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Direct numerical simulation of 
sediment transport in fluids

These are curriculum materials for the Blue Waters 
Project: they are intended to be used by an instructor, 
familiar with the content, to teach computational 
science.



  

Aims of this lesson

● To understand some fundamental physical 
processes governing sand movement in rivers

● To implement a model for simulating these 
processes using C

● To learn how to visualize these simulations 
using Paraview

● To see how massive simulations can be 
achieved using supercomputers



  

Prerequisites

● A multi-core computer running Linux
● The GNU C compiler installed
● Paraview installed
● MPI installed



  

Lesson 1: Background

Sediment deficits in the Duero River in Portugal, resulted in sediment hungry 
waters. Excess hydraulic energy then caused massive channel incision resulting in 
the collapse of a bridge, killing more than seventy people in March 2001.

Sedimentation in reservoirs causes reductions in water storage estimated at US $9 
billion in replacement costs per year.

Several hundred million cubic yards of sediment are must be removed and treated 
annually as dredged material in maintaining and developing European waters for 
shipping.

Sediment is one of the main tools in coastal zone management. Massive amounts 
of sediment are being used for flood protection (including beach nourishment), and 
habitat and wetland protection 

Many nutrients, contaminants and pollutants (such as phosphorus, heavy metals 
and radionuclides) adsorb to sediment particles and are thus transported and
deposited with sediment with attendant risks to society and the environment

Understanding how and why sediment is transported by moving fluids is important 



  

Fundamental Understanding

Understanding sediment transport at a 
fundamental level requires theories that describe:

– the location, velocity and acceleration of 
every sediment particle in the fluid. 

– how every sediment particle in a fluid moves 
and interacts with other particles 

We will develop these in one dimension in the 
coming lessons but note that when we do 
simulations we will use fully three dimensional 
models.



  

Lesson 2: Position, 
velocity and acceleration

● Position (x) describes where a sediment 
particle is relative to some fixed point (the 
origin).

● Particle A has position x = +10 m. Particle B 
has position x = -9 m.

A
B



  

Lesson 2: Position, 
velocity and acceleration

● Displacement (∆x) describes the change in a 
particle's position over some time interval.

● Particle A has experienced a displacement of 
∆x = +9 m. Particle B has experienced a 
displacement of x = -14 m.

A 
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A 
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B 
before

B 
after



  

Lesson 2: Position, 
velocity and acceleration

● Average velocity (v) is displacement divided by 
time interval over which the displacement takes 
place.  

Particle A moves from x=-5m. to x=+5m. in a 
time 10s. Its displacement is ∆x = +10m. Its 
average velocity is +1 m/s.

AfterBefore



  

Lesson 2: Position, 
velocity and acceleration

Acceleration occurs when a particle changes velocity over some 
time interval. The average acceleration is given by the 
difference in velocity divided by the time over which the velocity 
change takes place. 

The particle shown is traveling at v=+5m/s and its velocity 
changes to v=+1m/s in 1 s. Its acceleration is therefore a=-4m/s2 
It is important to note that while the velocity is positive the 
acceleration can be negative. Also the velocity can be zero 
when the acceleration is not, as is the case when a ball thrown 
into the air is at its apogee. 

Before
After



  

Lesson 3: Kinematic relations

v
new

 = v
old

 + a ∆t

x
new

 = x
old

 + v
new

  ∆t + 0.5 a  ∆t2

If we consider acceleration to remain constant over 
some small time increment (∆t) then we can derive 
equations to predict the new position and velocity from 
the old:

This is basically a Newton-Stormer-Verlet (NSV) method for solving the 
differential equations of Newtonian mechanics. The term in red is 
optional.



  

Lesson 4: Newton's Second Law

Newton's Second Law states that the acceleration (a) of a 
particle is proportional to the external unbalanced force (F) 
acting on it and inversely proportional to its mass (m) or,

                                                                F
                                         a      =
                                                                m

If we can quantify the forces acting on a particle we can 
therefore use this equation to work out the particle's 
acceleration. We can then use this acceleration in the 
kinematic equations to predict changes in velocity and position 
over some small time increment, ∆t.

 



  

Lesson 5: Forces on 
a sediment particle

There are several important forces acting on a 
sediment particle in the sand size range.

          1 - - - - -  gravity (weight)

          2 - - - - -  buoyancy 

          3 - - - - -  drag force

          4 - - - - -  lift force due to velocity shear 

Other forces may be important but these are 
not considered in this lesson.  



  

Lesson 5.1: The body forces

● Gravity (acting downwards)
●

●

● Buoyancy (acting upwards)
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Lesson 5.2: Velocity dependent forces

● When fluid flows around a particle it creates 
pressure and shear stresses differentially 
around the particle.

● The net result is a drag force acting on the 
particle. 
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● In a shear flow such as in a river the velocity 
varies from zero at the river bed to a maximum 
at the river surface.

● This velocity gradient induces a pressure 
differential which causes a net upward lift force.
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is the velocity of the fluid relative to the fluid at the particle bottom



  

Lesson 6: Other forces

● There are other forces that may be present but 
we will leave those for a future lesson. They 
include: the Magnus force (if the particle is 
spinning); the “added mass” effect; Basset's 
forces.

