of Alice, a
syntax-free environment, on CS1 students over a period of two
years. Their results showed that Alice had a positive impact on
performance, retention, and attitudes of the students, especially
those who were considered at-risk (students with little to no
programming experience prior to CS1 enrollment or a weak
mathematical background) [15].

Hagan and Markham [9] studied the effect of BlueJ, a Java IDE,
for teaching CS1 students object-oriented programming. They
found that initially students were indifferent towards BlueJ, but
gradually their attitudes became more positive for using this
environment as the semester progressed. The authors believed that
the difficulty of installing and learning to use BlueJ might have
influenced the students’ initial attitude toward this environment
[9].

DePasquale [4] evaluated the ease of use of the CS1 Sandbox IDE
(with and without language subsets) against Microsoft Visual C++
.Net on CS1 students. He found that students were more efficient
with their tasks when using CS1 Sandbox than Microsoft Visual
C++ .Net when language subsets were applied. In addition,
DePasquale discovered that students who used CS1 Sandbox at the
beginning of the study later migrated more readily to using
Microsoft Visual C++ .Net [4].
Chen and Marx [2] measured an Eclipse IDE against an IDE called
Ready to Program in a CS2 course for a period of two years.
During the first semester of this study, the students preferred
Eclipse over Ready to Program due to their initial excitement for
this environment during an in-class demonstration. However, many
of these students chose to use Ready to Program to complete take-
home projects. Some of the reasons for not using Eclipse were
based on the lack of experience, installment issues, and the
difficulty of using this environment in the absence of the instructor
[2]. During the following two semesters, the students enrolled were
given a CD that provided hands-on experience with using Eclipse.
Chen and Marx found that these particular students showed
slightly better attitudes toward Eclipse. During the final semester
of this study, Chen and Marx expanded the study into CS1 by
exposing students in this course to Eclipse. They found that
students depended too much on the wizards that Eclipse offered

with insufficient understanding of what they were doing.
Therefore, no IDE was used for programming during the following
semester but rather Notepad and the Command Prompt terminal.
The reason for this change was to help the students get a broader
understanding of compilation, execution, and editing of programs.
The authors also believed that this change would help the students
better understand the usefulness of an IDE [2].

McWhorter and O’Connor [14] performed a study on LEGO®
Mindstorms to determine if this application could influence
motivation (intrinsic or extrinsic) for students learning to program
in a CS1 course. They found that students using LEGO®
Mindstorms showed a barely significant decrease in their extrinsic
motivation from the control group. McWhorter and O’Connor
concluded that LEGO® Mindstorms scarcely had any substantial
effect on their students’ overall motivation for programming [14].

From these studies, there were different conclusions about the
effect of visual environments on students while learning to
program. Environments like Alice, BlueJ, and CS1 Sandbox were
able to influence positive productivity in the students. On the other
hand, Eclipse and LEGO® Mindstorms revealed a different
outcome. In particular, Chen and Marx found that the appearance
of Eclipse excited their students. However, its complexity and
implied behavior for programming procedures caused the authors
to move later students to a command line environment.

3. THE CONSTRUCT OF VISUAL TOOLS
Visual environments are typically built using a WIMP format
(window, icon, menu, and pointing device) for operation. IDEs are
composed of a menu bar with a list of menu options and icons, a
text editor for writing code, a built-in compiler/interpreter, and a
debugger for conducting programming tasks via a mouse. In many
cases, these features are integrated into one window for operation
(Figure 2). Syntax-free environments like Alice and Scratch are
also constructed using the WIMP format with additional features
for drag-and-drop coding.

Visual environments are usually constructed differently from
command line environments. Command line environments use a
text editor to write and edit code but depend upon an external
command terminal for code compilation/interpretation, debugging,
and execution (Figure 3). In addition, students may be required to
learn a variety of command arguments to effectively operate a
command terminal. There are cases where certain text editors may
provide a WIMP-oriented background to create and edit a program
(Figure 4), but still require a command terminal to generate the
program’s output.

Figure 2: Microsoft Visual Studio IDE 2008

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 29

Figure 4: Text Editors for JEDIT and Notepad (respectively)

3.1 Feature Sets
The feature sets within visual environments typically provide a
higher level of assistance to students when learning to program [5].
For example, IDEs can provide a large quantity of features that are
designed specifically to assist users with programming; these
include syntax highlighting, error highlighting, auto completion,
mouse usage, and integrated compilation/execution. Usually,
command line environments are not built with these capabilities,
which restrict students to use a fixed set of features for operation.
The next subsection provides more detail about the different levels
of assistance that occur between visual and command line
environments.

Figure 5: Programming Environments: Feature Sets
Continuum [5]

*Feature set can readily be altered

3.1.1 Continuum
Figure 5 illustrates a continuum of basic feature sets that can be
seen amongst visual and command line environments [5]. Feature
sets enable these environments to provide low, moderate, or high
assistance to a programmer. The continuum provides clarity for
how specific environments are categorized based on their default
feature sets. There are cases where individual features can be
enabled or disabled within environments (notice the asterisk beside
the Vi/Vim editor in Figure 5). This can alter an environment’s
behavior, which can also cause an environment to shift either left
or right on the continuum.

Low assistive environments (left region of the continuum)
typically possess basic essential features for programming. Some
of these environments may only provide the user with an editing
window and a window for compilation/execution or interpretation.
These environments typically allow the user to perform textual
coding, command usage, and manual debugging. Users depend on
some independent compiler or interpreter to run a written program
that usually generates a textual output. Example environments that
provide low assistance are plain text editors and text editors with
very limited features. As listed on the continuum, Vi/Vim is an
example text editor that provides limited features, which include
syntax highlighting and mouse usage for programming. In
addition, environments that represent this region of the continuum
tend to be command-line oriented [5].

Moderately assistive environments (middle region of the
continuum) can provide a larger quantity of assistive features for
programming. Some of these features consist of syntax
highlighting, error highlighting, auto completion, mouse usage,
integrated compilation/execution (or interpretation), and integrated
debugging. Usually, these environments can also provide textual
feedback. There are some full-featured environments that possess
similar traits seen in low assistive environments. These traits
include: command sets, independent window for
compiling/executing (or interpreting), and manual debugging.
Example environments that represent this region of the continuum
are rich-featured editors, intermediate and advanced/commercial
IDEs [5].
Highly assistive environments (right region of the continuum) can
also possess a larger quantity of assistive features for
programming. Usually, these environments are built specifically to
teach novices how to program. Therefore, many of these
environments can also provide features that restrict the user to
foundational programming concepts. Some highly assistive
environments also require the user to perform drag and drop
programming rather than syntax programming. In addition,
physical or animated output can be used as an alternative to textual
output. Example environments that represent this region of the
continuum are graphical environments like Alice and Scratch, and
pedagogical IDEs [5].
For additional details about the feature set continuum, see our
paper published in the Journal of Computing Sciences in
Colleges [5].

