
Promoting HPC Best Practices with the POP Methodology
Fouzhan Hosseini

The Numerical Algorithms Group
Manchester, UK

fouzhan.hosseini@nag.co.uk

Craig Lucas
The Numerical Algorithms Group

Manchester, UK
craig.lucas@nag.co.uk

ABSTRACT
The performance of HPC applications depends on a wide range of
factors, including algorithms, programming models, library and
language implementations, and hardware. To make the problem
even more complicated, many applications inherit different lay-
ers of legacy code, written and optimized for a different era of
computing technologies. Due to this complexity, the task of under-
standing performance bottlenecks of HPC applications and making
improvements often ends up being a daunting trial-and-error pro-
cess. Problematically, this process often starts without having a
quantitative understanding of the actual behavior of the HPC code.

The Performance Optimisation and Productivity (POP) Centre
of Excellence, funded by the EU under the Horizon 2020 Research
and Innovation Programme, attempts to establish a quantitative
methodology for the assessment of parallel codes. This method-
ology is based on a set of hierarchical metrics, where the metrics
at the bottom of the hierarchy represent common causes of poor
performance. These metrics provide a standard, objective way to
characterize different aspects of the performance of parallel codes
and therefore provide the necessary foundation for establishing a
more systematic approach for performance optimization of HPC
applications. In consequence, the POPmethodology facilitates train-
ing new HPC performance analysts. In this paper, we will illustrate
these advantages by describing two real-world examples where we
used the POP methodology to help HPC users understand perfor-
mance bottlenecks of their code.

KEYWORDS
Parallel performance analysis, HPC performance optimization, POP
metrics

1 INTRODUCTION
High-Performance Computing (HPC) is an essential tool for science
and industry. It is used to solve diverse problems such as weather
forecasting, material design, drug discovery, climate modeling and
predictions, etc. Most HPC facilities represent a major capital invest-
ment and run at a high level of utilization. Improving the efficiency
of application software running on these facilities means less time
to solution and more capacity to solve larger, more challenging
problems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/12/2/13

Today’s HPC facilities allow using hundreds to hundreds of
thousands of cores to perform extensive calculations and process
large amounts of data. Efficient use of these facilities has been
proven to be extremely challenging. While HPC applications are
often designed with performance in mind, many suffer from poor
performance; here, unexpected behavior is more likely to happen,
and an excellent design choice for a given problem size and a par-
ticular hardware might lead to poor performance for a different
configuration.

There has been significant research and engineering effort to
build tools that support performance optimization of HPC appli-
cations by collecting and analyzing their runtime behavior; for
examples, see [5]. However, profiling or tracing HPC applications
often results in large amounts of performance data that are difficult
to interpret beyond simple observations. There is often a lack of a
quantitative understanding of the actual behavior of parallel appli-
cations, and the performance optimization task, in turn, becomes a
trial-and-error and ad-hoc process.

Performance Optimisation and Productivity (POP) is a Centre
of Excellence (CoE) in HPC funded by the EU under the Horizon
2020 Research and Innovation Programme. The mission of POP [6]
is to provide performance optimization and productivity services
for HPC applications in all domains. POP attempts to achieve this
while establishing general principles and systematic methods for
parallel performance optimization.

POP has defined a scalable performance analysis methodology
based on a set of hierarchical metrics [7], where each metric rep-
resents a common cause of inefficiency in parallel applications.
These metrics are calculated using basic runtime statistics and pro-
vide a standard, objective way to characterize different aspects of
performance of parallel codes, such as communication overhead
and load imbalance. These metrics allow comprehensive compar-
ison of the performance of a parallel application across different
platforms or with different configurations (e.g. different numbers
of threads/processes). This allows for a better understanding of
program efficiency, quick diagnosis of performance problems, and
identification of target kernels for code refactoring.

In Section 2 of this paper, we provide an overview of POPmetrics
for Message Passing Interface (MPI) applications and their calcu-
lation. Section 3 and 4 review performance assessments of two
parallel applications using POP methodology. These examples are
chosen from different domains: molecular dynamics simulation,
Section 3, and computational fluid dynamics, Section 4. Section 5
concludes the paper.