● Copies of useful references are attached.



  

Exercise 1: Running the code 

● You have been given a C code to compute the trajectory of a 
single particle.

● Open the code with your favorite Linux text editor or print it 
out.

● Look through the code. Try to understand how it works.

● Compile the code: gcc single_particle.c -lm -o single_particle 

● Execute the code. ./single_particle



  

Exercise 2: Test the code 

Look through the code. Find the places where the 
particle and fluid properties and initial conditions are 
defined.

Design and run several simulations to demonstrate 
the effect of changing parameters such as particle 
diameter, initial position and velocity, particle density.

Prepare a short report (described on the next slide) for 
the single particle model; it will be assessed according 
to the given rubric.

 



  

The short report: guidelines 

Address the following points in your report:

A) Discuss your choice of values for simulation 
parameters

B) Show how the sediment particle behaves for 
differing parameter values

You are expected to show results graphically. 



  

Grading rubric for short report 

Category Evaluation criteria

A. Choice of values An excellent answer (5 points ) will choose a 
range of parameter values for each parameter 
that are physically sensible. A poor answer (1 
point) will choose one parameter value for each 
parameter or ranges that are physically 
nonsense. 

B. Show model behavior for varying parameter 
values

An excellent answer (5 points) will show 
graphically how the particle trajectory differs as 
each parameter is systematically adjusted while 
holding all others constant. All graphs will be 
correctly labeled, titled and captioned with 
corresponding units. A poor answer (1 point)  
will show one or two simulations with no 
systematic investigation of differing model 
behavior and/or graphs will lack enough 
information to convey the message.



  

Lesson 7: Scientific visualization

● We will use Paraview to visualize our results.

● The trajectory code produces as output a file 
describing the position of the particle for each 
timestep.

● Start Paraview; click on file-open in the file menu; now 
select the line that begins:

+ trajectory..

● The plus indicates that there are multiple same files in 
a time sequence. All plotting operations will pertain to 
the entire sequence thus giving a movie. 



  

Scientific visualization

● You will now have an object in your pipeline called 
trajectory*

● Click Apply to load the data

● To the right you will probably see a spreadsheet of 
your data; click in the little X in the top right of that 
window.

● You can now click to choose 3D View

● Return to the pipeline browser and highlight trajectory*

● Now go to filters - - alphabetical and select Table to 
Points 



  

Scientific visualization

● Now for x select x in the pull down menu to the right 

● Now for y select y in the pull down menu to the right

● For z select z in the pull down menu to the right

● Hit Apply and you will see some small dots appear in 
the 3D View

● Return to the pipeline browser and highlight Table to 
Points

● Now go to filters - - alphabetical and select Glyph

● Choose sphere for the type and hit Apply



  

Scientific visualization

● You may want to play with the radius size and other 
plotting properties. Remember to hit Apply each time 
you make a change. 

● When you are happy with how the particles look then 
hit the green play button in the top middle of the main 
window. You will see the particles move.

● The instructor will show you other tricks for Paraview.



  

Lesson 8: When particles collide

● Conservation of momentum
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When particles collide we apply an event version of Newton's Laws by 
solving the two equations below simultaneously. The coefficient of 
restitution, e, is a model parameter describing the amount of energy lost in 
the collision. e = 1 represents a perfectly elastic collision. 



  

Exercise 4: Colliding particles

● You have been given another code which 
computes multiple particles (50) with collisions.

● Compile the code: 

gcc many_particles.c -lm -o many_particles  

● Execute the code. It generates a file describing 
the position and velocity of 50 particles for 
each time step.

● You can visualize this scenario using the same 
approach in Paraview as before.  



  

A note about vectors

● Until now we have introduced concepts using 
only one dimension. These concepts transfer 
readily to multiple dimensions using vectors.

● Most good mechanics texts will give the 
necessary information.



  

Lesson 9: The complete model

The complete model then consists of: 

1. Initialize all particle positions and velocities

2. Advance all particle positions and velocities 
forward ∆t in time

3. Look through all particle pairs to see if 
collisions occur: if so apply the collision 
formula.

4. Return to step 2 until simulation time is 
reached.



  

Lesson 10: Petascale simulation 

● If we want to understand how large scale 
sediment structures such as river bed dunes 
“emerge” from these fundamental laws then we 
will need to simulate millions or billions of 
particles.

● Such an approach is termed direct numerical 
simulation and requires computations in 
amounts in excess of one quadrillion per 
second or petascale simulation 



  

Achieving petascale 

● We achieve the petascale performance by 
assigning the calculations for smaller sub-
groups of particles (movement and collision) to 
multiple CPUs (or cores).

● So if we had one million particles to simulate 
then we could assign 1000 particles each to 
1000 cores.

● Blue Waters will have 380,000 AMD x86 cores. 
 



  

Multiple cores

● We achieve this “parallel” computation using a 
programming library for C called MPI

● MPI includes various commands that can be placed in 
a C program to allow it to run on multiple cores 
simultaneously and also to pass data (messages) 
between the cores as the computation proceeds.