3.1.2 Familiarity
As part of feature assistance, there are features within
programming environments, particularly those that are visual
(Figure 6), that can provide a student with a familiar clue or
affordance of how a particular action can be performed while
programming [17]. Some of these features can also be seen in
common software applications that provide service to users with

Figure 3: Command Terminals for Windows and Linux
Platforms (respectively)

Volume 5, Issue 1 Journal of Computational Science Education

30 ISSN 2153-4136 August 2014

different levels of computational experience, which include
Microsoft Office suites, Internet Safari, and ITunes (Figure 7).

It is likely that students have been exposed to these software
applications to surf the web, chat online, write an essay or term
paper, or listen to music prior to their first programming class.
Because of these similar features, there is the potential for a visual
environment’s behavior to be familiar to students while learning to
program. For example, a student could perceive the procedures for
using a visual environment to be relative to a word processor. This
sense of familiarity could also lessen the learning curve for
understanding the operations of a visual environment upon initial
exposure.

Figure 6: Examples of Visual Environments and their Relative
Features [6]

Figure 7: Software Applications and their Relative Features to

Visual Environments (Internet Safari, Microsoft Word, and iTunes)

3.2 Operation Behavior
While students are learning to program, understanding
programming concepts or language syntax is one aspect. Another
is becoming accustomed to the procedures for operating a
programming environment. When operating a command line
environment, students typically cannot bypass one procedure and
complete another. This is not the case for many visual
environments. Instead, programmers can perform certain
procedures automatically with a click of the mouse. The next
subsections discuss the operation of command line environments,
IDEs, and syntax-free environments respectively along with a brief
discussion about their potential effect on students.

3.2.1 Command Line Programming
When conducting command line programming, students are
usually directed to an editing window to begin composing (or
writing) their program. Students must also save their program as a
file for the remaining procedures. Next, students should test the

correctness of their written program by compiling their saved file.
Since a command terminal is typically used for compilation,
students are required to use command sets for operation. Based on
the command terminal and language being used for programming,
there are certain commands that will enable the students to compile
their program file. Upon compilation, students are faced with one
of two scenarios: 1) If a syntax error(s) is detected during
compilation, this error must be corrected before proceeding to the
next step. 2) If no errors are detected during compilation, the
program file undergoes the process of linking. When linking
occurs, the program file is converted into an executable file in
preparation for execution. After program linking is completed, the
students must type a certain command in the terminal to invoke the
execution of their program. Upon execution, the students are faced
with one of two more scenarios: 1) If a semantic (or logical)
error(s) occurs, this error must be corrected and would require the
students to repeat the compilation and linking process again. 2) If
no errors are detected during execution, the output of the program
would be generated and viewed in the terminal window. Figure 8
provides an outline of the typical operations for command line
programing. Table 1 provides a summarized list of these operations
in their respective order.

Figure 8: Outline of Command Line Programming

Table 1. Command Line Programming Operations

Step 1 Editing window is used to compose (or write)
program. (Program should be saved as a file)

Step 2*
The file of the written program is compiled and
checked for syntax errors. (Students must use the
appropriate command to invoke this behavior)

Step 3* The file of the program is converted into an
executable file for execution.

Step 4*
The executable file of the written program is
executed to acquire the intended output.
(Students must use the appropriate command to
invoke this behavior)

Step 5 The program’s output is generated and viewed.

*May require multiple attempts due to syntax or semantic
errors.

It is also important to note that certain languages are not compiled,
but rather interpreted. The operations for interpreted languages are
almost identical to a compiled language with exception to the
procedures for compiling and linking the program file. Instead, the
program file containing the written code has to be interpreted.
There are certain commands that will enable students to interpret
the code in their program file. Upon interpretation, the students are
faced with one of three scenarios: 1) If a syntax error(s) is detected

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 31

during interpretation, this error must be corrected before
proceeding to the next step. 2) If a semantic (or logical) error(s)
occurs, this error must be corrected before proceeding to the next
step. 3) If no errors are detected during interpretation, the output of
the program would be generated and viewed in the terminal
window. Figure 9 provides an outline of the typical operations for
command line programming with interpreted languages. Table 2
provides a summarized list of these operations in their respective
order.

Figure 9: Outline of Command Line Programming

(using an Interpreted Language)

Table 2. Command Line Programming Operations
(Interpreted Language)

Step 1 Editing window is used to compose (or write)
program. (Program should be saved as a file)

Step 2*
The file of the written program is interpreted and
checked for syntax and semantic errors.
(Students must use the appropriate command to
invoke this behavior)

Step 3 The program’s output is generated and viewed.

*May require multiple attempts due to syntax or semantic
errors.

3.2.2 IDE Programming
Similar to command line programming, students are directed to an
editing window to begin composing their program in an IDE.
Students must also save their program as a file for the remaining
procedures. Next, students must test the correctness of their written
program. Depending upon the IDE, this can occur in different
ways. For example, many IDEs provide a menu option that enables
students to automatically compile, link, and execute their program
file with a single mouse click. During this process, students are
faced with one of three scenarios: 1) If a syntax error(s) is detected
during compilation, this error must be corrected before the file
automatically proceeds to the linking phase. 2) If a semantic (or
logical) error(s) occurs, this error must be corrected before the file
is successfully executed. 3) If no errors are detected during this
process, the output of the program would be generated and viewed
either within the same window of the editor or in an independent
window.

Other IDEs follow a similar procedure seen in command line
environments, which allow students to compile (and link) their
program independently of execution. Instead of using a command
terminal to do so, a menu option is provided to conduct this
procedure. The output generated during execution from these

particular IDEs can also be viewed either within the same window
of the editor or in an independent window.

For languages that are interpreted, certain IDEs are built to
interpret a written language using a menu option that invokes this
behavior using a single mouse click. Upon interpretation, the
output is also generated and viewed either within the same window
of the editor or in an independent window. Figure 10 provides an
outline of IDE programming that includes all three styles of
operation. Table 3-5 provides a summarized list of each style of
IDE operation respectively.

Figure 10: Outline of IDE Programming

Table 3. IDE Programming Operations
(Compiling, Linking, and Executing automatically)

Step 1 Editing window is used to compose (or write)
program. (Program should be saved as a file)

Step 2*

The file of the written program is compiled,
linked, and executed based upon the correctness
of the written code. (Students must use the
appropriate menu option to invoke this
behavior). During this process, the file is
checked for syntax and semantic errors.

Step 3 The program’s output is generated and viewed.

*May require multiple attempts due to syntax or semantic
errors.

