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ABSTRACT 

Machine learning has accounted for solving a cascade of data in an 

efficient and timely manner including as an alternative molecular 

calculator to replace more expensive ab initio techniques. Neural 

networks (NN) are the most predictive for new cases that are similar 

to examples in their training sets; however, it is sometimes 

necessary for the NN to accurately evaluate structures not in its 

training set. In this project, we quantify how clustering a training 

set into groups with similar geometric motifs can be used to train a 

NN so that it can accurately determine the energies of structures not 

in the training set. This was accomplished by generating over 800 

C8H7N structures, relaxing them using DFTB+, and grouping them 

using agglomerative clustering. Some of these groups were 

assigned to the training group and used to train a NN using the pre-

existing Atomistic Machine-learning Package (AMP) [10]. The 

remaining groups were evaluated using the trained NN and 

compared to the DFTB+ energy. These two energies were plotted 

and fitted to a straight line where higher R2 values correspond to 

the NN more accurately predicting the energies of structures not in 

its training set. This process was repeated systematically with a 

different number of nodes and hidden layers. It was found that for 

limited NN architectures, the NN did a poor job predicting 

structures outside of its training set. This was improved by adding 

hidden layers and nodes as well as increasing the size of the training 

set. 

Categories and Subject Descriptors 
Computing methodologies - Machine learning, Machine learning 

approaches, Neural networks 

General Terms 
Algorithms, Measurement, Reliability 

Keywords 
Atomistic Machine-learning Package, neural network, genetic 

algorithm, agglomerative hierarchical clustering, Density 

Functional Tight Binding. 

1. INTRODUCTION 
Machine learning programs are becoming increasingly popular and 

are a form of widely-accepted method for calculating properties. 

Such techniques are readily available in any field to help solve 

problems that would be otherwise difficult to solve or envision. An 

example of their capabilities is when a research group known as 

Laser Interferometer Gravitational-wave Observatory (LIGO) 

witnessed the phenomenon of gravitational waves in outer space. 

They imposed a technique known as Deep Learning which can 

learn from immense raw data using artificial neurons or neural 

networks [5]. Machine learning techniques can work to closely 

resemble atomistic calculators. 

The common approach that we observe when preparing data to train 

and test a neural network (NN) — such as images or atomic 

descriptions — is to randomly assign data to the train and test sets. 

This strategy is appropriate when it is not expected that the NN will 

need to make predictions on test candidates that are very different 

from what it was trained on. One example of the random strategy 

is when researchers prepared tens of thousands of randomly 

plausible molecules to understand the relationship between light-

harvesting systems and excitation energy transfer times such as 

those found in the pigments of plants [6]. The excitation transfer 

time refers to how pigments can transfer energy over long distances 

in the presence of a light-harvesting system, such as light from the 

sun, to produce energy. In this simulation, machine learning 

techniques were used to reduce computational cost and to discover 

which chromophoric molecule (or excitation system) had the most 

efficient transfer time. Another example of this strategy is using 

machine learning to discover drug designs in the field of medical 

science [14]. However, even in the light-harvesting system and 

excitation study, an improved method is preferred, because the 

random method is not evenly-sampled and could have redundant 

information. 

We discuss the widely used random approach to introduce an 

alternative: clustering the data and training the NN with some of 

the clusters and testing the NN with the remaining clusters. In this 

case, clustering the molecules organizes them into groups of similar 

motifs [17]. By training the NN with a group of clusters and then 

testing it on another group of clusters, the ability for the NN to 

predict structures outside of its training set can be quantified. This 

paper will show that when the clustering method is implemented, 

the predictive ability of the trained NN will dramatically decrease 

relative to the random approach, but as the NN architecture grows, 

the NN becomes better at accurately predicting the potential energy 

of the trial system. This demonstrates that the clustering method 

can help to define how robust a trained NN is to predict properties 

of structures not in its training set. 
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In this work, we present that NN architectures and the training set 

size are both vital components when applying a NN to structures 

that are unique from the training set. By clustering the training set, 

the robustness of the NN can be quantified. When compared to 

randomly selecting the training and testing groups, it is clear how 

clustering can help guide designing the structure of a NN so that it 

can be used for a wider array of applications. In the Methods 

section, we present how NN architectures and the training sets were 

assembled using clusters. NNs are trained systematically with 

three, four, and five hidden layers, each with 10–35 nodes. In the 

Results section, we present plots of R2 values from the linear fit 

between the relaxed DFTB+ energies and the NN calculated 

energies. Finally, we remark on how clustering training data can 

help to ensure NNs are robust and guide the architecture of an 

effective NN. 