Volume 12, Issue 2 Journal of Computational Science Education

66 ISSN 2153-4136 February 2021

https://doi.org/10.22369/issn.2153-4136/12/2/13


2 POP METRICS FOR PARALLEL
PERFORMANCE ANALYSIS

In this section, we review the MPI performance metrics used and
promoted by the POP CoE [7]. These metrics measure relative im-
pact of parallel inefficiency factors on overall performance and
provide a quantitative understanding of parallel application behav-
ior.

The hierarchy of POP metrics for pure MPI applications, in fact
applications written using any message-passing model, is shown
in Fig. 1. The Global Efficiency at the top of the hierarchy indicates
how well a parallel application scales. At this level, inefficiencies
are typically due to two factors:

(1) overhead imposed by parallelism, represented with Parallel
Efficiency, and

(2) poor scaling of computation with increasing number of pro-
cessors, represented with Computational scaling.

The Global Efficiency is defined as product of the Parallel Ef-
ficiency and the Computational scaling. Going further down the
hierarchy, both of these metrics are defined as the product of their
own sub-metrics.

For MPI applications, the Parallel Efficiency reports inefficien-
cies due to either uneven distribution of computational work or
overhead of data communication and synchronization between
processes. These are measured with the Load Balance and the Com-
munication Efficiency, respectively.

These two metrics are calculated using basic statistics from a
program execution, including the total runtime and the computa-
tion time per process. Here, the computation time refers to the time
that useful instructions are being executed, e.g. it excludes the CPU
time in the MPI library. The Load Balance is defined as the ratio
of the average computation time of all processes to the maximum
computation time across all processes. The Communication Effi-
ciency is defined as the ratio of maximum computation time to the
total runtime.

The Communication Efficiency includes two metrics: Transfer
Efficiency and Serialization Efficiency. The former indicates per-
formance loss due to actual data transfer time. The latter reveals
communication inefficiencies due to idle time within communica-
tion, i.e. when no data is transferred. This happens when processes
wait at communication or synchronization points for other pro-
cesses to arrive. To calculate these two metrics, we need to calculate
the total runtime of the application on a system with an ideal com-
munication network, i.e. what the runtime would be if data transfer
were instantaneous. The Transfer efficiency is the ratio of the run-
time on an ideal network to the runtime on the real system, and the
Serialization Efficiency is the ratio of the maximum computation
time to the total runtime on an ideal network.

Going up in the metrics hierarchy, the Computational Scaling
shows how well the computation load scales with increased par-
allelism. It is calculated with respect to a reference execution case
using total computation time, i.e. the time spent executing useful
instructions summed over all processes. For example, when analyz-
ing strong scaling behavior, it is calculated as the ratio of the total
computation time for a reference case such as one processor (or
one node) to the total computation time as number of processors
(or nodes) is increased.

Multiple issues can lead to a poor Computational Scaling value,
and they can be investigated using hardware performance counter
data via interfaces such as PAPI counters [4]. In the POP hierarchy
of metrics, the Computational Scaling is composed of three metrics:

• Instruction Scaling: compares the total number of instruc-
tions executed for different numbers of threads/processes.
Decreasing values of this metric indicate that total computa-
tion load increases with employing more processes.
• Instruction Per Cycle (IPC) Scaling: compares how many in-
structions per cycle are executed for different numbers of
threads/processes. Decreasing values indicate that rate of
computation has slowed down. Decreasing cache hit rate
and exhaustion of memory bandwidth are typical causes.
• Frequency Scaling: compares the processor frequency for
different numbers of threads/processes. Decreasing values
indicate that with increasing load, some cores operate with
lower frequency.

Basic runtime statistics which are needed to calculate the POP
metrics can be collected using almost any performance analysis tool.
However, automatic calculation of the POP metrics is supported
in the tools developed by Barcelona Supercomputer Center (BSC)
[2] and the Jülich Supercomputing Centre (JSC) [9]. The former
family includes Extrae for collecting performance data, Dimemas
for simulating behavior of MPI applications under different net-
work conditions, and Paraver and Basic Analysis for post-mortem
trace analysis, including calculation of the POP metrics. The lat-
ter includes Scalasca and Cube for parallel performance analysis;
Scalasca uses Score-p [10] for instrumenting parallel applications
and collecting performance data.