Table 4. IDE Programming Operations
(Compiling/Linking and Executing independently)

Step 1 Editing window is used to compose (or write)
program. (Program should be saved as a file)

Step 2*
The file of the written program is compiled and
checked for syntax errors. (Students must use the
appropriate menu option to invoke this behavior)

Step 3*
The executable file of the written program is
executed to acquire the intended output.
(Students must use the appropriate menu option
to invoke this behavior)

Step 4 The program’s output is generated and viewed.

*May require multiple attempts due to syntax or semantic
errors.

Volume 5, Issue 1 Journal of Computational Science Education

32 ISSN 2153-4136 August 2014

Table 5. IDE Programming Operations
(using an Interpreted Language)

Step 1 Editing window is used to compose (or write)
program. (Program should be saved as a file)

Step 2*
The file of the written program is interpreted.
(Students must use the appropriate menu option
to invoke this behavior). During this process, the
file is checked for syntax and semantic errors.

Step 3 The program’s output is generated and viewed.

*May require multiple attempts due to syntax or semantic
errors.

3.2.3 Syntax-Free Programming
Syntax-free programming also provides students with an editing
window to create their program. Instead of using syntax as a
method for composing a program, students in many cases must
drag snippets of code from other windows of the environment and
drop them into the editing window. Once a program has been
created, students must also save their program as a file for the
upcoming procedures. Similar to IDEs, syntax-free environments
provide a menu option for students to test the correctness of their
written program. During this process, students are faced with one
of two scenarios: 1) If a semantic (or logical) error(s) occurs, this
error must be corrected before the program can be executed. In
many cases, errors can be corrected by either discarding
inappropriate code from the composed program or
dragging/dropping additional snippets of code into the same
program. 2) If no errors are detected during this process, the output
of the program would be generated and viewed either within the
same window of the editor or in an independent window. Figure 11
provides an outline of syntax-free programming. Table 6 provides
a summarized list of these operations in their respective order.

Table 6. Syntax-Free Programming Operations

Step 1 Editing window is used to compose program.
(Program should be saved as a file)

Step 2*
The file of the composed program is tested.
(Students must use the appropriate menu option
to invoke this behavior). During this process, the
file is checked for semantic errors.

Step 3 The program’s output is generated and viewed.

*May require multiple attempts due to semantic errors.

3.2.4 Discussion
Command line programming directly exposes students more to
basic procedures for programming, such as compiling a written
program, generating an executable file of a program through
linking, and executing the executable file to generate the program’s
output. Students have to manually perform each procedure using
certain commands to obtain the output of their written program. In
contrast, visual environments can potentially provide a shorter
process for students to conduct the same behavior. Because visual
environments are usually operated using menu bars, icons, and
mouse clicks, students are exposed to a higher level of abstraction
for operation and navigation while programming. However, this
style of construct may misrepresent some of the basic procedures
for programming. For example, a student who is initially exposed
to programming through an IDE may get the impression that
clicking the appropriate menu option magically makes their
program work while disregarding the actions of compiling, linking,
executing, or interpreting.

4. STUDIES
To further examine the effects of visual environments on students
while learning to program, a study was conducted on a CS1 lab
and lecture course respectively at The University of Alabama.
Section 4.1 discusses the first study that was conducted on the CS1
lab. Section 4.2 talks about the second study that was conducted as
a semester-long assessment on the CS1 lecture course.

4.1 Study #1
The first study was conducted as a one-day pilot study for
measuring the initial effects of visual and command line
programming on students. The CS1 lab course generally
introduces students to robotic programming through a syntax-free
environment called PREOP that allows them to program real
robots using drag-and-drop procedures in Alice. This particular
course has no prerequisites and two or three sections are usually
offered per semester. Three sections were offered during the time
of this study (Spring 2011).

4.1.1 Methods & Procedures
For this study, each section received an environment to conduct
Python programming: Section 1 received an IDLE IDE (Figure
12), Section 2 was given a PyScripter IDE (Figure 13), and Section
3 used Notepad/Command Prompt (Figure 14). Three measures
were conducted for student assessment: Computer Programming
Self-Efficacy Scale [16], a time on task assessment, and a usability
survey.
The number of students enrolled in the CS1 lab course was 133.
There were 45, 45, and 43 students enrolled in the IDLE,
PyScripter, and Notepad sections respectively. The student
population for this study varied for each procedure. This was due
to students either arriving late to class or not correctly following
the instructions. Therefore, the student population represented in
this study ranged from 91-102 students. Tables 7-20 (with
exception to Table 13) list the numbers of students who
participated during each assessment.

Figure 11: Outline of Syntax-Free Programming

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 33

Figure 12: IDLE IDE version 2.6.6

Figure 13: PyScripter version 1.9.9.6

Figure 14: Notepad/Command Prompt – Windows Platform

To begin the study, each student received a self-efficacy survey.
This survey consisted of 31 questions from the Computer
Programming Self-Efficacy Scale. The responses were given on a
7-point Likert scale that ranged from not confident at all to
absolutely confident. As part of this survey, a demographics
section was provided in order to acquire feedback about the
students, which included academic major, classification, and prior
programming experience.

Next, the students received an introductory lecture on the Python
language. This lecture introduced basic Python concepts that the
students would need to complete the exercise. Students were
exposed to concepts of code syntax and semantics, selection, and
information hiding. Topics that were covered included print

statements, variable usage and assignment, reserved keywords and
mathematical operations (with inferences on division and modulus
usage). The lecture concluded by showing an example program
using every topic. This program converted x number of minutes
into h hours and m minutes remaining. The behavior of this
program resembled the assignment that the students would be
asked to write.

After the lecture, the students received a demonstration on how to
use their respective environment and were required to write a small
program that converted 700 days into y years, m months, and d
days remaining. During this process, their time to complete this
task was measured. The objective was to measure the students’
time on task for writing the required program using their respective
environment. For the IDLE group, a process monitoring
application was used to measure time on task. In order to access
their time logs, the students first accessed the process monitoring
application before using IDLE, and then remain logged onto their
computers after completing the assignment. However, some
students did not follow these directions correctly which resulted in
their time logs being lost. Therefore, the remaining two sections
did not use the software. Instead these students were required to
start at the same time and were required to raise their hands upon
completing the assignment. The time on task for these sections was
calculated by subtracting time of completion from the starting
time.
After the time on task assessment, a usability survey was issued.
This survey was composed of questions that directly focused on
the students’ experience with their respective tool. These questions
measured subjective attributes regarding attitudes and feelings
about using these environments respectively.

4.1.2 Results
The student demographics consisted of different majors at varying
classification levels with contrasting levels of prior programming
experience (Tables 7 - 10). For instance, the PyScripter group had
more Electrical Engineering majors than Computer Science. The
PyScripter and Notepad groups had significantly more juniors than
the IDLE group (p<0.05). The IDLE group had less prior
programming experience than the PyScripter group, which was
also significantly less (p<0.05) than the Notepad group. In
addition, the Notepad group had a higher percentage (50%) of
students who were taking the CS1 lecture course in conjunction
with this lab. Traditionally, CS1 teaches Python programming
using the VIM command editor on the Linux platform.

