

Scaling in nature
and in the machine

J. Russell Manson
The Richard Stockton College of New Jersey

Direct numerical simulation of
sediment transport in fluids

These are curriculum materials for the Blue Waters
Project: they are intended to be used by an instructor,
familiar with the content, to teach computational
science.

Aims of this lesson

● To understand some fundamental physical
processes governing sand movement in rivers

● To implement a model for simulating these
processes using C

● To learn how to visualize these simulations
using Paraview

● To see how massive simulations can be
achieved using supercomputers

Prerequisites

● A multi-core computer running Linux
● The GNU C compiler installed
● Paraview installed
● MPI installed

Lesson 1: Background

Sediment deficits in the Duero River in Portugal, resulted in sediment hungry
waters. Excess hydraulic energy then caused massive channel incision resulting in
the collapse of a bridge, killing more than seventy people in March 2001.

Sedimentation in reservoirs causes reductions in water storage estimated at US $9
billion in replacement costs per year.

Several hundred million cubic yards of sediment are must be removed and treated
annually as dredged material in maintaining and developing European waters for
shipping.

Sediment is one of the main tools in coastal zone management. Massive amounts
of sediment are being used for flood protection (including beach nourishment), and
habitat and wetland protection

Many nutrients, contaminants and pollutants (such as phosphorus, heavy metals
and radionuclides) adsorb to sediment particles and are thus transported and
deposited with sediment with attendant risks to society and the environment

Understanding how and why sediment is transported by moving fluids is important

Fundamental Understanding

Understanding sediment transport at a
fundamental level requires theories that describe:

– the location, velocity and acceleration of
every sediment particle in the fluid.

– how every sediment particle in a fluid moves
and interacts with other particles

We will develop these in one dimension in the
coming lessons but note that when we do
simulations we will use fully three dimensional
models.

Lesson 2: Position,
velocity and acceleration

● Position (x) describes where a sediment
particle is relative to some fixed point (the
origin).

● Particle A has position x = +10 m. Particle B
has position x = -9 m.

A
B

Lesson 2: Position,
velocity and acceleration

● Displacement (∆x) describes the change in a
particle's position over some time interval.

● Particle A has experienced a displacement of
∆x = +9 m. Particle B has experienced a
displacement of x = -14 m.

A
before

A
after

B
before

B
after

Lesson 2: Position,
velocity and acceleration

● Average velocity (v) is displacement divided by
time interval over which the displacement takes
place.

Particle A moves from x=-5m. to x=+5m. in a
time 10s. Its displacement is ∆x = +10m. Its
average velocity is +1 m/s.

AfterBefore

Lesson 2: Position,
velocity and acceleration

Acceleration occurs when a particle changes velocity over some
time interval. The average acceleration is given by the
difference in velocity divided by the time over which the velocity
change takes place.

The particle shown is traveling at v=+5m/s and its velocity
changes to v=+1m/s in 1 s. Its acceleration is therefore a=-4m/s2
It is important to note that while the velocity is positive the
acceleration can be negative. Also the velocity can be zero
when the acceleration is not, as is the case when a ball thrown
into the air is at its apogee.

Before
After

Lesson 3: Kinematic relations

v
new

 = v
old

 + a ∆t

x
new

 = x
old

 + v
new

 ∆t + 0.5 a ∆t2

If we consider acceleration to remain constant over
some small time increment (∆t) then we can derive
equations to predict the new position and velocity from
the old:

This is basically a Newton-Stormer-Verlet (NSV) method for solving the
differential equations of Newtonian mechanics. The term in red is
optional.

Lesson 4: Newton's Second Law

Newton's Second Law states that the acceleration (a) of a
particle is proportional to the external unbalanced force (F)
acting on it and inversely proportional to its mass (m) or,

 F
 a =
 m

If we can quantify the forces acting on a particle we can
therefore use this equation to work out the particle's
acceleration. We can then use this acceleration in the
kinematic equations to predict changes in velocity and position
over some small time increment, ∆t.

