
How Many People Does it Take to…: A Parallel Approach to the Party
Problem

David Toth

Merrimack College

1 The Party Problem

The party problem is a problem in an area of mathematics known as Ramsey Theory.

The R(m, n) instance of the party problem asks what is the fewest number of people that must

attend a party to guarantee that at the party, there is a group of m people who all know each other

or a group of n people who are all complete strangers or both (so this is the logical or rather than

the exclusive or). Thus, the solution to the R(m, m) instance of the party problem indicates the

fewest number of people required to be invited to a party to guarantee that at the party, there

will be a group of m people who all know each other or a group of m people who are all

complete strangers. While the party problem has been solved for some small values of m and n,

it has yet to be solved for values of m and n that are equal and at least 5 [1]. Bounds on the

answers to the problem have been established for a number of values of m and n [1]. For

example, it is known that 43 ≤ R(5, 5) ≤ 49 [1]. Figure 1 shows the currently known solutions

and bounds on solutions to the Party Problem.

Figure	
 1	
 -­‐	
 Known	
 Solutions	
 and	
 Bounds	
 on	
 Solutions	
 to	
 the	
 Party	
 Problem	
 [1]

In order to study the Party Problem, people model the situation with complete graphs

where vertices represent people. Each edge of the graph is one of two colors, indicating whether

the people represented by the vertices the edge connects know each other or do not know each

other. For the rest of this lesson, we assume that a blue edge between vertices indicates that the

people represented by the vertices know each other and a red edge between vertices indicates

that the people represented by the vertices do not know each other. An example of a party with

five people is shown in Figure 2.

	

Figure	
 2	
 -­‐	
 A	
 Party	
 with	
 Five	
 People

In Figure 2, person 1 knows person 2, but nobody else. Person 2 knows person 1 and person 5,

but not person 3 and person 4. Person 3 knows person 4 and person 5, but not person 1 and

person 2. Person 4 knows person 3 and person 5, but not person 1 and person 2. Person 5 knows

person 3 and person 4, but not person 1 and person 2.

 A complete graph on v vertices, denoted Kv, contains 𝑣2−𝑣2 edges. We encourage the

instructor to consult a reference on Graph Theory for a formal proof of this if they are

uncomfortable with the following informal explanation of why this is true. In a complete graph

on v vertices, each of the v vertices is connected to the other v-1 vertices by an edge, giving us a

total of v * (v-1) or v2 – v edges. However, this counts each edge connecting a pair of vertices

twice, and thus we must divide the v2 – v edges by 2 to get the number of edges in Kv.

Because each one of these edges can be either red or blue, there are two ways to color

each edge in Kv. That means there are 2 ^ (𝑣2−𝑣2) different ways to color the edges of a

complete graph. A group of x people who all know each other can be visualized as a graph with

x vertices where each edge of that graph is blue and group of x people who do not all know each

other can be visualized as a graph with x vertices where each edge of that graph is red. In order

to show that R(x, x) = v, one must show that both conditions below hold true.

Condition 1: Each of the 2 ^ (𝑣2−𝑣2) different colorings of Kv contains a red Kx

subgraph, a blue Kx subgraph, or both.

Condition 2: Each of the different colorings of complete graphs with more than v

vertices contains a red Kx subgraph, a blue Kx subgraph, or both.

Condition 3: There is no smaller v such that every colorings of Kv contains a red Kx

subgraph, a blue Kx subgraph, or both.

We note that every complete graph with x+1 vertices can be formed by adding a vertex to a

graph with x vertices and adding the edges from the new vertex to the original x vertices of the

graph. Thus, if every complete graph with x vertices has a red or blue K5 subgraph, then every

complete graph with x+1 vertices must have either a red or blue K5 subgraph. Therefore, it is

sufficient to show that conditions 1 and 3 hold.