4.1.2.1 Self-Efficacy
The self-efficacy survey was used as an indicator for initially
determining the students’ self-efficacy for programming prior to
their participation in this study. This survey measured the students’
confidence for performing certain programming procedures
ranging from writing syntactically correct programs to writing a
program that someone else could successfully comprehend. The
students’ scores on this survey reflected their self-efficacy,
meaning that a high score indicated an individual to have a high
self-efficacy toward programming (and vice versa). The highest
score that could have been made on this survey was 217. From this
survey, the students showed an overall mean self-efficacy score of
114.85 out of 217 (with a normalized mean of 0.51 on a scale of 0
to 1).

The mean self-efficacy scores (see Table 11) amongst the three
sections were tested using a one-way ANOVA. The ANOVA
showed a significant variation amongst the three sections (p<0.01).

Volume 5, Issue 1 Journal of Computational Science Education

34 ISSN 2153-4136 August 2014

Table 7. CS1 Lab Demographics
*Number of responses before Time on Task was conducted.

Participants (N=94*)

Major

Computer Science - 33%
Electrical Engineering - 29%
Computer Engineering - 15%
MIS - 3%
Math - 5%
Other - 18%

Classification

Freshmen - 41%
Sophomore - 32%
Junior - 22%
Senior - 3%
Other - 1%

Programming
Experience

CS1 programming - 31%
High School programming - 26%
Another College Course - 18%
No Experience - 26%

Table 8. CS1 Lab Demographics – IDLE
*Number of responses before Time on Task was conducted.

IDLE Group (N=30*)

Major

Computer Science - 37%
Electrical Engineering - 27%
Computer Engineering - 23%
MIS - 7%
Math - 7%
Other - 7%

Classification

Freshmen - 57%
Sophomore - 37%
Junior - 7%
Senior - 0%
Other - 0%

Programming
Experience

CS1 programming - 17%
High School Course - 17%
Another College Course - 17%
No Experience - 40%

Table 9. CS1 Lab Demographics – PyScripter
*Number of responses before Time on Task was conducted.

PyScripter Group (N=38*)

Major

Computer Science - 24%
Electrical Engineering - 42%
Computer Engineering - 13%
MIS - 3%
Math - 3%
Other - 18%

Classification

Freshmen - 32%
Sophomore - 37%
Junior - 39%
Senior - 0%
Other - 3%

Programming
Experience

CS1 programming - 34%
High School Course- 16%
Another College Course - 24%
No Experience - 26%

Table 10. CS1 Lab Demographics – Notepad
*Number of responses before Time on Task was conducted.

Notepad Group (N=26*)

Major

Computer Science - 42%
Electrical Engineering - 12%
Computer Engineering - 8%
MIS - 4%
Math - 8%
Other - 31%

Classification

Freshmen - 38%
Sophomore - 19%
Junior - 31%
Senior - 12%
Other - 0%

Programming
Experience

CS1 programming - 50%
High School Course - 27%
Another College Course - 8%
No Experience - 15%

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 35

The ANOVA test was followed by T-tests to determine whether
specific differences existed amongst the sections. The T-tests
showed a significant difference between the IDLE and PyScripter
groups (p<0.01) as well as the IDLE and Notepad groups (p<0.01)
respectively. There was no significant difference between the
PyScripter and Notepad groups. This indicated that students in the
IDLE group were less confident in their programming abilities
than their counterparts in the PyScripter and Notepad groups
respectively.

Table 11. Self-Efficacy Descriptive Data for CS1 Lab

 Group N Mean Score
(Possible Score) StdDev

Normalized
Mean

(scaling from
0 to 1)

IDLE 30 88.30
(out of 217) 38.91 0.42

PyScripter 38 125.63
(out of 217) 49.57 0.53

Notepad 26 129.73
(out of 217) 38.90 0.59

All Groups 94 114.85
(out of 217) 46.83 0.51

4.1.2.2 Time on Task
Overall, the average performance time for students to complete the
assignment was 24.63 minutes (Table 12). A one-way ANOVA
showed a significant difference (p<0.01) between the average
performance times amongst the three sections. The ANOVA test
was followed by T-tests which showed a significant difference
between the IDLE and PyScripter groups (p<0.05), the IDLE and
Notepad groups (p<0.01), and the PyScripter and Notepad groups
(p<0.01). This indicated that students who used PyScripter
finished their required task quicker than the students using IDLE
and Notepad respectively. At the same time, students who used
IDLE completed their task quicker than the students using
Notepad.

Table 12. Time on Task Descriptive Data for CS1 Lab

 Group N Average Time StdDev

IDLE 21 23.05 minutes 12.62

PyScripter 40 15.88 minutes 10.89

Notepad 30 34.97 minutes 16.83

All Groups 91 24.63 minutes 13.45

4.1.2.3 Environment Usability
This survey was composed of several attributes to measure the
environments’ usability. Questions in the survey are listed in
(Table 13). The results that were generated from the students’
response to each question are also discussed in further detail.
Tables 14-20 provide statistical analysis for each attribute
measured.

Table 13. Usability Attributes
(OE = Open Ended; MC = Multiple Choice)

Attribute Question

Initial Impression of Environment OE

Comfort with Environment MC

Confidence with Doing Another Assignment
with Environment MC

Fondness of Environment MC

Easiest Attributes about the Environment OE

Hardest Attributes about the Environment OE

Experiences with Other Environments
(besides PREOP) OE

Initial Impression about the Environment. The responses were
quantified into three categories: positive, non-positive, and no
response. Non-positive responses consist of either neutral/confused
or negative feelings about the environment. For quantification, the
positive responses received a value of 1, and the non-positive and
no responses received a value of 0.

A one-way ANOVA indicated a significant difference (p<0.01)
amongst the three groups. Afterwards, T-tests indicated a
significant difference for each T-test: IDLE vs. PyScripter
(p=0.05), IDLE vs. Notepad (p=0.05), PyScripter vs. Notepad
(p<0.01). These results showed that the Notepad group had a less
positive initial impression than the IDLE and PyScripter groups
respectively. In addition, students in the IDLE group had a less
positive initial impression than the PyScripter group. Table 14
provides further analysis about this measure.

Table 14. Initial Impression of Environment

Comfort with Environment. Based on the response choices
ranging from not comfortable at all to absolutely comfortable, a
one-way ANOVA indicated a significant difference (p<0.01).
Afterwards, T-tests indicated a significant difference for two of the
pairings: IDLE vs. PyScripter (p<0.01) and IDLE vs. Notepad
(p<0.05). These results showed that the IDLE group was less
comfortable with using IDLE than the PyScripter group with
PyScripter and the Notepad group with Notepad respectively. The
PyScripter and Notepad groups showed no significant difference
between each other. Table 15 provides further analysis about this
measure.