Lesson 5: Forces on
a sediment particle

There are several important forces acting on a
sediment particle in the sand size range.

 1 - - - - - gravity (weight)

 2 - - - - - buoyancy

 3 - - - - - drag force

 4 - - - - - lift force due to velocity shear

Other forces may be important but these are
not considered in this lesson.

Lesson 5.1: The body forces

● Gravity (acting downwards)
●

●

● Buoyancy (acting upwards)

ρ
s

π
6

d3g

ρ
f

π
6

d3g

d is the diameter of the sphere; ρ
s
 is the density of the particle; ρ

f
 is the

density of the fluid; g is gravitational acceleration

Lesson 5.2: Velocity dependent forces

● When fluid flows around a particle it creates
pressure and shear stresses differentially
around the particle.

● The net result is a drag force acting on the
particle.

ρ
f

π
4

d2C
d

1

2

2
(v

p
-v

f
)

C
d
 is the drag coefficient of the spherical particle; ρ

f
 is the density of the

fluid; v
p
 is the velocity of the particle; v

f
 is the velocity of the fluid

v
p

v
f

● In a shear flow such as in a river the velocity
varies from zero at the river bed to a maximum
at the river surface.

● This velocity gradient induces a pressure
differential which causes a net upward lift force.

ρ
f

π
4

d2C
L

1

2
[∆v

t

2-∆v
b

2]

C
L
 is the lift coefficient of the spherical particle; ρ

f
 is the density of the

fluid; ∆v
t
 is the velocity of the particle relative to the fluid at its top; ∆v

b

is the velocity of the fluid relative to the fluid at the particle bottom

Lesson 6: Other forces

● There are other forces that may be present but
we will leave those for a future lesson. They
include: the Magnus force (if the particle is
spinning); the “added mass” effect; Basset's
forces.

● Copies of useful references are attached.

Exercise 1: Running the code

● You have been given a C code to compute the trajectory of a
single particle.

● Open the code with your favorite Linux text editor or print it
out.

● Look through the code. Try to understand how it works.

● Compile the code: gcc single_particle.c -lm -o single_particle

● Execute the code. ./single_particle

Exercise 2: Test the code

Look through the code. Find the places where the
particle and fluid properties and initial conditions are
defined.

Design and run several simulations to demonstrate
the effect of changing parameters such as particle
diameter, initial position and velocity, particle density.

Prepare a short report (described on the next slide) for
the single particle model; it will be assessed according
to the given rubric.

The short report: guidelines

Address the following points in your report:

A) Discuss your choice of values for simulation
parameters

B) Show how the sediment particle behaves for
differing parameter values

You are expected to show results graphically.

Grading rubric for short report

Category Evaluation criteria

A. Choice of values An excellent answer (5 points) will choose a
range of parameter values for each parameter
that are physically sensible. A poor answer (1
point) will choose one parameter value for each
parameter or ranges that are physically
nonsense.

B. Show model behavior for varying parameter
values

An excellent answer (5 points) will show
graphically how the particle trajectory differs as
each parameter is systematically adjusted while
holding all others constant. All graphs will be
correctly labeled, titled and captioned with
corresponding units. A poor answer (1 point)
will show one or two simulations with no
systematic investigation of differing model
behavior and/or graphs will lack enough
information to convey the message.

Lesson 7: Scientific visualization

● We will use Paraview to visualize our results.

● The trajectory code produces as output a file
describing the position of the particle for each
timestep.

● Start Paraview; click on file-open in the file menu; now
select the line that begins:

+ trajectory..

● The plus indicates that there are multiple same files in
a time sequence. All plotting operations will pertain to
the entire sequence thus giving a movie.

Scientific visualization

● You will now have an object in your pipeline called
trajectory*

● Click Apply to load the data

● To the right you will probably see a spreadsheet of
your data; click in the little X in the top right of that
window.

