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1 The Party Problem 
 

The party problem is a problem in an area of mathematics known as Ramsey Theory.  

The R(m, n) instance of the party problem asks what is the fewest number of people that must 

attend a party to guarantee that at the party, there is a group of m people who all know each other 

or a group of n people who are all complete strangers or both (so this is the logical or rather than 

the exclusive or).  Thus, the solution to the R(m, m) instance of the party problem indicates the 

fewest number of people required to be invited to a party to guarantee that at the party, there 

will be a group of m people who all know each other or a group of m people who are all 

complete strangers.  While the party problem has been solved for some small values of m and n, 

it has yet to be solved for values of m and n that are equal and at least 5 [1].  Bounds on the 

answers to the problem have been established for a number of values of m and n [1].  For 

example, it is known that 43 ≤ R(5, 5) ≤ 49 [1].  Figure 1 shows the currently known solutions 

and bounds on solutions to the Party Problem. 
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In order to study the Party Problem, people model the situation with complete graphs 

where vertices represent people.  Each edge of the graph is one of two colors, indicating whether 

the people represented by the vertices the edge connects know each other or do not know each 

other.  For the rest of this lesson, we assume that a blue edge between vertices indicates that the 

people represented by the vertices know each other and a red edge between vertices indicates 

that the people represented by the vertices do not know each other.  An example of a party with 

five people is shown in Figure 2. 

 

	
  
Figure	
  2	
  -­‐	
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In Figure 2, person 1 knows person 2, but nobody else.  Person 2 knows person 1 and person 5, 

but not person 3 and person 4.  Person 3 knows person 4 and person 5, but not person 1 and 

person 2.  Person 4 knows person 3 and person 5, but not person 1 and person 2.  Person 5 knows 

person 3 and person 4, but not person 1 and person 2. 

 A complete graph on v vertices, denoted Kv, contains 𝑣2−𝑣2 edges.  We encourage the 

instructor to consult a reference on Graph Theory for a formal proof of this if they are 

uncomfortable with the following informal explanation of why this is true.  In a complete graph 

on v vertices, each of the v vertices is connected to the other v-1 vertices by an edge, giving us a 

total of v * (v-1) or v2 – v edges.  However, this counts each edge connecting a pair of vertices 

twice, and thus we must divide the v2 – v edges by 2 to get the number of edges in Kv. 

Because each one of these edges can be either red or blue, there are two ways to color 

each edge in Kv.  That means there are 2 ^ (𝑣2−𝑣2) different ways to color the edges of a 



complete graph.  A group of x people who all know each other can be visualized as a graph with 

x vertices where each edge of that graph is blue and group of x people who do not all know each 

other can be visualized as a graph with x vertices where each edge of that graph is red.  In order 

to show that R(x, x) = v, one must show that both conditions below hold true. 

 

Condition 1: Each of the 2 ^ (𝑣2−𝑣2) different colorings of Kv contains a red Kx 

subgraph, a blue Kx subgraph, or both. 

Condition 2: Each of the different colorings of complete graphs with more than v 

vertices contains a red Kx subgraph, a blue Kx subgraph, or both. 

Condition 3: There is no smaller v such that every colorings of Kv contains a red Kx 

subgraph, a blue Kx subgraph, or both. 

 

We note that every complete graph with x+1 vertices can be formed by adding a vertex to a 

graph with x vertices and adding the edges from the new vertex to the original x vertices of the 

graph.  Thus, if every complete graph with x vertices has a red or blue K5 subgraph, then every 

complete graph with x+1 vertices must have either a red or blue K5 subgraph.  Therefore, it is 

sufficient to show that conditions 1 and 3 hold. 