 Group N Mean StdDev

IDLE 34 0.35 0.49

PyScripter 38 0.55 0.50

Notepad 30 0.17 0.38

All Groups 102 0.37 0.48

The mean was calculated by labeling Positive Responses = 1,
and Non-Positive and No Responses = 0.

Volume 5, Issue 1 Journal of Computational Science Education

36 ISSN 2153-4136 August 2014

Table 15. Comfort with Environment

 Group N Mean StdDev

IDLE 34 3.44 1.52

PyScripter 38 4.63 1.53

Notepad 30 4.30 1.74

All Groups 102 4.14 1.65

The mean was calculated using weights from a 7-point Likert
scale, ranging from 1 = Not Comfortable at All to

7 = Absolutely Comfortable

Confidence with Doing Another Assignment with the
Environment. Based on the response choices ranging from not
confident at all to absolutely confident. A one-way ANOVA
indicated a significant difference (p<0.01). Afterwards, T-tests
indicated a significant difference for two of the pairings: IDLE vs.
PyScripter (p<0.01) and IDLE vs. Notepad (p<0.05). These results
showed that the IDLE group was less confident with using IDLE to
do another assignment than the PyScripter group with PyScripter
and the Notepad group with Notepad respectively. The PyScripter
and Notepad groups showed no significant difference between
each other. Table 16 provides further analysis about this measure.

Table 16. Confidence with Doing Another Assignment with
Environment

 Group N Mean StdDev

IDLE 34 3.38 1.67

PyScripter 38 4.74 1.64

Notepad 30 4.37 1.96

All Groups 102 4.18 1.82

The mean was calculated using weights from a 7-point Likert
scale, ranging from 1 = Not Confident at All to

7 = Absolutely Confident

Like the Environment. Based on the response choices ranging
from not at all to absolutely like. A one-way ANOVA indicated a
significant difference (p<0.01). Afterwards, T-tests indicated a
significant difference for two of the pairings: IDLE vs. PyScripter
(p<0.01) and PyScripter vs. Notepad (p<0.01). The students in the
IDLE and Notepad groups liked IDLE and Notepad respectively
less than the PyScripter group with PyScripter. No significant
variations were noted between the IDLE and Notepad groups.
Table 17 provides further analysis about this measure.

Table 17. Fondness of Environment

 Group N Mean StdDev

IDLE 34 3.41 1.73

PyScripter 38 4.87 1.66

Notepad 30 3.77 1.79

All Groups 102 4.06 1.81

The mean was calculated using weights from a 7-point Likert
scale, ranging from 1 = Not at All to 7 = Absolutely Like

Easiest Attributes about the Environment. The responses were
quantified into five categories: Python Attributes, Environment
Attributes, Familiarity, Nothing/No Response and I Don’t Know.
Python Attributes represented students who gave a response about
the Python language. Environment Attributes represented students
who gave a response about their respective environment based on
its features. Familiarity represented students who responded based
on a previous experience with programming. The categories of
Nothing/No Response and I Don’t Know represented students who
actually provided such responses. For quantification, responses
that were categorized as Environment Attributes received a value
of 1. All other responses received a value of 0.

A one-way ANOVA indicated no significant difference amongst
the three groups. Since many of the students were not exposed to
Python prior to this study, several of them responded more
frequently about the easiest attributes of the Python language itself
rather than their respective environment. A T-test indicated a
significant difference (p<0.05) between responses towards the
Python language and the respective environments. Additional T-
tests were used to determine any significant differences within
each group. The results indicated a significant difference (p<0.01)
for only the IDLE group. These results showed that the IDLE
group responded more frequently about the easy attributes of the
Python language rather than the IDLE environment. The frequency
of responses to Familiarity, Nothing/No Response, and I Don’t
Know were insignificant. Table 18 provides further analysis about
this measure.

Table 18. Easiest Attributes of the Environment

Hardest Attributes about the Environment. The responses were
also quantified using the same categories as shown for the easiest
attributes. For quantification, responses that were categorized as
Environment Attributes received a value of 1. All other responses
received a value of 0. A one-way ANOVA indicated a significant
difference (p<0.01). Afterwards, T-tests indicated a significant
difference for two of the pairings: IDLE vs. Notepad (p<0.01) and
PyScripter vs. Notepad (p<0.01). These results showed that
Notepad received more responses concerning its hard attributes
than IDLE and PyScripter respectively.

In regards to the responses about the Python language itself, a one-
way ANOVA indicated a slight significant difference (p=0.054).
Afterwards, T-tests indicated a significant difference for two of the
pairings: the IDLE group vs. the Notepad group (p=0.01) and the
PyScripter group vs. the Notepad group (p<0.05). These results
showed that students in the Notepad group gave fewer responses
about the hardest attributes of the Python language than the IDLE
and PyScripter groups respectively. The frequency of responses to
Familiarity, Nothing/No Response, and I Don’t Know were
insignificant. Table 19 provides further analysis about this
measure.

 Group N Mean StdDev

IDLE 34 0.18 0.37

PyScripter 38 0.37 0.49

Notepad 30 0.37 0.49

All Groups 102 0.30 0.46

The mean was calculated by labeling
Environment Attributes = 1 and all other categories = 0.

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 37

Table 19. Hardest Attributes of the Environment

Experiences with Other Environments (Besides PREOP). This
particular question was asked in conjunction with another question:
Was the environment mandatory for a course? Statistical analyses
were conducted for both questions.

A one-way ANOVA was used to determine if certain sections had
more prior experience with other environments besides PREOP.
The results indicated a significant difference (p<0.01). Afterwards,
T-tests were used to compare each group against another. A
significant difference was found for two of the T-tests: the IDLE
group vs. the PyScripter group (p<0.01) and the IDLE group vs.
the Notepad group (p<0.01). These results showed that the IDLE
group has less experience with using other environments (besides
PREOP) than the PyScripter and Notepad groups respectively.

A one-way ANOVA was also used to determine if these other
environments were mandatory for another course. The results
indicated a significant difference (p<0.05). Afterwards, T-tests
indicated a significant difference for only one of the pairings: the
IDLE group vs. the PyScripter group (p<0.01). These results not
only showed that the PyScripter group had more experience with
other environments than the IDLE group, but also that they were
mandatory for another course. The PyScripter and Notepad groups
showed no significant difference amongst each other. Table 20
provides further analysis about this measure.