● You can now click to choose 3D View

● Return to the pipeline browser and highlight trajectory*

● Now go to filters - - alphabetical and select Table to
Points

Scientific visualization

● Now for x select x in the pull down menu to the right

● Now for y select y in the pull down menu to the right

● For z select z in the pull down menu to the right

● Hit Apply and you will see some small dots appear in
the 3D View

● Return to the pipeline browser and highlight Table to
Points

● Now go to filters - - alphabetical and select Glyph

● Choose sphere for the type and hit Apply

Scientific visualization

● You may want to play with the radius size and other
plotting properties. Remember to hit Apply each time
you make a change.

● When you are happy with how the particles look then
hit the green play button in the top middle of the main
window. You will see the particles move.

● The instructor will show you other tricks for Paraview.

Lesson 8: When particles collide

● Conservation of momentum

m
A
v

A

before + m
B
v

B

before = m
A
v

A

after + m
B
v

B

after

● Restitution

 v
B

after - v
A

after

 e =

 v
B

before - v
A

before

When particles collide we apply an event version of Newton's Laws by
solving the two equations below simultaneously. The coefficient of
restitution, e, is a model parameter describing the amount of energy lost in
the collision. e = 1 represents a perfectly elastic collision.

Exercise 4: Colliding particles

● You have been given another code which
computes multiple particles (50) with collisions.

● Compile the code:

gcc many_particles.c -lm -o many_particles

● Execute the code. It generates a file describing
the position and velocity of 50 particles for
each time step.

● You can visualize this scenario using the same
approach in Paraview as before.

A note about vectors

● Until now we have introduced concepts using
only one dimension. These concepts transfer
readily to multiple dimensions using vectors.

● Most good mechanics texts will give the
necessary information.

Lesson 9: The complete model

The complete model then consists of:

1. Initialize all particle positions and velocities

2. Advance all particle positions and velocities
forward ∆t in time

3. Look through all particle pairs to see if
collisions occur: if so apply the collision
formula.

4. Return to step 2 until simulation time is
reached.

Lesson 10: Petascale simulation

● If we want to understand how large scale
sediment structures such as river bed dunes
“emerge” from these fundamental laws then we
will need to simulate millions or billions of
particles.

● Such an approach is termed direct numerical
simulation and requires computations in
amounts in excess of one quadrillion per
second or petascale simulation

Achieving petascale

● We achieve the petascale performance by
assigning the calculations for smaller sub-
groups of particles (movement and collision) to
multiple CPUs (or cores).

● So if we had one million particles to simulate
then we could assign 1000 particles each to
1000 cores.

● Blue Waters will have 380,000 AMD x86 cores.

Multiple cores

● We achieve this “parallel” computation using a
programming library for C called MPI

● MPI includes various commands that can be placed in
a C program to allow it to run on multiple cores
simultaneously and also to pass data (messages)
between the cores as the computation proceeds.

● The basic paradigm is that the code executes on all
cores at the same time.

● In any MPI code there is computation in each core
and communication between cores.

The parallel code

● The parallel code that you have been given uses the most
simple of parallelization techniques.

● In this technique all particle information is sent to every
core.

● Then each core computes the movement of a subset of the
particles. Then they send back the new information which
is collated on a “manager” core.

● Note that in this code we have done something that you
would almost never do in a production code and that is
write out results every timestep. We have done this to
create data files for the Paraview visualization

Lesson 10: The parallel algorithm

The complete model then consists of:

1. Initialize all particle positions and velocities

2. Send all latest particle information to all cores.

3. Within each core advance a portion of particle
positions and velocities forward ∆t in time

4. Look through all particle pairs to see if collisions
occur: if so apply the collision formula.

5. Gather all new information on particles. Return to
step 2 until simulation time is reached.

Exercise : The parallel code

The parallel code is called trajectory_mpi.c

Compile it using the mpicc command:

mpicc multiple_particles_mpi.c -lm -o mp_mpi

Then run using the mpirun command:

mpirun -np 4 ./mp_mpi 16

The 16 is an argument which tells the code
how many particles to simulate. The number
after -np (4 in this case) is also an argument
that tells the code how many cores to use.

