
Dynamic Programming with CUDA — Part II

Robert Hochberg

November 10, 2012

Contents

1 Introduction 2
1.1 Overview . 2

1.1.1 Organization of the Module 2

2 Developing the Parallel Algorithm 4
2.1 Parallel Addition . 4
2.2 Linear Recurrences . 7

2.2.1 Parallel Considerations — Rules and Values 11
2.2.2 Fibonacci Example . 12
2.2.3 Finding a Single Value and Processor-specific Recurrences . . 13

3 A Parallel Addition Applet 15

4 Implementing in CUDA 17
4.1 Can we Have a Million Processors? 17
4.2 How Many Threads per Block? . 17
4.3 Dealing with Block Independence . 19
4.4 Implementation Miscellany . 21

5 Lab Explorations 23

6 The Code 32
6.1 Head Matter . 32
6.2 Device Functions . 33
6.3 Kernel Functions . 35
6.4 Host Functions . 39

1

Chapter 1

Introduction

1.1 Overview

This module is largely stand-alone. It is “Part II” only in the sense that it does not
contain the overview of dynamic programming seen in Part I, and does not reca-
pitulate the introduction to CUDA. We will continue to refer the reader to various
NVIDIA references where appropriate, particularly the NVIDIA CUDA C Program-
ming Guide [5], and the CUDA API Reference Manual [3], and where we introduce
new CUDA-specific ideas, will linger a bit longer by way of introduction. The al-
gorithms described here are completely independent of Part I, so that a reader who
already has some familiarity with CUDA and dynamic programming may begin with
this module with little difficulty.

1.1.1 Organization of the Module

The emphasis of this module is the notion of “lookback doubling.” This technique en-
ables cooperating processors to combine their efforts to achieve exponential speedups
in some contexts, including some dynamic programming contexts. In Chapter 2, we
will focus on two problems:

• Parallel Binary Addition: Straightforward addition of two n-bit binary
numbers requires n steps, even on n processors, because we need to propagate
the carries. We will show how to use “lookback doubling” to compute the sum
in log2 n steps on n processors.

2

• Linear Recurrences: We will consider sequences generated by recurrences
of the form an = c1an−1 + c2an−2 + c3an−3 + d. Such sequences include the
Fibonacci and Lucas sequences. Inspecting the first n terms of this sequence
on a single processor would require time proportional to n. We show how to
use “lookback doubling” on n processors to inspect the first n elements in time
proportional to log n.

We will then consider the issues involved in solving these problems on a General
Purpose Graphics Processing Unit (GPGPU)-enabled computer, such as the graphics
cards found in many of our computers today. GPGPU cards have dozens or even
hundreds of cores, which can run threads in a highly parallel fashion. In one way of
thinking about parallel algorithms, we may code as if we have millions of processors
available, create a thread to run on each processor, and then have a GPGPU run
these threads in batches of dozens or hundreds, according to how many cores the
GPGPU has. The technical aspects of setting up these threads, synchronizing them
as needed, loading them onto the GPGPU, managing memory, running the threads
and reading the results, is the subject of Chapter 4.

3

Chapter 2

Developing the Parallel
Algorithm

2.1 Parallel Addition

We begin with a classic problem in parallel computing, that of adding together two
binary numbers. Figure 2.1 shows the addition of two binary numbers with the carry
bits shown in red above the addends.

Figure 2.1: Adding two binary numbers, showing the carries in red.

How many steps does it take to add these two numbers together? When we add
them by hand, it takes as many steps as there are bits in the larger number. Adding
from right-to-left, we add, carry, add, carry, add, carry, etc..., with each add/carry
being a single step. But what if we had a processor for each bit of the summand?
For convenience, let us suppose the processors are numbered 0, 1, 2, ..., with the ith
processor adding the bits in the 2i place. Then in a single step, each processor could
perform its add and we’d be done, right? Well, not quite. Processor 0 (the rightmost
processor) can perform its addition, but Processor 1 (second from the right) can’t

4

perform its addition until it knows whether Processor 0 will produce a carry or not.
In general, processor i must wait for processor i − 1 to perform its addition and
produce, or not, a carry.

So perhaps there is no benefit to having many processors. It seems that it will still
take n steps to compute a sum having n bits. Fortunately, this is not the case. When
designing algorithms for multiple processors it is often necessary to devise genuinely
new solutions to problems, to develop brand new algorithms that are very different
from their non-parallel counterparts.That’s what we’ll do here.

Let us consider Processor 15 in the addition example of Figure 2.1. Instead of just
waiting for Processor 14 to announce whether or not it will generate a carry, it can
perform two additions, one in the case that there is a carry, called the carry-sum,
and one in the case that there is not, called the no-carry-sum. Now it will be ready
with its sum as soon as it finds out whether Processor 14 has a carry or not. You
might not think that’s much of an improvement, and you’d be right if only Processor
15 did this. But suppose that Processor 14 had also computed two sums, one for
each case of Processor 13 generating a carry or not. If it conveys this information to
Processor 15, then both Processors 14 and 15 will be able to compute their sums as
soon as Processor 13 declares whether or not it will produce a carry. For Processor
15’s thinking will go something like this: “If Processor 13 produces a carry, then
so will Processor 14, in which case I use my carry-sum, and if Processor 13 does
not produce a carry, then neither will Processor 14, in which case I will use my
no-carry-sum.”

Suppose now that every processor did these two steps: produced two sums depending
on its neighbor’s carry, and used its neighbor’s information to decide which sum to
use once it knows about the carry produced by its neighbor two processors away.
Now each processor is able to produce its sum immediately once its neighbor two
places away knows whether it will produce a carry or not.