● The basic paradigm is that the code executes on all 
cores at the same time.  

● In any MPI code there is computation in each core 
and communication between cores.



  

The parallel code 

● The parallel code that you have been given uses the most 
simple of parallelization techniques.

● In this technique all particle information is sent to every 
core.

● Then each core computes the movement of a subset of the 
particles. Then they send back the new information which 
is collated on a “manager” core.

● Note that in this code we have done something that you 
would almost never do in a production code and that is 
write out results every timestep. We have done this to 
create data files for the Paraview visualization



  

Lesson 10: The parallel algorithm

The complete model then consists of: 

1. Initialize all particle positions and velocities

2. Send all latest particle information to all cores.

3. Within each core advance a portion of particle 
positions and velocities forward ∆t in time

4. Look through all particle pairs to see if collisions 
occur: if so apply the collision formula.

5. Gather all new information on particles. Return to 
step 2 until simulation time is reached.



  

Exercise : The parallel code 

The parallel code is called trajectory_mpi.c

Compile it using the mpicc command:

mpicc multiple_particles_mpi.c -lm -o mp_mpi

Then run using the mpirun command:

mpirun -np 4 ./mp_mpi 16

The 16 is an argument which tells the code 
how many particles to simulate. The number 
after -np (4 in this case) is also an argument 
that tells the code how many cores to use.



  

Exercise : The parallel code 

Investigate using the parallel code.

Does the parallel code run faster for small 
problems? i.e. when the number of particles is 
relatively small ( say about 50 per core ) .

Remember that all parallel codes involve 
computation and communication. For a code to 
be worthwhile to parallelize then it must have 
much more computation than communication.

  

  



  

Amdahl's Law

I ask you to complete a task for me that consists of eating a 
cooked pizza.

I guess it would take you about 20 mins to eat it.

If I ask you to get 9 friends to help you eat it, then with ten of 
you eating I estimate it would take you all about 2 minutes.

Eating a pizza is an example of a problem that is easily 
parallelized. In this case the speed-up (time for one person to 
complete the task divided by the time for many people to 
complete the task) is about 10. 

  



  

Amdahl's Law

Now If I ask you to complete a new task for me that consists of heating a 
frozen pizza and eating it then it will probably take you about 40 minutes.

It would take about 20 minutes to heat it and then about 20 minutes to eat it as 
before.

Employing 9 friends to help eat it does not have the same effect in reducing 
the task completion time however because the time to heat the pizza cannot 
be reduced by adding more “workers”. That portion of the task is not 
parallelizable.

So even employing 9 friends as before the task will still take 22 minutes (20 
minutes to heat the pizza and 2 minutes to eat it). The speed-up is just 40/22 
or 1.8 !



  

Amdahl's Law

The pizza example is a real world example of a computing science law known 
as Amdahl's Law after its original proposer, Gene Amdahl.

Amdahl stated that if you have a computer algorithm that has a fraction of it 
which is parallelizable (f) and a fraction that is not parallelizable (1-f) then the 
potential speed-up, S, is given by the following formula:

Note that S is a function of p (the number of cores).

So that if an algorithm is 100% parallelizable (f=1) then 10 cores will give you a 
speed up of 10. (Just like the pizza problem!)



  

Exercise : The parallel code 

Study the timing of the parallel code.

To do this design a set of computer runs that involve 
varying the number of cores used and the total number of 
particles involved.

Specific tasks:
1) Run the parallel code using only 1 core for a 

fixed number of particles (say 200). 

2) Rerun this case using 2 cores, then 4 then 8.

3) Use the Linux time command to time each run.

4) Repeat steps 1-3 for 400, 800, 1200 particles.

  

  



  

Exercise : The parallel code 

Compute speedup:

Do not expect to get linear speedup (i.e. a speedup of X 
for X cores).

Your graphed results should show however that as you 
increase the number of particles (and hence the amount of 
computation) the parallel code becomes much more 
efficient relative to the serial code. 



  

Scalability 

Strong scaling: In strong scaling the problem size remains 
constant while the number of cores is increased and the time to 
complete would decrease as the number of cores increase. In 
general it is difficult to maintain strong scaling as the number of 
cores increase due to communication overheads. 

Weak scaling: In weak scaling the problem size is increased 
commensurate with the additional cores employed. So if you are 
using 1000 particles on one core you would use 2000 on two 
cores and 3000 on three cores (i.e. 1000 particles per core). In 
the case of weak scaling the time to complete should remain 
constant as the workload is increased. 



  

For grading:
What we expect results 

should look like 

Number of 
cores

Speedup

Smaller 
number of 
particles

Larger 
number of
particles



  

Further exercises for students

1.Examine different size distributions of sediments.

2.Study different density distributions of sediments.

3.Examine different fluid densities and viscosities.

4.Study different velocity profiles.

5.Investigate more complicated force models 
(Magnus force).

  

  



  

Future extensions 

The most obvious and interesting future extension 
of the codes and lesson is to “soft particles” 
through concepts of the discrete element method.

A second extension would be to coupling the 
lesson with a lesson on openFOAM for generating 
velocity fields.
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