Table 20. Experiences with Other Environments (besides
PREOP)

An additional T-test was used for the PyScripter group to
determine whether their experience with other environments were
actually IDEs. For the PyScripter group, the results were
significant (p<0.01). These results showed that most of these
students (68%) had prior experience with IDEs. As previously
mentioned, many of the students in the PyScripter group were ECE
majors. Traditionally at this university, all ECE majors must take
CS285, which teaches the C language using the CodeBlocks IDE.
Similar to PyScripter, CodeBlocks is an IDE rich with features.
Out of the 68% of these students who had prior exposure to IDEs,

90% of them had experience with CodeBlocks prior to this study.

4.1.3 Discussion
The IDLE group had less prior programming experience than their
counterparts in the PyScripter and Notepad groups. This factor
may have impacted a majority of the results seen from this group.
They were found to be less confident in their programming
abilities, less comfortable with IDLE after using it, and less
confident about doing another assignment. They also did not like
IDLE as much as students who liked PyScripter. Their lack of
programming experience was obvious when asked about the ease
or difficulty of using IDLE. Instead of providing positive
responses about IDLE, they expressed comfort about the Python
language. Despite lacking programming experience, the IDLE
group completed their task significantly faster than the Notepad
group.

Students in the PyScripter and Notepad groups showed no
differences in their programming experience. They also showed no
differences in their comfort with their respective environments as
well as their confidence of doing another assignment. However,
the PyScripter group had a more positive initial impression, more
of a fondness with PyScripter, and a faster completion time than
the students using Notepad. Students in the Notepad group (not
significantly) had more prior exposure to command line
programming through CS1. However, they frequently showed
difficulties with using Notepad, which influenced their time to
complete the required exercise. In contrast, students using
PyScripter rarely demonstrated difficulties about using PyScripter,
and a majority of them had prior exposure to IDEs. In addition,
45% of the PyScripter group had a non-positive initial impression.
On the other hand, 70% of the Notepad group had a non-positive
initial impression. Fifty-three percent of the IDLE group showed a
non-positive impression. However, many of the IDLE students did
not have prior programming experience unlike the other groups.

4.2 Study #2
This study was conducted as part of a larger empirical evaluation
of visual and command line programming in CS1 over the course
of a semester. As previously mentioned, the CS1 course at the
University of Alabama traditionally teaches Python using the VIM
command line environment on the Linux platform. During the Fall
2011 semester, this course was altered to allow certain sections to
use IDLE (in Linux) as an alternative to VIM. Four sections were
offered during this particular semester; two sections were taught
programming using VIM (Figure 15) and one section used IDLE
(Figure 16). The remaining section, an honors section, was given
the option of either tool. During the latter part of the semester, the
non-honor sections were required to switch environments.

Figure 15. VIM version 7.3.35

 Group N Mean StdDev

IDLE 34 0.06 0.24

PyScripter 38 0.11 0.31

Notepad 30 0.40 0.50

All Groups 102 0.18 0.38

The mean was calculated by labeling
Environment Attributes = 1 and all other categories = 0.

 Group N Mean StdDev

IDLE 34 0.26 0.45

PyScripter 38 0.68 0.47

Notepad 30 0.50 0.51

All Groups 102 0.49 0.50

The mean was calculated by labeling Yes = 1 and No = 0.

Volume 5, Issue 1 Journal of Computational Science Education

38 ISSN 2153-4136 August 2014

4.2.1 Methods/Procedures
As part of this empirical assessment, a demographic survey, three
usability surveys and a protocol analysis were given during the
semester. The usability surveys were administered twice before
switching environments and once afterwards. After the
environment switch, a protocol analysis was conducted on a small
group of students to study their mental model for operating a visual
or command line environment.

The number of students enrolled in the CS1 course was 179. There
were 46, 88, and 45 students enrolled in the IDLE, two VIM, and
honor sections respectively. Tables 21-27 list the numbers of
students who participated during each assessment.

4.2.2 Results
The demographics shown in Tables 21-24 respectively are a
representation of the CS1 student population (N=119) at the
beginning of the semester. However, there were students who
stopped attending class, dropped the CS1 course, or became
agitated with participating in this study. These factors influenced a
decrease in sample representations and student participation as the
semester progressed, especially during the final assessments of this
study.

Table 21. CS1 Demographics

Participants (N=119)

Major

Computer Science - 61%
Electrical Engineering - 3%
Computer Engineering - 3%
MIS - 1%
Math - 6%
Other - 22%
Double Major (including CS) - 1%
Double Major (excluding CS) - 3%

Classification

Freshmen - 40%
Sophomore - 32%
Junior - 19%
Senior - 8%
Other - 3%
*one student did not provide an answer

Programming
Experience

High School programming - 16%
Another College Course - 16%
No Prior Experience - 68%

*three students did not provide an answer

Table 22. CS1 Demographics - IDLE Section

IDLE Section (N=33)

Major

Computer Science - 85%
Electrical Engineering - 0%
Computer Engineering - 0%
MIS - 0%
Math - 6%
Other - 9%
Double Major (including CS) - 0%
Double Major (excluding CS) - 0%

Classification

Freshmen - 34%
Sophomore - 42%
Junior - 15%
Senior - 9%
Other - 0%

Programming
Experience

High School programming - 9%
Another College Course - 25%
No Prior Experience - 66%

Table 23. CS1 Demographics – VIM Sections

VIM Sections (N=46)

Major

Computer Science - 49%
Electrical Engineering - 2%
Computer Engineering - 0%
MIS - 2%
Math - 9%
Other - 29%
Double Major (including CS) - 2%
Double Major (excluding CS) - 7%
*one student did not provide an answer

Classification

Freshmen - 31%
Sophomore - 27%
Junior - 29%
Senior - 11%
Other - 2%
*one student did not provide an answer

Programming
Experience

High School programming - 11%
Another College Course - 9%
No Prior Experience - 80%

 Figure 16. IDLE-Python 3.2

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 39

Table 24. CS1 Demographics – Honor Section

Honor Section (N=40)

Major

Computer Science - 56%
Electrical Engineering - 5%
Computer Engineering - 7%
MIS - 0%
Math - 5%
Other - 27%
Double Major (including CS) - 0%
Double Major (excluding CS) - 3%

Classification

Freshmen - 55%
Sophomore - 28%
Junior - 10%
Senior - 3%
Other - 5%

Programming
Experience

High School programming - 25%
Another College Course - 17%
No Prior Experience - 58%

4.2.2.1 Usability
One of the attributes measured in this survey was Tool
Mishandling (Tables 25 and 26). Tool Mishandling was defined on
the basis of how often students found themselves making errors,
due to using IDLE or VIM incorrectly. This attribute was based on
a 7-point Likert scale (where 1 = absolutely often & 7 = absolutely
NOT often). The results discussed are strictly based on the
behavior of the non-honor sections.
In the IDLE section, the results from a one-way ANOVA indicated
a significant difference (p<0.05). Afterwards, T-tests indicated a
significant difference for two of the pairings: 1st vs. 3rd surveys
(p<0.05) and 2nd vs. 3rd surveys (p<0.01). The results indicated
two things: students in the IDLE section mishandled VIM more
often than IDLE and the mishandling of a tool increased
significantly after the switch. In the VIM sections, the results from
a one-way ANOVA and T-Tests showed no significant difference.
These results indicated students in the VIM sections did not
mishandle one tool more often than the other.