2. Literature Review 
Atomistic calculators have become a beneficial tool for calculating 

properties at the atomic scale. Calculations start with descriptions 

of the physical interactions of the atoms, which then yields 

information about their collective behavior [16]. The Density 

Functional based Tight Binding (DFTB+) is an example of such 

atomistic calculator. Through the DFTB+ package, we collected 

potential energy values of readily-formed molecules. Atomistic 

calculators have helped perform calculations when studying 

computational techniques, including the genetic algorithm (GA). 

A GA is a computational heuristic that can be used to solve for the 

global atomic minimum of chemical structures. The GA is efficient 

at searching through many different molecular motifs in the 

potential energy surface by utilizing the principles of natural 

selection. In nature, a species must increase its fitness if it is going 

to learn to adapt to its environment [18]. The GA is designed to 

work in a similar manner, because it will iteratively improve upon 

the immediate population [8]. This is because in a real-world 

situation the GA does not know the answer. Neither the 

configuration space nor the global minimum are known prior to the 

search [8]. The evaluation step — the aspect of the GA where the 

lowest conformation energy is being searched — will be the most 

time-consuming for the optimization of offspring structures. 

Typically, structures are relaxed using an expensive ab initio 

method. 

The GA begins with two parent molecules in a starting population. 

The cut-and-splice operator cuts the parent molecules in two, 

resulting in four fragments. Typically, a fragment from each is 

selected at random to be spliced together to form a new child 

molecule [1]. The cut-and-splice apparatus is illustrated on the 

upper right-hand corner of Figure 1, where the box-like figures are 

meant to represent molecular sites. Two parent molecules are 

shown with the same number of boxes to represent their similar 

chemical stoichiometry. Upon performing the cut, the parent 

molecules are now color-coded to signify their fragments (parent 

molecule 1 is shown in blue and green while parent molecule 2 is 

shown in red and yellow). Finally, two fragments are collected from 

each parent molecule and spliced together to form a new structure. 

This new structure is the child structure (shown in blue and yellow) 

and is one plausible combination of bringing in genetic information 

from both parent molecules. Given that the program will read a 

diverse molecular population, the outcome of the cut-and-splice 

operation will be different combinations of diverse offspring 

structures. 

The next step of the GA heuristic is the evaluation process. The 

energy of the child structure is evaluated, and if the structure is fit 

enough to be in the population, it is added. The search for the lowest 

conformation energy then continues with a new parent pair. The 

structure with the local minimum is in the bottom-center of Figure 

1. In the iterative process of the GA, potential energies of new 

offspring structures are constantly being compared to the energy of 

the population [9]. Molecular configurations that are better in terms 

of minimum potential value replace configurations with a higher 

potential energy. If the energy of the offspring structure is lower 

than the energy of the population, then it is added to the population. 

Conversely, if the potential energy of the child structure is higher 

than the energy of the population, then that offspring molecule is 

deleted. The program thus continues the evolutionary-driven 

perspective of constantly searching for the lowest conformation 

energy while eliminating unfit offspring structures with higher 

energies. Given enough generations, the population will eventually 

get trapped in either a local minimum or find the global minimum. 

Figure 1. A flowchart outlining the steps of the GA from start 

to end. The program begins with a starting population, which 

proceeds in a loop where two molecules are selected and a new 

candidate structure is created using a cut-and-splice 

operation. The candidate is then evaluated and potentially 

replaces the least favorable member of the population. The 

GA terminates upon locating the lowest conformation 

structure. 

The GA can be integrated with a NN to improve its ability to search 

the configuration space for the global minimum [12]. Machine 

learning techniques have revolutionized data analysis in most 

things we use today, such as travel booking, navigation, media 

recommendation, image recognition, and competitive board games. 

These systems are driven by the computational power, significant 

amount of data, and training ability of the neural network [2]. The 

neural network is comprised of hidden layers and nodes. Figure 2 

depicts a NN containing an input layer, two hidden layers with four 

nodes each, and an output layer. Each node passes information 

forward in the form of entities known as weights and constant 

biases which are calculated via an activation function [10]. The 

process of the NN works like the human brain. The NN relies on 

the structural connection of nodes, where information can be 

obtained and sent between hidden layers, like how the brain relies 

on the connection of neurons [11]. 

Figure 2 showcases a fast feed forward NN. The connection of the 

eight nodes and two hidden layers is represented by the gray-

colored arrows. The input layer passes a weight value representing 

connection strength to the first, second, third, and fourth nodes of 

the first hidden layer. If we focus on the first node of the first hidden 

layer, we can witness how that information is then passed on to the 
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first, second, third, and fourth node of the second hidden layer. This 

process repeats in the second node of the first hidden layer to all 

nodes of the second hidden layer, and so forth, until all nodes are 

inter-connected. The NN can only advance in one direction (from 

left to right) and terminates with an output value with no loops or 

turns [15]. 