By definition, the POP efficiency metrics can take values between
0 and 1, with higher numbers representing better performance. As a
rule of thumb, values above 0.8 are considered acceptable, whereas
lower values indicate performance issues that need to be explored
in detail.

3 EXAMPLE 1 - MOLECULAR DYNAMICS
SIMULATION

In this section, we describe the use of the POP metrics in assessing
parallel performance of a molecular dynamics simulation (MDS)
code. We call this code E1-MDS. E1-MDS uses MPI and consists
of a legacy core written in Fortran with a layer of modern C++
on top. We did not have access to the source code. Performance
data was collected by code developers using Extrae [2], running
the application on their in-house server machine with a dual Intel
Xeon Gold 6248 CPU (40 cores per socket).

Extrae uses instrumentationmechanisms1 to collect performance
data at known application points (e.g at MPI function calls) and
collects trace data of the application runtime behavior. All perfor-
mance data can be gathered in one file for post-mortem analysis.
We were given trace data for the application running on 2, 10, 20,
30, and 40 cores, solving the same problem. Given these trace files,
we used Basic Analysis [2] to calculate the POP metrics.

1Sampling mechanisms are supported as well.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 67



Figure 1: POP MPI Parallel Efficiency Metrics.

E1-MDS has three stages: initialization, main body of the sim-
ulation, and finalization. The time spend in initialization and fi-
nalization phases is negligible in comparison with the main body.
Therefore, the performance assessment was focused on the second
stage, i.e. the main body was the Region of Interest (ROI) for this
assessment.

Figure 2 and 3, respectively, show the scalability plot for E1-MDS
and the POP metrics calculated for ROI using 2, 10, 20, 30, and 40
cores. As shown in Fig. 2, the speedup drops below 80% of the ideal,
i.e. linear speedup, on 10 cores, and it does not scale well beyond
that. This is also evident in the Global Efficiency metric; it drops to
73% on 10 cores and gets as low as 36% on 40 cores.

Figure 2: E1-MDS Scalability plot.

Figure 3 shows that the POP metrics decrease as the number of
cores is increased. The values of these metrics reveal which factors
contribute more in the loss of performance. The Computational
Scaling drops below 80% on 20 cores, with the Instruction Scaling
being the fastest dropping factor. The Parallel efficiency also drops
below 80% on 30 and 40 cores, with the load imbalance being the
major contributing factor. Therefore, according to the POP metrics,
poor instruction scaling and load imbalance are the twomain factors
that limit scalability of the application.

Figure 3: E1-MDS, the POPmetrics for ROI: poor instruction
scaling and load imbalance limit scalability of the applica-
tion.

The findings of the POP metrics were confirmed with further
analysis of the trace data using Paraver [2]. The next step was to
report our findings to the developers of E1-MDS. They could rather

Volume 12, Issue 2 Journal of Computational Science Education

68 ISSN 2153-4136 February 2021



quickly put their fingers on regions of the code that caused load
imbalance. This, however, was not the case for the Instruction Scal-
ing. It took some digging in the algorithms and the code to confirm
that poor Instruction Scaling was due to duplicated computation.
This is one of the strengths of the POP metrics. They can provide
an insight into a code of which developers are ignorant.

This example showed how the POPmetrics can help us to quickly
diagnose the causes of poor parallel performance. This allows for a
better understanding of program efficiency and the identification of
target kernels for code refactoring. In case of E1-MDS, algorithmic
changes are needed to make the code scalable on higher numbers
of cores; however, using hybrid parallelism, i.e. OpenMP + MPI, can
be a quick way to get better performance on the existing hardware
with minimum code refactoring. Running the code with fewer MPI
processes and using OpenMP to exploit extra free cores will improve
instruction scaling and load imbalance.

4 EXAMPLE 2 - COMPUTATIONAL FLUID
DYNAMICS

Our second example is a computational fluid dynamics code. It is an
incompressible flow solver, and we refer to it as E2-CFD. E2-CFD
uses MPI for parallelism, it is written in modern C++, and it depends
on a couple of libraries for numerical computation. We had access
to the source code. Performance data was collected using Scalasca
[9], running E2-CFD on MareNostrum-IV [3] using 1, 2, 4, 8 and 16
nodes, where each node has 48 cores. Scalasca supports calculation
of the POP metrics.