Table 25. Tool Mishandling Results – IDLE Section
 Avg = Average; SD = standard deviation

IDLE Section (IDLE to VIM)

Tool Survey N Avg StdDev
IDLE 1st 31 4.10 1.42

IDLE 2nd 26 4.42 1.36
VIM 3rd 13 3.08 1.75
The mean was calculated using weights from a 7-point Likert

scale, ranging from 1 = Absolutely Often to
7 = Absolutely Not Often

Table 26. Tool Mishandling Results – VIM Sections
 Avg = Average; SD = standard deviation

VIM Sections (VIM to IDLE)

Tool Survey N Avg StdDev
VIM 1st 29 3.90 1.40

VIM 2nd 49 4.22 1.21

IDLE 3rd 39 4.41 1.58
The mean was calculated using weights from a 7-point Likert

scale, ranging from 1 = Absolutely Often to
7 = Absolutely Not Often

When comparing the average mishandling score between both
groups after the environment switch (Table 27), the VIM sections
showed a significantly higher average than the IDLE section (p <
0.05). This indicated that the VIM sections mishandled IDLE less
often than the IDLE section did with VIM.

Table 27. Tool Mishandling Results (after environment switch)
Avg = Average; SD = standard deviation

Section Tool N Avg StdDev

IDLE VIM 13 3.08 1.75

VIM IDLE 39 4.41 1.58

The mean was calculated using weights from a 7-point Likert
scale, ranging from 1 = Absolutely Often to

7 = Absolutely Not Often

For further details about these results and other attributes
measured during the usability assessment, see our paper published
in the Proceedings of the Human Factors and Ergonomics
Society 56th Annual Meeting [7].

4.2.2.2 Protocol Analysis
This assessment was conducted during the week of the
environment switch. The structure of this assessment allowed for
the collection of both qualitative data and first-hand information
about the CS1 students’ mental model for programming. The
objective was to determine whether certain features within these
respective environments could shape the students’ mental model
for programming. The selection process for this assessment was
based on random volunteers.
There were seven students who volunteered to participate in this
study (all from non-honor sections); four were enrolled in the VIM
sections and three were registered in the IDLE section. The same
programming assignment was given to each student. Table 28
provides background information about each student. Similar to
the assignment given during the CS1 lab study, the students had to
write a program that converted 700 days into y years, m months,
and d days remaining. A video camera was used to record the
behavior of each student while completing this assignment. During
the recording, each student had to “think aloud” about their
approach for writing this program using their new environment.
Each student was given 30 minutes to complete the assignment.

Volume 5, Issue 1 Journal of Computational Science Education

40 ISSN 2153-4136 August 2014

Table 28. Subject Background Information
 *Student #4 was in the IDLE section but chose to use VIM in the course;

**Student #6 was repeating the CS1 course;

Each student who used VIM in this study (original IDLE users)
indicated prior exposure to some form of programming before
taking CS1. Each student from the VIM sections indicated
otherwise. After conducting this assessment, the results showed
that the students from the VIM sections had less challenges with
using IDLE. Two of these particular students completed their
assignment within the allotted time. The other two students’
inability to complete the assignment was due to the difficulty of
the assignment rather than IDLE. The three students from the
IDLE section were not able to complete the assignment due to the
challenges of using and understanding the VIM command editor.
Table 29 provides a summarized description of the subjects’
behavior during assessment.

Table 29. Subject Behavior

Another notable observation from this assessment relates to the
subjects’ tendency of reverting back to familiar procedures from
their original tool if they felt lost or confused while using the new
one. For example, the recording showed two of the original IDLE
users attempting to use the menu bar of the command terminal
assuming that VIM possessed relative features to IDLE. One of the
original VIM users began using the command terminal to interpret
her program when she felt unsure about performing this procedure
in IDLE, but managed to complete this assignment.

We concluded from this assessment that feature sets in
programming environments could play a role in shaping a novice’s
perception of programming. This study also showed that visual
environments could potentially enable students to develop an
inaccurate depiction of programming. For further detail about the
results from this assessment, see our paper published in the
Proceedings of the 50th Annual ACM Southeast Conference [6].

4.2.3 Discussion
Students from the IDLE section showed a significant decrease in
their ability to use a different tool after being exposed to IDLE.
However, students from the VIM sections showed a slight increase
in their ability to use a different tool after their exposure to VIM.
After switching environments, the mean score for mishandling
tools in the VIM sections remained significantly higher than the
IDLE section. These results also support the findings from the
protocol analysis. Participants from the IDLE section found it
more challenging to transition to a command line tool after using
IDLE, while students in the VIM sections had a better transitioning
to a visual tool after exposure to VIM.

5. CONCLUSION
The objective of this article was to study visual environments and
their potential effect on students who are learning to program.
Prior studies have shown that visual environments can have both
productive and unprofitable effects on a student’s ability to
become accustomed to programming. From our studies, it was
shown that visual environments could provide students with a
lower learning curve for operation, while having the potential of
placing limitations on their mental depiction of programming.

In the first study, the familiarity of features in IDLE and
PyScripter possibly played a role in lowering the learning curve for
the students in the CS1-lab course. By the same token, some of
these features may have placed a limitation on the skills that the
IDLE students in the CS1 course acquired during the second study.
Table 30 summarizes the outcomes from both studies.
The question remains of whether visual environments are “ideal”
for teaching students how to program. Even though prior studies
have shown visual environments to promote student retention [15],
positive attitudes [9], and motivation [11] during exposure, our
findings show that these environments may also cause students to
develop a faulty mental model for programming. These results also
support Chen and Marx’s reasoning for moving their students from
an IDE to command line programming [2]. Certain visual
environments may be too restrictive for learning specific
programming concepts and procedures. In this case, it may be
necessary for students to be exposed to other programming
environments that are more inclined to round out their skill sets.
As an alternative solution, it may be appropriate to train students to
understand the implied behavior of visual environments. For
instance, students may need to receive appropriate training for
understanding programming procedures before being exposed to a

Student Gender Ethnicity
Prior

Programming
Experience

Environment
(after switch)

S1 M Caucasian None IDLE

S2 M Caucasian HTML VIM

S3 M Caucasian HTML VIM

S4 F African
American None IDLE**

S5 F Caucasian None IDLE

S6 F African
American VIM* VIM

S7 M African
American

VI, C++,
Java, Fortran VIM

Student
Completed
Assignment
YES NO

Reason for NOT Completing
Assignment

S1 X

S2 X
S2 spent the entire time trying to
understand the functionality of the
VIM editor.