We note that some of the different colorings of Kv are isomorphic, and thus there are 

shortcuts that can be taken to show that every Kv contains a red K5 subgraph, a blue K5 subgraph, 

or both.  We encourage the instructor to consult a reference on Graph Theory for an explanation 

of isomorphism if they are curious, as a student may ask about this concept.  However, for this 

module, we are ignoring the fact that some graphs are isomorphic and just employ a brute force 

strategy for our algorithm, so the instructor need not worry about isomorphic graphs.  It should 

be clear that the minimum value of R(n, n) is n and if one wanted to prove that R(n, n) = n, one 

must show that all 2 ^ (𝑛2−𝑛2) different colorings of Kn contains a red or blue Kn.  Therefore, 

viewing n as the input size of the problem, at a minimum, the complexity of our brute force 

algorithm is 2 ^ (𝑛2−𝑛2) which is clearly exponential.  We observe that this is the minimum 

complexity and for n > 2, R(n, n) > n.  In reality, to improve the known bounds for R(5, 5), the 

brute force algorithm might have to test 2903 graphs rather than 2 ^ (52−52) or 210 graphs.  As the 

n in R(n, n) increases, this gets significantly bigger as shown by the known bounds in Figure 1.  



The bounds, in turn, cause the number of graphs that need to be tested to increase at an extremely 

high rate because of the number of vertices in the graphs that must be tested. 

In this module, we will write our code to try to tighten the bounds on R(5, 5).  

Specifically, we will assume that R(5, 5) = 46 and then test every graph with 45 vertices.  If any 

graph with 45 vertices has no red K5 subgraph and no blue K5 subgraph, then we will have 

shown that the lower bound on R(5, 5) is 46, rather than the current lower bound of 43.  If every 

graph with 45 vertices has a red K5 subgraph or a blue K5 subgraph, then we will have shown 

that the upper bound on R(5, 5) is 46, rather than the current upper bound of 49.   

 
2 Assignment #1 – Developing a Sequential Program to Solve the Party 
Problem 
 

We begin by having students write a sequential program to determine if 46 is an upper or 

lower bound for R(5, 5), as discussed in the previous section.  The program should test every 

possible graph to see if the graph contains a red K5 or blue K5 until it has tested every graph or 

finds a graph that contains neither a red nor blue K5.  If a graph does not contain a red K5 and 

does not contain a blue K5, the program terminates and says that 46 is a new lower bound for 

R(5, 5).  If the program determines that all of the graphs contains a red or blue K5 subgraph, then 

the program should output that 46 is the new upper bound for R(5, 5).  We note that students 

should not expect that the program to terminate in their lifetime because of the number of graphs 

that need to be tested.  To determine if a graph contains a red or blue K5, the program should test 

every set of 5 vertices in the 45-vertex graph until it has found a red or blue K5 subgraph or has 

tested every set of five vertices without finding a red or blue K5 subgraph.  To ensure the 

program completes in a reasonable amount of time, only have it test a small number of graphs at 

first.  Later, when you do performance comparisons between the other versions of the program, 

you can select a number of graphs that makes sense based on your hardware.  Our sequential 

version of the program tested 335,544,320,000 graphs in 220 minutes using one core on our 2.2 

GHz quad-core AMD CPU.  We chose to test 335,544,320,000 graphs based on a research 

project we did [2].  In our research project, 335,544,320,000 "was a multiple of the number of 

cores in every one of the GPUs we used and the algorithm took about an hour to test that many 

graphs using all 4 CPU cores.  By picking a value that took the CPU a long time, we expected to 

see what, if any, performance gains we could reasonably expect under normal conditions of the 



cores having a huge number of graphs to test, which is what we would encounter if we tried to 

solve the problem with GPUs or CPUs" [2]. 

  
2.1 Using a Two-Dimensional Array 

  
One can use a two-dimensional array to represent a graph that is being tested and 5 loops 

nested one inside another to write a sequential program to test if 46 is an upper or lower bound 

for R(5, 5).  The outermost loop corresponds to the first vertex in the set of vertices, the loop 

immediately inside the outermost loop corresponds to the second vertex in the set of vertices, and 

so on.  Example code to do this looks like this: 
 

const int NUMBER_OF_VERTICES = 45; 
const int RED = 0; 
const int BLUE = 1; 
… 
int graph[NUMBER_OF_VERTICES][NUMBER_OF_VERTICES]; 
bool foundK5 = false; 
int firstVertex = 0; 
int secondVertex = 0; 
int thirdVertex = 0; 
int fourthVertex = 0; 
int fifthVertex = 0; 
 
// Initialize graph array to the adjacency matrix of the graph to examine here. 
 