We note that some of the different colorings of Kv are isomorphic, and thus there are

shortcuts that can be taken to show that every Kv contains a red K5 subgraph, a blue K5 subgraph,

or both. We encourage the instructor to consult a reference on Graph Theory for an explanation

of isomorphism if they are curious, as a student may ask about this concept. However, for this

module, we are ignoring the fact that some graphs are isomorphic and just employ a brute force

strategy for our algorithm, so the instructor need not worry about isomorphic graphs. It should

be clear that the minimum value of R(n, n) is n and if one wanted to prove that R(n, n) = n, one

must show that all 2 ^ (𝑛2−𝑛2) different colorings of Kn contains a red or blue Kn. Therefore,

viewing n as the input size of the problem, at a minimum, the complexity of our brute force

algorithm is 2 ^ (𝑛2−𝑛2) which is clearly exponential. We observe that this is the minimum

complexity and for n > 2, R(n, n) > n. In reality, to improve the known bounds for R(5, 5), the

brute force algorithm might have to test 2903 graphs rather than 2 ^ (52−52) or 210 graphs. As the

n in R(n, n) increases, this gets significantly bigger as shown by the known bounds in Figure 1.

The bounds, in turn, cause the number of graphs that need to be tested to increase at an extremely

high rate because of the number of vertices in the graphs that must be tested.

In this module, we will write our code to try to tighten the bounds on R(5, 5).

Specifically, we will assume that R(5, 5) = 46 and then test every graph with 45 vertices. If any

graph with 45 vertices has no red K5 subgraph and no blue K5 subgraph, then we will have

shown that the lower bound on R(5, 5) is 46, rather than the current lower bound of 43. If every

graph with 45 vertices has a red K5 subgraph or a blue K5 subgraph, then we will have shown

that the upper bound on R(5, 5) is 46, rather than the current upper bound of 49.

2 Assignment #1 – Developing a Sequential Program to Solve the Party
Problem

We begin by having students write a sequential program to determine if 46 is an upper or

lower bound for R(5, 5), as discussed in the previous section. The program should test every

possible graph to see if the graph contains a red K5 or blue K5 until it has tested every graph or

finds a graph that contains neither a red nor blue K5. If a graph does not contain a red K5 and

does not contain a blue K5, the program terminates and says that 46 is a new lower bound for

R(5, 5). If the program determines that all of the graphs contains a red or blue K5 subgraph, then

the program should output that 46 is the new upper bound for R(5, 5). We note that students

should not expect that the program to terminate in their lifetime because of the number of graphs

that need to be tested. To determine if a graph contains a red or blue K5, the program should test

every set of 5 vertices in the 45-vertex graph until it has found a red or blue K5 subgraph or has

tested every set of five vertices without finding a red or blue K5 subgraph. To ensure the

program completes in a reasonable amount of time, only have it test a small number of graphs at

first. Later, when you do performance comparisons between the other versions of the program,

you can select a number of graphs that makes sense based on your hardware. Our sequential

version of the program tested 335,544,320,000 graphs in 220 minutes using one core on our 2.2

GHz quad-core AMD CPU. We chose to test 335,544,320,000 graphs based on a research

project we did [2]. In our research project, 335,544,320,000 "was a multiple of the number of

cores in every one of the GPUs we used and the algorithm took about an hour to test that many

graphs using all 4 CPU cores. By picking a value that took the CPU a long time, we expected to

see what, if any, performance gains we could reasonably expect under normal conditions of the

cores having a huge number of graphs to test, which is what we would encounter if we tried to

solve the problem with GPUs or CPUs" [2].

2.1 Using a Two-Dimensional Array

One can use a two-dimensional array to represent a graph that is being tested and 5 loops

nested one inside another to write a sequential program to test if 46 is an upper or lower bound

for R(5, 5). The outermost loop corresponds to the first vertex in the set of vertices, the loop

immediately inside the outermost loop corresponds to the second vertex in the set of vertices, and

so on. Example code to do this looks like this:

const int NUMBER_OF_VERTICES = 45;
const int RED = 0;
const int BLUE = 1;
…
int graph[NUMBER_OF_VERTICES][NUMBER_OF_VERTICES];
bool foundK5 = false;
int firstVertex = 0;
int secondVertex = 0;
int thirdVertex = 0;
int fourthVertex = 0;
int fifthVertex = 0;

// Initialize graph array to the adjacency matrix of the graph to examine here.