 

Figure 2. A visualization of a neural network containing an 

input layer, two hidden layers with four nodes each, and an 

output layer. 

Numerous cluster programs exist, but the clustering method 

utilized for this project is known as agglomerative hierarchical 

clustering (AHC). Clusters created by AHC have been used 

efficiently on molecular populations to improve GA efficiency [9]. 

In general, molecules of the same chemical stoichiometry exist in 

different chemical configurations, such as lines, rings, or a 

combination of both. The AHC recognizes this diversity of 

structures and attempts to group them according to their close 

molecular similarity. This is achieved through the similarity 

threshold, which is the cutoff that groups structures together. What 

makes the AHC unique from other clustering programs is its 

bottom-up approach, where each data point starts in its own cluster 

and then proceeds by successfully merging similar classes of 

clusters together, which forms a hierarchy [7]. 

Figure 3 showcases this process through the visualization of a 

simple dendrogram. At first, each structure lives in its own cluster. 

When the AHC recognizes similar structures, it groups those two 

clusters (which were separated before) to form one cluster. At the 

end, the AHC has created three clusters (presented in blue, red, and 

green). Although seven molecules are shown in Figure 3, the AHC 

program can read in a variety of readily-formed chemical structures 

to form more sophisticated groups. 

Figure 3. A segment of a dendrogram showing seven C9H7N 

molecules being grouped into three clusters (blue, red and 

green) based on a similarity index. 

3. METHODS 
To test how well the NN performs, we compared its values to those 

determined from DFTB+. DFTB+ combines the accuracy given 

from the DFT method with the efficiency of the Tight-Binding (TB) 

method [3]. This atomistic calculator was chosen because it is a 

fast, empirical method that allows us to perform many simulations 

with an appropriate level of accuracy. All structures are composed 

of C9H7N, whose global minimum is quinoline. This molecule is 

chosen because it is complex enough to have many local minima, 

but not so many that it becomes difficult to easily categorize them 

manually. 

The NN was implemented using the Atomistic Machine-learning 

Package (AMP), an open-source, Python-based (accelerated by 

Fortran) code that was built to interface seamlessly with the Atomic 

Simulation Environment (ASE) [13]. ASE is an open-source, 

Python-based common front end that is capable of supporting many 

molecular calculators. AMP is capable of using several descriptors 

and activation functions for its NN; however, for this project, the 

default Gaussian descriptor and hyperbolic tangent activation 

function were used. 

The comparison scheme comparing energies calculated by NN to 

those calculated by DFTB+ is illustrated in Figure 4. C9H7N 

molecules were evaluated with both NN and DFTB+ calculators. 

These energies were compared to determine how well a NN 

accurately calculated its energy. Once the testing set was fully 

evaluated, the NN and DFTB+ energies were plotted and fit to a 

straight line. The R2 value from this fit was used to quantify how 

close the NN can represent the DFTB+ calculated value. The R2 

value determined from a data set where the train and test sets were 

identical was 0.9999, indicating a nearly perfect match. The lower 

the R^2 value, the less predictive the NN is on average at 

determining the energy calculated by DFTB+. 

 

Figure 4. An overview of the comparison scheme in which NN 

and DFTB+ are used to evaluate the predictive nature of the 

NN. Both the NN and DFTB+ are used to evaluate the 

potential energy of a candidate, and the two values are 

compared. 

A starting population consisted of 813 molecules generated from 

an evolutionary algorithm using the C9H7N stoichiometry. These 

were clustered into 21 clusters using AHC. The similarity index 

was arbitrarily set to generate 21 clusters, so that each cluster was 

sufficiently small, to have some flexibility in grouping them into 

five equally-sized groups with roughly 20% of the total structures 

in each group. Regardless of this effort, group 1 was composed of 

one very large cluster (288 molecules), while the remaining groups 
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were composed of roughly equal numbers of structures (133, 129, 

125, and 138 molecules). Figure 5 illustrates a schematic showing 

group formation separated by arrows from left to right. The first 

step shows a sample of the population set. The second step shows 

that all similar molecules were clustered using the AHC method. 

The third and final step presents Groups 1–5 (represented by 

circles) which contain approximately 16% of the total population 

from the 813 molecules (Group 1 has 35% of the structures). 

 

Figure 5. A schematic displaying how groups were formed 

from the results of the agglomerative clustering of initially 

generated structures. Each group consists of approximately 

20% of the atomic molecules from the population. 