while ((foundK5 == false) && (firstVertex < NUMBER_OF_VERTICES – 4)) 
{ 

secondVertex = firstVertex + 1; 
while ((foundK5 == false) && (secondVertex < NUMBER_OF_VERTICES – 3)) 
{ 

thirdVertex = secondVertex + 1; 
while ((foundK5 == false) && (thirdVertex < NUMBER_OF_VERTICES – 2)) 
{ 

fourthVertex = thirdVertex + 1; 
while ((foundK5 == false) && (fourthVertex < NUMBER_OF_VERTICES – 1)) 
{ 

fifthVertex = fourthVertex + 1; 
while ((foundK5 == false) && (fifthVertex < NUMBER_OF_VERTICES)) 
{ 

if ((graph[firstVertex][secondVertex] == RED) &&  
  (graph [firstVertex][thirdVertex] == RED) &&  
  (graph [firstVertex][fourthVertex] == RED) &&  
  (graph [firstVertex][fifthVertex] == RED) &&  
  (graph [secondVertex][thirdVertex] == RED) &&  
  (graph [secondVertex][fourthVertex] == RED) &&  
  (graph [secondVertex][fifthVertex] == RED) &&  
  (graph [thirdVertex][fourthVertex] == RED) &&  
  (graph [thirdVertex][fifthVertex] == RED) &&  
  (graph [fourthVertex][fifthVertex] == RED))   

{ 
 foundK5 = true; 

} 
else  



{ 
 if ((graph [firstVertex][secondVertex] == BLUE) &&  
  (graph [firstVertex][thirdVertex] == BLUE) &&  
  (graph [firstVertex][fourthVertex] == BLUE) &&  
  (graph [firstVertex][fifthVertex] == BLUE) &&  
  (graph [secondVertex][thirdVertex] == BLUE) &&  
  (graph [secondVertex][fourthVertex] == BLUE) &&   
  (graph [secondVertex][fifthVertex] == BLUE) &&   
  (graph [thirdVertex][fourthVertex] == BLUE) &&  
  (graph [thirdVertex][fifthVertex] == BLUE) &&  
  (graph [fourthVertex][fifthVertex] == BLUE))   
 { 
  foundK5 = true; 
 } 

} 
fifthVertex ++; 

} 
fourthVertex ++; 

} 
thirdVertex ++; 

} 
secondVertex ++; 

} 
firstVertex ++; 

} 

 

We point out that the graph array could have been an array of Boolean values instead of integers.  

However, we used the integers for ease of understanding as we developed a function to generate 

graphs. 

  
2.2 Using a One-Dimensional Array  

 
 To make it easier to generate the entire set of graphs, we chose to remove the redundant 

and unnecessary information from our two-dimensional array and flatten it into a one-

dimensional array as shown in Figure 3.  We point out that a complete graph, by definition does 

not contain loops, or edges from one vertex to itself.  Therefore, we have placed -9 in the long 

diagonal of the array that runs from the top left to the bottom right.  We also point out that the 

information below that diagonal is a duplicate of the information above the diagonal.  Therefore, 

we can eliminate the information on and below the diagonal, as shown in Figure 3.  The 

locations in the one-dimensional array that make up a subgraph on 5 vertices are not as intuitive 

to determine, as the locations in the two-dimensional array are.  While this makes a great 

problem for the students to solve if they have lots of spare time, we strongly suggest that in the 

interest of time, the instructor give the students the solution in class. 

 



	
  
Figure	
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To modify the if/else statement in Section 2.2 to use a one-dimensional array instead of a two-

dimensional array, one can replace the individual parts of the if statement as shown: 
 

graph[firstVertex][secondVertex] == RED 

 
becomes 
 
graph[((NUMBER_OF_VERTICES * firstVertex) + secondVertex - (((firstVertex + 1)*( 

firstVertex + 2))/ 2))] == RED  

 

 Students will need to write a function that generates each subsequent graph after the first 

graph.  To generate the next graph, consider each value in the array as a digit in a binary number 

and add one to the rightmost value in the array, propagating carry values to the left as 

appropriate.  File Sequential_Ramsey_final.cpp is an example sequential program. 