S3 X
S3 spent most of her time trying to
understand the functionality of the
VIM editor.

S4 X

S4 struggled with understanding how
to approach the assignment; She
encountered several syntactical
errors and struggled with correcting
them.

S5 X

S6 X

S6 struggled with understanding how
to approach the assignment; She
encountered semantic errors, which
was due to her inability to determine
the appropriate conversions for her
program.

S7 X
S7 spent most of his time trying to
understand the functionality of the
VIM editor.

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 41

Table 30. Study Outcomes

visual environment. By understanding these underlying factors, it
may be possible for a student to avoid the acquisition of a faulty
mental model for programming while also being able to make a
smoother transition to other types of environments.

5.1 Threats to Validity
There are potential threats that could affect the validity of our
findings from these studies. One threat is the finite set of
environments that were evaluated during these assessments. Every
visual environment that is used to teach programming was not
evaluated during these studies. Instead, our studies were conducted
while using theories, prior conclusions, and anecdotal evidence as
point of references. Another threat relates to the short-term
duration of the CS1 Lab study. This particular study was only
composed of a one-day assessment. A third issue relates to the low
students samples during the latter assessments in the CS1 lecture
course. As previously mentioned, there were students who stopped
attending class, dropped the course, or showed agitation toward
participation in this study due to the repeated assessments.

5.2 Future Work
One future work is to improve student participation during these
empirical assessments. This could be done by adjusting the
amount of instruments employed during a study to obtain a high
number of responses at a consistent level. A related future work is
to assess students at particular times of the semester when the
attendance rate tends to be high on a consistent basis.

Another area of future work relates to the actual programming
environments. Some of the environments used during the CS1 lab

and lecture studies consisted of tools primarily for Python
programming. A primary future work is to apply evaluations to
environments outside of the Python language.

6. FUNDING SOURCE
This work was conducted independent of any financial support.

7. REFERENCES
[1] Beaubouef, T. & Mason, J. (2005). Why the High Attrition Rate for

Computer Science Students: Some Thoughts and Observations.
SIGCSE Bulletin, 37(2), 103-106.

[2] Chen, Z. & Marx, D. (2005). Experiences with Eclipse IDE in
programming courses. Journal of Computing Sciences in Colleges,
21(2), 104-112.

[3] Crosby, M. E. & Stelovsky, J. (1990). How Do We Read Algorithms?
A Case Study. Computer 23(1) 24-35.

[4] Depasquale, P. J. (2003) Implications on the Learning of
Programming Through the Implementation of Subsets in Program
Development Environments. Doctoral Thesis. UMI Order Number:
AAI3095195., Virginia Polytechnic Institute and State University.

[5] Dillon E., Anderson M., & Brown M. (2012). Comparing Feature
Assistance Between Programming Environments and Their Effect on
Novice Programmers. Journal for Computing Sciences in Colleges,
27(5), 69-77.

[6] Dillon E., Anderson M., & Brown M. (2012). Comparing Mental
Models of Novice Programmers when using Visual and Command
Line Environments. In Proceedings of the 50th Annual ACM
Southeast Conference, 142-147.

[7] Dillon E., Anderson M., & Brown M. (2012). Studying the Novice’s
Perception of Visual Vs. Command Line Programming Tools in CS1.
In Proceedings of the Human Factors and Ergonomics Society 56th
Annual Meeting, vol. 56(1), 605-609.

[8] Guzdial, M. (2004). Programming environments for novices. In
Computer Science Education Research. S. Fincher and M. Petre
(Eds.). Swets and Zeitlinger. Chapter 3.

[9] Hagan, D., & Markham, S. (2000). Teaching Java with the BlueJ
environment. In 17th Annual Proceedings of Austrailian Society for
Computers in Learning in Tertiary Education.

[10] Kelleher, C. & Pausch, R. (2005). Lowering the barriers to
programming: A taxonomy of programming environments and
languages for novice programmers. ACM Computing Surveys. 37(2),
83-137.

[11] Kelleher, C. Pausch, R., & Kiesler, S. (2007). Storytelling alice
motivates middle school girls to learn computer programming. In
Proceedings of the SIGCHI conference on Human factors in
computing systems, 1455-1464.

[12] Lewis, M. (2010). How programming environment shapes perception,
learning and goals: logo vs. scratch. In Proceedings of the 41st ACM
technical symposium on Computer Science Education, 346-350.

[13] Maloney,J., Peppler K., Kafai, Y., Resnick, M., & Rusk, N. (2008).
Programming by choice: urban youth learning programming with
scratch. SIGCSE Bulletin, 40(1), 367-371.

[14] McWhorter, W. I.& O'Connor, B. C. (2009). Do LEGO®
Mindstorms® motivate students in CS1?. In Proceedings of the 40th
ACM Technical Symposium on Computer Science Education. 438-
442.

[15] Moskal, B., Lurie, D. & Cooper, S. (2004). Evaluating the
effectiveness of a new instructional approach. In Proceedings of the
35th ACM Technical Symposium on Computer Science Education,
75-79.

Study 1

Outcome Reason

Visual environments can
initially impose a lower
learning curve

The IDLE group completed
their programming tasks
significantly faster than their
counterparts who used
Notepad despite having less
prior experience and a lower
self-efficacy for
programming.

Students in the PyScripter
and Notepad groups had more
prior programming with using
IDEs and command line
environments respectively,
however the PyScripter group
completed their programming
tasks significantly faster.

Study 2

Outcome Reason

Visual environments may
impose a greater challenge
for a student to directly
transition to a command
line environment

From the usability
assessment, it was found
that the students from the
IDLE section showed a
significant decrease in their
ability to use VIM after
being exposed to IDLE.

From the protocol analysis,
it was found that all of the
IDLE participants were
unable to complete their
tasks due to struggling with
using and understanding the
VIM editor.

Volume 5, Issue 1 Journal of Computational Science Education

42 ISSN 2153-4136 August 2014

[16] Ramalingam, V. & Wiedenbeck, S. (1997). An empirical
study of novice program comprehension in the imperative and
object-oriented styles. In Papers Presented At the Seventh
Workshop on Empirical Studies of Programmers,124-139.

[17] Sharp, H., Rogers, Y., & Preece, J. (2007). Interaction Design:
Beyond Human-Computer Interaction . Hoboken, NJ: John Wiley &
Sons Inc.

[18] Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. L.
(1999). A comparison of the comprehension of object-oriented and
procedural programs by novice programmers. Interacting with
Computers, 11(3), 255-282.

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 43