The train/test cycle presented in Figure 6 outlines how the five 

train/test groups were created. When training a NN, a large training 

set is ideal. Sometimes this is not possible, so we tested the effect 

of 20% and 80% training set sizes to quantify the effect of a limited 

training set on a NN versus having a much larger training set. 

Figure 6 outlines the case of a 20% training set size. To start, one 

of the five groups was designated the training group, while the other 

four groups were combined to make the test set. For example, Test 

1 included 525 molecules (the combined total of Groups 2–5) while 

Train 1 included 288 molecules. A NN was trained using the 

training set, and then all the DFTB+ energies of the structures in 

the test set were compared to those calculated using the newly-

trained NN (as in Figure 4). This process was repeated four more 

times, where each of the five groups had a turn being the training 

set. The purpose of the train/test cycle was to average out any 

structure-related issues in any of the training sets. For each of the 

five sets, a scatter plot of the NN energy versus the DFTB+ energy 

was fit to a straight line, and the five R2 values were averaged. To 

calculate the results from 80% of the structures being in the 

training, the process in Figure 6 was repeated with the training and 

testing groups reversed. 

 

Figure 6. The representation of the train/test cycle that results 

in determining an R2 value for each of the five assignments of 

the groups. 

Finally, the effect of the NN architecture was tested by varying the 

value of hidden layers and nodes for each cycle. For this study, we 

examined three, four, and five hidden layers, each containing 5, 10, 

15, 20, 25, 30, and 35 nodes. 

4. RESULTS 
Figures 7 and 8 plot the results of the random and clustered 

grouping of the training set. Each figure displays the average R2 

value — each collected from one complete round of the train/test 

cycle — for each hidden layer/node combination. The 20%/80% 

sized training sets are indicated by the blue and red lines, 

respectively. 

 
Figure 7. Three linear plots depicting averaged R2 values and 

their uncertainties, where the NN is trained with three (in a), 

four (in b), and five (in c) hidden layers. The red line shows 

the 80% training set, and the blue line shows the 20% set. 

Figures 7a, 7b, 7c, are the analysis for the randomly arranged 

groups. Figure 7a has three hidden layers, Figure 7b has four hidden 

layers, and Figure 7c has five hidden layers. Each figure displays 

averaged R2 values as the number of nodes increased. The 80% 

training sets in Figures 7a, 7b, and 7c, have much smaller slopes 

and higher y-intercepts compared to the clustered data. Conversely, 

the 20% training sets have greater slopes and lower y-intercepts. 

There is less uncertainty in each of the averaged R2 values in the 

80% sets than in the 20% sets, as demonstrated by the smaller error 

bars. In general, the 80% training sets have higher R2 values 

compared to the 20% training sets. 
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Figures 8a, 8b, 8c, show the results for the clustered groups. Figure 

8a has three hidden layers, Figure 8b has four hidden layers, and 

Figure 8c has five hidden layers. In general, the 80% training sets 

in the clustered data have greater slopes and higher y-intercepts. 

The 20% training sets have smaller slopes and lower y-intercepts. 

The uncertainties of the 80% and 20% training sets appear to be 

similar. The 80% training sets have higher R2 values, while the 20% 

training sets have lower R2 values. In both instances (regarding 

random and clustered populations), the training set with more 

molecules resulted in an increase in R2 values. These data are 

summarized in Table 1. 

 

 

 

Figure 8. Three linear plots depicting averaged R2 values and 

their uncertainties where the NN is trained with three (in a), 

four (in b), and five (in c) hidden layers. The red line shows 

the 80% training set, and the blue line shows the 20% set. 

5. DISCUSSION 
In the random data, the slopes for the 20% training sets are larger 

compared to the slopes for the 80% training sets. Even though the 

20% trained data have much lower y-intercepts (meaning that they 

are not as accurate as the 80% data for small number of nodes), the 

slopes mean they eventually make up the difference as the number 

of nodes increases. One reason for the small slopes in the 80% data 

is that the R2 values are already close to the maximum value of 1. 

This indicates that with a large amount of data, this NN is able to 

reliably calculate the DFTB+ energy for structures that are similar 

to those in its training set, regardless of the NN architecture. If a 

limited amount of data is available for the training set, reliable 

predictions can still be made with a NN, so long as the NN 

architecture is large. 

This is different for the clustered data. The slopes (in general) for 

the 20% trained data are much smaller than the slopes for the 80% 

trained data. This means that smaller training data sets will require 

a very large number of nodes if they are going to catch up to the 

80% data, if at all. Furthermore, contrary to the random data, for 

the larger training sets, there appears to be a much stronger 

correlation between NN architecture and the number of nodes in 

each hidden layer. This probably stems from the NN needing more 

extensive architectures to help predict structures that are not in the 

training set. 