 

3 Assignment #2 – Developing a Parallel Program to Solve the Party Problem 
with OpenMP 
 
 To create a parallel version of the sequential program using OpenMP, we can just make 

some minor modifications to the sequential program.  The modifications divide the number of 

graphs to test by the number of threads that the user instructs the program to use which is 

specified as a command line argument, and parcel out these sets to a number of threads.  We 

specified the number of threads as a command line argument because we wanted to be able to 

test our program using different numbers of threads in an automated manner.  We note that the 

student could also determine the number of threads to use when running the program in the code 

without the argument by using the omp_get_num_threads() function call.  When we ran our 

program, we used a number of threads equal to the number of CPU cores in our computer and 

had each core test 1/nth of the graphs, assuming there are n CPU cores.  To do this efficiently, 



you want the program to create n ranges of consecutive graphs and have each core test the graphs 

in a range.  File OpenMP_Ramsey_final.cpp is an example OpenMP program.  The OpenMP 

version of the program launches a number of threads (in the example program, the number of 

threads is specified as a command line argument). To convert the program from the sequential 

version to the parallel version using OpenMP, we wrap the bulk of the main program from the 

sequential version in the #pragma omp parallel directive.  Within that directive, we  also add 

code to generate the first graph from each of the sets of graphs that the whole set was partitioned 

into.  We note that the void generateNextGraph(int graph[]) and bool hasK5(int graph[]) 

functions from the sequential version of the program are unchanged from the sequential version 

of the program. 

 
4 Assignment #3 – Developing a Parallel Program to Solve the Party Problem 
with CUDA 
 
 To create a CUDA version of the program, we use a similar strategy to the OpenMP 

version of the program.  Instead of CPU cores doing the work, the GPU cores will do the work.  

We need to have a file that holds the code for the CUDA kernel.  The kernel will have each 

thread create the first graph it is supposed to test.  Then the kernel tests the graph.  In the event 

that a graph with no red or blue K5 was found, the kernel records this fact and the fact that the nth 

graph tested was the graph so the graph can be recreated easily after the program finishes.  The 

contents of the kernel file, which just contains one function, is essentially the code from the 

main() function of the OpenMP version of the program.  However, we also take the code from 

the OpenMP version that tests a graph for a K5 and the code to generate the next graph and move 

them into the kernel function in the appropriate places so that the kernel can just run one 

function.  This allows the program to just call one kernel function, reducing the complexity of 

the CUDA portion of the program. 

 The other source code file contains the code for the CPU to run.  This code should be 

minimal - just enough to set up the initial graph, allocate memory on the GPU, transfer the initial 

graph to the GPU, invoke the kernel, and transfer the status of whether the program found a 

graph with no red or blue K5 in it back to the CPU after the GPU finishes checking the graphs.  

Files template_kernel.cu and template.cu form an example CUDA solution. 

5 Performance Testing Instructions 



 
 To test the performance of the code on your hardware, recompile the code and then run it 

as is on your hardware.  That will provide you with one set of performance data.  The OpenMP 

code can be run using a number of CPU cores specified on the command line so if you have a 

computer with n cores, you can specify how many to use and see the performance differences 

based on the number of cores you use.  The hardware	
  we	
  used	
  for	
  testing	
  was	
  an	
  upgraded	
  

Gateway	
  GT5674	
  computer	
  with	
  an	
  AMD	
  Phenom	
  9500	
  2.2	
  GHz	
  quad-­‐core	
  CPU,	
  4	
  GB	
  of	
  RAM,	
  

and	
  a	
  650	
  watt	
  power	
  supply.	
  	
  The	
  computer	
  ran	
  the	
  Windows	
  Vista	
  operating	
  system.	
  	
  The	
  

OpenMP	
  version	
  of	
  the	
  program	
  took	
  about	
  220,	
  114,	
  and	
  54	
  minutes	
  using	
  1,	
  2,	
  and	
  4	
  cores	
  of	
  

the	
  processor,	
  respectively.	
  	
  The	
  CUDA	
  version	
  took	
  about	
  38	
  minutes	
  on	
  a	
  GeForce	
  9500	
  GT,	
  

about	
  9	
  minutes	
  on	
  a	
  GeForce	
  GT	
  240,	
  about	
  8	
  minutes	
  on	
  a	
  GeForce	
  GTS	
  450,	
  about	
  5	
  minutes	
  

on	
  a	
  Quadro	
  FX	
  5800,	
  and	
  about	
  2.5	
  minutes	
  on	
  a	
  GeForce	
  GTX	
  480.	
  