E2-CFD scales well on a couple hundred cores, and the speedup
drops below 80% of ideal on 768 cores (16 nodes). The POP metrics
for ROI are shown in Fig. 4. As can be seen, theGlobal Efficiency only
drops below 80% on 768 cores with the Communication Efficiency
and especially the serialization being the major contributing factors.
The IPC Scaling improves on higher number of cores, likely due to
better cache access. The Instruction Scaling also drops by about 8%
on 768 cores but it is still above 90% and in the acceptable range. In
short, the POP metrics suggest that for code optimization we need
to find the regions of the code that cause low Serialization Efficiency.
Serialization typically happens due to at least one process arriving
early/late at a synchronization point.

Figure 4: E2-CFD, the POP metrics for ROI: serialization is
the main factor that limits scalability

To identify causes of poor Serialization Efficiency, we used delay
cost analysis [1], which is available in Scalasca. The delay cost
metric highlights the root causes of serialization by attributing
processes’ waiting time to the routines causing it [8].

This further analysis identified that low Serialization Efficiency
was mainly related to a library function call, and it was caused by
regions of computational load imbalance between MPI synchroniza-
tion points and growing waiting time, especially in MPI collective
calls.

In this example, POP metrics provide a quick insight on the
causes of parallel performance loss. While we used other tools
for further analysis and to locate problematic regions of code, the
choice of this tool was guided by the POP metrics.

5 CONCLUSION
Attempts to optimize performance of HPC applications start with
collecting performance data. This could result in large amounts
of performance data that are difficult to interpret beyond simple
observations. The problem is often a lack of a quantitative under-
standing of the actual behavior of HPC applications. To address this,
POP CoE [6] has defined a set of hierarchical metrics [7], where
each metric represents a common cause of inefficiency in parallel
applications.

In this paper, we described the use of the POP methodology with
two real-word examples. In both cases, POP metrics quickly and
correctly highlighted causes of parallel inefficiency and provided
the knowledge necessary to decide the best course of action to
improve efficiency of the parallel applications. Both examples are
production codes used in their respective communities. They belong
to different domains of science and technology and run on different
scales. This is the other advantage of the POP metrics; they work
across domains and scales. The POP metrics establish a systematic
and efficient approach for parallel performance evaluation, help
HPC users to better understand performance bottlenecks of their
codes, and facilitate training new HPC performance analysts.

REFERENCES
[1] D. BOHME, M. GEIMER, L. ARNOLD, F. Voigtlaender, and F. Wolf. 2016. Iden-

tifying the root causes of wait states in large-scale parallel applications. ACM
Trans. On Parallel Computing 3, 2 (2016).

[2] BSC-tools [n. d.]. Perforamnce Parallel Tools Developed at BSC.
https://tools.bsc.es.

[3] MareNostrum [n. d.]. https://www.bsc.es/marenostrum/marenostrum.
[4] PAPI [n. d.]. Performance Application Programming Interface.

http://icl.cs.utk.edu/papi/.
[5] POP [n. d.]. Parallel Performance Tools. https://pop-coe.eu/partners/tools.
[6] POP [n. d.]. The POP CoE. https://pop-coe.eu/.
[7] POP-Metrics [n. d.]. POP Standard Metrics for Parallel Performance Analysis.

https://pop-coe.eu/node/69.
[8] Scalasca [n. d.]. Performance properties. https://apps.fz-juelich.de/scalasca/

releases/scalasca/2.5/help/scalasca_patterns-2.5.html#delay
[9] Scalasca [n. d.]. A Software Tool for Performance Optimization of Parallel

Programs. https://www.scalasca.org.
[10] Score-p [n. d.]. Scalable Performance Measurement Infrastructure for Parallel

Codes. https://www.vi-hps.org/projects/score-p/.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 69

https://apps.fz-juelich.de/scalasca/releases/scalasca/2.5/help/scalasca_patterns-2.5.html#delay
https://apps.fz-juelich.de/scalasca/releases/scalasca/2.5/help/scalasca_patterns-2.5.html#delay

	Abstract
	1 Introduction
	2 POP Metrics for Parallel Performance Analysis
	3 Example 1 - Molecular Dynamics Simulation
	4 Example 2 - Computational Fluid Dynamics
	5 Conclusion
	References