Table 1: Summary of the slopes and y-intercepts 

from Figures 7 and 8.  

 

 

The larger y-intercepts for the 80% cases shows that they are much 

better at predicting structures outside of the training set for small 

NN architectures. It follows that when more examples are shown to 

the NN, it translates to better accuracy. The fact that the y-intercept 

drops significantly between the random and clustered data suggests 

that it matters to train the NN in a specific way if it needs to 

accommodate structures that it has never seen before. This is due 

to the fact that the random training set is comprised of all types of 

structures, while the clustered case attempts to segregate molecule 

types. and this is maintained in forming the training and testing 

groups. As a result, a false sense of accuracy exists for structures 

that have never been seen before when training with a random 

starting population. 

Neural network architectures and training set size are important 

when trying to apply the NN calculator to structures that were not 

in the training set. This is illustrated by comparing the random 

training sets to the clustered ones. For the random training sets, 

regardless of the NN arrangement, it appears that we get at least a 

reasonable, if not very close, match to the DFTB+ energy value. 

Conversely, in the clustered data, we get a dramatically-reduced 

ability to predict the energy of the testing set structures, especially 

for architectures with a smaller number of hidden layers. This 

indicates that clustering should be used as a strategy to train NNs 

when it is expected that the NN will predict structures that are 

unique from the training set. 

There are other examples of effective pairing of clustering data with 

other machine learning techniques. One study showed that the GA 

efficiently located the global minimum because it took advantage 

of the clustered configuration space [1]. Because of their potential 

for locating the global minimum, clusters and the GA are often 

found working simultaneously in areas of computational research. 

Another example showing the effectiveness of combining the GA 
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and clusters is found in a study where an approach known as the 

distributed hierarchical genetic algorithm (DHGA) was used for 

optimization, pattern matching, and space search exploration [4]. 

One study showed that when starting populations were clustered, 

the chances of finding the local minimum increased within a margin 

of error opposed to populations that were not subjected to the 

clustered approach [9]. The combination of the GA and clusters is 

constructive due to the ability of the GA to recognize a pattern 

when searching through the clustered configuration space. The GA 

can act upon this information and continue the search for the local 

minimum [1]. 

This project shows how clustering can work to illustrate how robust 

a trained NN is at accurately calculating properties of structures not 

in its training set. Traditional training of NN’s with randomly 

chosen structures might provide a false sense of accuracy. The 

common starting conditions for NN are typically based on a random 

set, such as those found in the neural network potential (NNP) 

simulations that aimed to learn transferable potentials for organic 

molecules [15]. We have shown that certain NN architectures do 

not appear to do well when given a previously unseen structure. 

Clustering should be considered to determine a NN architecture 

that is robust enough to recognize structures that it has not seen 

before, since it can be quantified how accurate the NN is as a part 

of the training/testing sets. When randomly selected training/testing 

sets are used, the NN will perform well, but that is expected, since 

the test set is composed of structures similar to those on which it 

was trained. 

We believe clusters should help improve the search scheme when 

deciding to create improved sophisticated programs of chemically 

relevant molecules in the potential energy surface. By learning to 

make the NN more robust in this project, we can discuss training a 

NN to generate starting populations for GAs. We envision a 

strategy where clustering is used to group together previous search 

results, and new starting populations can be quickly evaluated using 

a NN and compared to the clustered data to find new structural 

motifs and start new GA searches in unseen areas of the potential 

energy surface. This work informs how the NN should be 

constructed for this eventual application of a thorough and 

complete search for the global minimum. Ultimately, we have 

showed how training a NN requires some analysis to determine an 

architecture that will be robust enough to predict results from trial 

cases that it has not seen before using clusters. 

6. CONCLUSION 
In this paper, we demonstrate the importance of training NNs for 

calculating the energy of molecular structures using clustering to 

group together the training and testing data if it is expected that the 

NN will evaluate new structures that are outside of the training set. 

Using a random grouping in the training and testing sets resulted in 

the NN being able to almost exactly reproduce the correct energies 

of all tested structures. However, when the NN was trained with a 

group of clustered structures and tested on a separate group of 

clustered structures, the NN performed much worse. Enlarging the 

training set and increasing the number of hidden layers and nodes 

dramatically improves the ability of the NN to predict molecular 

energies of structures that are not similar to those in the training set. 

This approach provides a framework to determine the proper 

architecture to train more robust NNs with a quantifiable metric.  
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