	
   To	
  get	
  a	
  second	
  set	
  of	
  performance	
  data	
  for	
  your	
  systems,	
  we	
  suggest	
  running	
  the	
  

programs	
  with	
  a	
  different	
  set	
  of	
  graphs	
  by	
  modifying	
  the	
  starting	
  values	
  in	
  the	
  	
  

int	
  baseGraph[NUM_EDGES];	
  	
  

array.	
  	
  By	
  choosing	
  a	
  base	
  graph	
  that	
  does	
  not	
  have	
  a	
  red	
  or	
  blue	
  K5	
  subgraph	
  that	
  can	
  be	
  

detected	
  almost	
  immediately,	
  you	
  will	
  lengthen	
  the	
  runtime	
  of	
  the	
  program.	
  	
  We	
  note	
  that	
  this	
  

is	
  not	
  an	
  easy	
  task	
  (otherwise	
  R(5,	
  5)	
  likely	
  would	
  be	
  known	
  by	
  now)	
  and	
  suggest	
  filling	
  the	
  

array	
  with	
  a	
  random	
  set	
  of	
  ones	
  and	
  zeros. 

 
6 Questions for Students to Answer 
 
 These questions are provided for students to answer to demonstrate some things they 

have learned from this module. 

 

1. In the OpenMP version of the program, if instead of creating n consecutive ranges of 

graphs and having each CPU core test a range, you have each core test every nth 

graph, what is the performance impact on the program?  Why?  We would expect the 

program to slow down because each core would have to perform the function that 

generates the next graph n times instead of one time to find the next graph to test. 

2. One could rewrite the OpenMP code to have only a single shared variable that keeps 

track of the current graph being tested and have each core simply get the next graph 



based on that variable.  That would allow each core to run until all the graphs were 

tested, rather than forcing each core to test the same number of graphs.  Are there 

advantages/disadvantages to that modification?  An advantage is that if one core gets 

behind the other cores in terms of the graphs to test because of some graphs 

taking longer to test than others, the other cores could share the graphs the core 

that's behind hasn't gotten to, decreasing the wall clock time to complete the 

program.  A disadvantage is that we will need to protect the variable that keeps 

track of the next graph so that we don't hit any race conditions with it.  

Protecting it may slow down the program a fair amount.  

3. Question about what performance advantage does the OpenMP & sequential code 

have over the CUDA code?  The sequential and OpenMP code will indicate to the 

user if graph that contains neither a red K5 nor a blue K5 is found faster than the 

CUDA code because the program outputs such a result immediately if it finds 

such a graph, while the CUDA version continues until it tests all the graphs in the 

range and then checks for a graph with no red K5 and no blue K5. 

4. In the CUDA version of the code, we purposely allow a race condition to occur.  We 

allow multiple threads to write to the Boolean variable that tracks whether a graph 

with neither a red K5 nor a blue K5 was found.  Although this is poor style and 

dangerous, we can get away with doing that in this situation.  Why?  The variable is 

initialized to false and never written to except to change its value to true.  Thus, 

every thread would be overwriting the location with the same value, changing it 

from the initial state of false to the new state of true.  Therefore, as long as the 

variable is set to true when the program ends, we can tell that a graph containing 

neither a red K5 nor a blue K5 was found. 

 
7 Possible Extensions 
 
 The instructor could have the students apply what they have learned to other problems 

that require brute force solutions to find the optimal solution, such as NP-complete problems the  

traveling salesman problem, graph coloring problems, the knapsack problem, and the bin 

packing problem.  All of these problems have the same basic method to solve them.  The key to 

solving each one with parallelism is to determine how to efficiently partition the search space to 



allow multiple cores (CPU or GPU) to work on the problem without having to wait for each 

other or duplicate effort unnecessarily.  Another extension of this problem would be to have 

students write additional versions of the program that used MPI, a hybrid of MPI and OpenMP, 

or a hybrid of MPI and CUDA. 
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