while ((foundK5 == false) && (firstVertex < NUMBER_OF_VERTICES – 4))
{

secondVertex = firstVertex + 1;
while ((foundK5 == false) && (secondVertex < NUMBER_OF_VERTICES – 3))
{

thirdVertex = secondVertex + 1;
while ((foundK5 == false) && (thirdVertex < NUMBER_OF_VERTICES – 2))
{

fourthVertex = thirdVertex + 1;
while ((foundK5 == false) && (fourthVertex < NUMBER_OF_VERTICES – 1))
{

fifthVertex = fourthVertex + 1;
while ((foundK5 == false) && (fifthVertex < NUMBER_OF_VERTICES))
{

if ((graph[firstVertex][secondVertex] == RED) &&
 (graph [firstVertex][thirdVertex] == RED) &&
 (graph [firstVertex][fourthVertex] == RED) &&
 (graph [firstVertex][fifthVertex] == RED) &&
 (graph [secondVertex][thirdVertex] == RED) &&
 (graph [secondVertex][fourthVertex] == RED) &&
 (graph [secondVertex][fifthVertex] == RED) &&
 (graph [thirdVertex][fourthVertex] == RED) &&
 (graph [thirdVertex][fifthVertex] == RED) &&
 (graph [fourthVertex][fifthVertex] == RED))

{
 foundK5 = true;

}
else

{
 if ((graph [firstVertex][secondVertex] == BLUE) &&
 (graph [firstVertex][thirdVertex] == BLUE) &&
 (graph [firstVertex][fourthVertex] == BLUE) &&
 (graph [firstVertex][fifthVertex] == BLUE) &&
 (graph [secondVertex][thirdVertex] == BLUE) &&
 (graph [secondVertex][fourthVertex] == BLUE) &&
 (graph [secondVertex][fifthVertex] == BLUE) &&
 (graph [thirdVertex][fourthVertex] == BLUE) &&
 (graph [thirdVertex][fifthVertex] == BLUE) &&
 (graph [fourthVertex][fifthVertex] == BLUE))
 {
 foundK5 = true;
 }

}
fifthVertex ++;

}
fourthVertex ++;

}
thirdVertex ++;

}
secondVertex ++;

}
firstVertex ++;

}

We point out that the graph array could have been an array of Boolean values instead of integers.

However, we used the integers for ease of understanding as we developed a function to generate

graphs.

2.2 Using a One-Dimensional Array

 To make it easier to generate the entire set of graphs, we chose to remove the redundant

and unnecessary information from our two-dimensional array and flatten it into a one-

dimensional array as shown in Figure 3. We point out that a complete graph, by definition does

not contain loops, or edges from one vertex to itself. Therefore, we have placed -9 in the long

diagonal of the array that runs from the top left to the bottom right. We also point out that the

information below that diagonal is a duplicate of the information above the diagonal. Therefore,

we can eliminate the information on and below the diagonal, as shown in Figure 3. The

locations in the one-dimensional array that make up a subgraph on 5 vertices are not as intuitive

to determine, as the locations in the two-dimensional array are. While this makes a great

problem for the students to solve if they have lots of spare time, we strongly suggest that in the

interest of time, the instructor give the students the solution in class.

	

Figure	
 3	
 -­‐	
 Converting	
 the	
 Two-­‐Dimensional	
 Array	
 to	
 a	
 One-­‐Dimensional	
 Array

To modify the if/else statement in Section 2.2 to use a one-dimensional array instead of a two-

dimensional array, one can replace the individual parts of the if statement as shown:

graph[firstVertex][secondVertex] == RED

becomes

graph[((NUMBER_OF_VERTICES * firstVertex) + secondVertex - (((firstVertex + 1)*(

firstVertex + 2))/ 2))] == RED

 Students will need to write a function that generates each subsequent graph after the first

graph. To generate the next graph, consider each value in the array as a digit in a binary number

and add one to the rightmost value in the array, propagating carry values to the left as

appropriate. File Sequential_Ramsey_final.cpp is an example sequential program.