Exercise : The parallel code

Investigate using the parallel code.

Does the parallel code run faster for small
problems? i.e. when the number of particles is
relatively small (say about 50 per core) .

Remember that all parallel codes involve
computation and communication. For a code to
be worthwhile to parallelize then it must have
much more computation than communication.

Amdahl's Law

I ask you to complete a task for me that consists of eating a
cooked pizza.

I guess it would take you about 20 mins to eat it.

If I ask you to get 9 friends to help you eat it, then with ten of
you eating I estimate it would take you all about 2 minutes.

Eating a pizza is an example of a problem that is easily
parallelized. In this case the speed-up (time for one person to
complete the task divided by the time for many people to
complete the task) is about 10.

Amdahl's Law

Now If I ask you to complete a new task for me that consists of heating a
frozen pizza and eating it then it will probably take you about 40 minutes.

It would take about 20 minutes to heat it and then about 20 minutes to eat it as
before.

Employing 9 friends to help eat it does not have the same effect in reducing
the task completion time however because the time to heat the pizza cannot
be reduced by adding more “workers”. That portion of the task is not
parallelizable.

So even employing 9 friends as before the task will still take 22 minutes (20
minutes to heat the pizza and 2 minutes to eat it). The speed-up is just 40/22
or 1.8 !

Amdahl's Law

The pizza example is a real world example of a computing science law known
as Amdahl's Law after its original proposer, Gene Amdahl.

Amdahl stated that if you have a computer algorithm that has a fraction of it
which is parallelizable (f) and a fraction that is not parallelizable (1-f) then the
potential speed-up, S, is given by the following formula:

Note that S is a function of p (the number of cores).

So that if an algorithm is 100% parallelizable (f=1) then 10 cores will give you a
speed up of 10. (Just like the pizza problem!)

Exercise : The parallel code

Study the timing of the parallel code.

To do this design a set of computer runs that involve
varying the number of cores used and the total number of
particles involved.

Specific tasks:
1) Run the parallel code using only 1 core for a

fixed number of particles (say 200).

2) Rerun this case using 2 cores, then 4 then 8.

3) Use the Linux time command to time each run.

4) Repeat steps 1-3 for 400, 800, 1200 particles.

Exercise : The parallel code

Compute speedup:

Do not expect to get linear speedup (i.e. a speedup of X
for X cores).

Your graphed results should show however that as you
increase the number of particles (and hence the amount of
computation) the parallel code becomes much more
efficient relative to the serial code.

Scalability

Strong scaling: In strong scaling the problem size remains
constant while the number of cores is increased and the time to
complete would decrease as the number of cores increase. In
general it is difficult to maintain strong scaling as the number of
cores increase due to communication overheads.

Weak scaling: In weak scaling the problem size is increased
commensurate with the additional cores employed. So if you are
using 1000 particles on one core you would use 2000 on two
cores and 3000 on three cores (i.e. 1000 particles per core). In
the case of weak scaling the time to complete should remain
constant as the workload is increased.

For grading:
What we expect results

should look like

Number of
cores

Speedup

Smaller
number of
particles

Larger
number of
particles

Further exercises for students

1.Examine different size distributions of sediments.

2.Study different density distributions of sediments.

3.Examine different fluid densities and viscosities.

4.Study different velocity profiles.

5.Investigate more complicated force models
(Magnus force).

Future extensions

The most obvious and interesting future extension
of the codes and lesson is to “soft particles”
through concepts of the discrete element method.

A second extension would be to coupling the
lesson with a lesson on openFOAM for generating
velocity fields.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