3 Assignment #2 – Developing a Parallel Program to Solve the Party Problem
with OpenMP

 To create a parallel version of the sequential program using OpenMP, we can just make

some minor modifications to the sequential program. The modifications divide the number of

graphs to test by the number of threads that the user instructs the program to use which is

specified as a command line argument, and parcel out these sets to a number of threads. We

specified the number of threads as a command line argument because we wanted to be able to

test our program using different numbers of threads in an automated manner. We note that the

student could also determine the number of threads to use when running the program in the code

without the argument by using the omp_get_num_threads() function call. When we ran our

program, we used a number of threads equal to the number of CPU cores in our computer and

had each core test 1/nth of the graphs, assuming there are n CPU cores. To do this efficiently,

you want the program to create n ranges of consecutive graphs and have each core test the graphs

in a range. File OpenMP_Ramsey_final.cpp is an example OpenMP program. The OpenMP

version of the program launches a number of threads (in the example program, the number of

threads is specified as a command line argument). To convert the program from the sequential

version to the parallel version using OpenMP, we wrap the bulk of the main program from the

sequential version in the #pragma omp parallel directive. Within that directive, we also add

code to generate the first graph from each of the sets of graphs that the whole set was partitioned

into. We note that the void generateNextGraph(int graph[]) and bool hasK5(int graph[])

functions from the sequential version of the program are unchanged from the sequential version

of the program.

4 Assignment #3 – Developing a Parallel Program to Solve the Party Problem
with CUDA

 To create a CUDA version of the program, we use a similar strategy to the OpenMP

version of the program. Instead of CPU cores doing the work, the GPU cores will do the work.

We need to have a file that holds the code for the CUDA kernel. The kernel will have each

thread create the first graph it is supposed to test. Then the kernel tests the graph. In the event

that a graph with no red or blue K5 was found, the kernel records this fact and the fact that the nth

graph tested was the graph so the graph can be recreated easily after the program finishes. The

contents of the kernel file, which just contains one function, is essentially the code from the

main() function of the OpenMP version of the program. However, we also take the code from

the OpenMP version that tests a graph for a K5 and the code to generate the next graph and move

them into the kernel function in the appropriate places so that the kernel can just run one

function. This allows the program to just call one kernel function, reducing the complexity of

the CUDA portion of the program.

 The other source code file contains the code for the CPU to run. This code should be

minimal - just enough to set up the initial graph, allocate memory on the GPU, transfer the initial

graph to the GPU, invoke the kernel, and transfer the status of whether the program found a

graph with no red or blue K5 in it back to the CPU after the GPU finishes checking the graphs.

Files template_kernel.cu and template.cu form an example CUDA solution.

5 Performance Testing Instructions

 To test the performance of the code on your hardware, recompile the code and then run it

as is on your hardware. That will provide you with one set of performance data. The OpenMP

code can be run using a number of CPU cores specified on the command line so if you have a

computer with n cores, you can specify how many to use and see the performance differences

based on the number of cores you use. The hardware	
 we	
 used	
 for	
 testing	
 was	
 an	
 upgraded	

Gateway	
 GT5674	
 computer	
 with	
 an	
 AMD	
 Phenom	
 9500	
 2.2	
 GHz	
 quad-­‐core	
 CPU,	
 4	
 GB	
 of	
 RAM,	

and	
 a	
 650	
 watt	
 power	
 supply.	
 	
 The	
 computer	
 ran	
 the	
 Windows	
 Vista	
 operating	
 system.	
 	
 The	

OpenMP	
 version	
 of	
 the	
 program	
 took	
 about	
 220,	
 114,	
 and	
 54	
 minutes	
 using	
 1,	
 2,	
 and	
 4	
 cores	
 of	

the	
 processor,	
 respectively.	
 	
 The	
 CUDA	
 version	
 took	
 about	
 38	
 minutes	
 on	
 a	
 GeForce	
 9500	
 GT,	

about	
 9	
 minutes	
 on	
 a	
 GeForce	
 GT	
 240,	
 about	
 8	
 minutes	
 on	
 a	
 GeForce	
 GTS	
 450,	
 about	
 5	
 minutes	

on	
 a	
 Quadro	
 FX	
 5800,	
 and	
 about	
 2.5	
 minutes	
 on	
 a	
 GeForce	
 GTX	
 480.	

	
 To	
 get	
 a	
 second	
 set	
 of	
 performance	
 data	
 for	
 your	
 systems,	
 we	
 suggest	
 running	
 the	

programs	
 with	
 a	
 different	
 set	
 of	
 graphs	
 by	
 modifying	
 the	
 starting	
 values	
 in	
 the	
 	

int	
 baseGraph[NUM_EDGES];	
 	

array.	
 	
 By	
 choosing	
 a	
 base	
 graph	
 that	
 does	
 not	
 have	
 a	
 red	
 or	
 blue	
 K5	
 subgraph	
 that	
 can	
 be	

detected	
 almost	
 immediately,	
 you	
 will	
 lengthen	
 the	
 runtime	
 of	
 the	
 program.	
 	
 We	
 note	
 that	
 this	

is	
 not	
 an	
 easy	
 task	
 (otherwise	
 R(5,	
 5)	
 likely	
 would	
 be	
 known	
 by	
 now)	
 and	
 suggest	
 filling	
 the	

array	
 with	
 a	
 random	
 set	
 of	
 ones	
 and	
 zeros.

6 Questions for Students to Answer

 These questions are provided for students to answer to demonstrate some things they

have learned from this module.

1. In the OpenMP version of the program, if instead of creating n consecutive ranges of

graphs and having each CPU core test a range, you have each core test every nth

graph, what is the performance impact on the program? Why? We would expect the

program to slow down because each core would have to perform the function that

generates the next graph n times instead of one time to find the next graph to test.

2. One could rewrite the OpenMP code to have only a single shared variable that keeps

track of the current graph being tested and have each core simply get the next graph

based on that variable. That would allow each core to run until all the graphs were

tested, rather than forcing each core to test the same number of graphs. Are there

advantages/disadvantages to that modification? An advantage is that if one core gets

behind the other cores in terms of the graphs to test because of some graphs

taking longer to test than others, the other cores could share the graphs the core

that's behind hasn't gotten to, decreasing the wall clock time to complete the

program. A disadvantage is that we will need to protect the variable that keeps

track of the next graph so that we don't hit any race conditions with it.

Protecting it may slow down the program a fair amount.

3. Question about what performance advantage does the OpenMP & sequential code

have over the CUDA code? The sequential and OpenMP code will indicate to the

user if graph that contains neither a red K5 nor a blue K5 is found faster than the

CUDA code because the program outputs such a result immediately if it finds

such a graph, while the CUDA version continues until it tests all the graphs in the

range and then checks for a graph with no red K5 and no blue K5.

4. In the CUDA version of the code, we purposely allow a race condition to occur. We

allow multiple threads to write to the Boolean variable that tracks whether a graph

with neither a red K5 nor a blue K5 was found. Although this is poor style and

dangerous, we can get away with doing that in this situation. Why? The variable is

initialized to false and never written to except to change its value to true. Thus,

every thread would be overwriting the location with the same value, changing it

from the initial state of false to the new state of true. Therefore, as long as the

variable is set to true when the program ends, we can tell that a graph containing

neither a red K5 nor a blue K5 was found.

7 Possible Extensions

 The instructor could have the students apply what they have learned to other problems

that require brute force solutions to find the optimal solution, such as NP-complete problems the

traveling salesman problem, graph coloring problems, the knapsack problem, and the bin

packing problem. All of these problems have the same basic method to solve them. The key to

solving each one with parallelism is to determine how to efficiently partition the search space to

allow multiple cores (CPU or GPU) to work on the problem without having to wait for each

other or duplicate effort unnecessarily. Another extension of this problem would be to have

students write additional versions of the program that used MPI, a hybrid of MPI and OpenMP,

or a hybrid of MPI and CUDA.

8 References

1 S. P. Radziszowski, Small Ramsey Numbers, The Electronic Journal of Combinatorics.

DS1.10. (originally published July 3, 1994, last updated August 4, 2009),

http://www.combinatorics.org/Surveys/ds1/sur.pdf.

2 Michael V. Bryant and David Toth, A Performance Comparison of a Naive Algorithm to Solve

the Party Problem using GPUs, submitted to the Journal of Computational Science Education on

March 2, 2012.