This is the big idea: After 1 step, each processor could get its result by “looking
back” a distance of one processor. After the next step, each processor could get its
result by “looking back” a distance of two processors. We will iterate this process, so
that after each step, each processor can get its result by “looking back” twice as far.
This way, each processor can have its final result after log2 n steps, as we’ll see.

Let us consider Processor 15 again. At this point it can produce its sum as soon as
it knows whether Processor 13 will produce a carry or not. And Processor 13 can
produce its sum (and carry) as soon as it knows whether Processor 11 will produce
a carry or not. By putting this information together, Processor 15 will be able to

5

produce its sum as soon as it knows whether Processor 11 will produce a carry or not.
In this way, Processor 15 can effectively “look back” a distance of four processors.
Since Processor 11 did the same thing, and can now “look back” four processors,
on the next step we can combine these “look-backs” so that Processor 15 can “look
back” eight processors. And so on.

Let’s look at what’s happening at the lower end of the processor list. Processor 0
can compute its sum and carry immediately, since it knows there will be no carry
figuring into its sum. After the second step, when Processor 1 is looking back a
distance of one processor, it can compute its sum and carry, since Processor 0 will
have produced its carry after step 1. After the third step, Processor 2 and Processor
3 can produce their sums and carries, because they are looking back to Processors
0 and 1, respectively, which will have produced their carries after step 2. In this
fashion, after each step, the number of processors that can compute their final sums
doubles.

Let’s formalize these ideas: For each bit in the sum, let us have a data structure as
shown in the figure below.

struct sumStructure {
bool sumIfNoCarry; /* Sum and carry bits in the */

bool carryIfNoCarry; /* two cases that the bits we */

bool sumIfCarry; /* are looking back to do or */

bool carryIfCarry; /* don’t have carries. */

bool value; /* True if we have a sum,

false if just looking back. */

bool carry; /* If we’ve computed a sum,

was it the carry case? */

}

The first two fields contain the sum and carry in the case that the processor we are
looking back to does not produce a carry, and the next two fields hold the sum and
carry in the case that the processor we are looking back to does produce a carry.
We will use “1” for “true” and “0” for “false,” as usual. In the pictures that follow,
we’ll depict this data structure as shown in Figure 2.2. We could have added an int

lookbackDistance field to our data structure, showing how far back each Processor
was looking. But in our implementation this value will be the same for all processors,
so we’ll keep it as a global that all processors have access to.

We will store our sumStructures in an array sumStructure ss[N], where N is the

6

Figure 2.2: Pictorial depiction of the sumStructure data structure.

number of bits in the sum, and hence the number of processors. At each step, a
processor may double the distance it looks back by calling the oneStep() method
shown in Figure 2.3

Exercise: Justify the doubling rule given by the last two “if” clauses in the
oneStep() method shown in Figure 2.3.

The complete algorithm for parallel binary addition can be found in Figure 2.4.

Notice that as long as we have one processor per bit in the sum, the number of steps
is on the order of the log of N rather than N itself. This exponential speedup shows
the power of developing new algorithms as opposed to implementing old algorithms
on more processors.

In the next section we will consider a problem whose solution involves dynamic
programming, and whose parallel implementation uses the ideas just considered for
binary addition. We will develop a CUDA-based solution for that problem, but leave
the CUDA-based implementation of binary addition as an exercise for the reader. Its
solution would closely mimic (and be rather simpler than) that given for the problem
in the next section.

2.2 Linear Recurrences

The Fibonacci sequences F0, F1, F2, . . ., which begins 0, 1, 1, 2, 3, 5, 8, 13, . . . is defined
by the recurrence: F0 = 0, F1 = 1, andFn = Fn−1 + Fn−2 for each n ≥ 2. In
this section we will explore similar recurrences, namely those of the form: an =

7

/* Before we run this, each element either has a value, or knows

* how to get its value once the processor that is lookbackDistance

* away knows its values.

* When this method returns, the i’th processor will be looking back

* twice as far as before. That is, it will be able to compute its

* own sum and carry as soon as the processor it’s looking back at

* knows if it will have a carry or not.

*/

void oneStep(sumStructure* ss, int myIndex){
int other = myIndex - lookbackDistance;

if(value == true) return; // if we already know our value

// Are we looking back to a processor that knows its value?

if(ss[other].value == true){
if(ss[other].carry == false)

ss[myIndex].carry = ss[other].carryIfNoCarry;

else

ss[myIndex].carry = ss[other].carryIfCarry;

ss[myIndex].value = true; // I have a value now

return;

}

// Otherwise, we will double our lookback

// First check if the "other" produces a carry in all cases

if(ss[other].carryIfNoCarry == true){ // Copy bottom row to top

ss[myIndex].carryIfNoCarry = ss[myIndex].carryIfCarry;

ss[myIndex].sumIfNoCarry = ss[myIndex].sumIfCarry;

}
// Then check if the "other" produces a carry in no case

if(ss[other].carryIfCarry == false){ // Copy top row to bottom

ss[myIndex].carryIfCarry = ss[myIndex].carryIfNoCarry;

ss[myIndex].sumIfCarry = ss[myIndex].sumIfNoCarry;

}
}

Figure 2.3: Composing lookback rules to double the lookback distance.

8

Let N = the number of processors

= largest number of bits the sum might have

= 1 + number of bits in the larger addend

Let A[N] be the array of bits for the first addend

B[N] be the array of bits for the second addend

// (We pad A and B with as many initial 0s as needed)

// Initialize the ss[] data structures

Each processor i Do:

ss[i].sumIfNoCarry = A[i] XOR B[i]

ss[i].carryIfNoCarry = A[i] AND B[i]

ss[i].sumIfCarry = A[i] == B[i]

ss[i].carryIfCarry = A[i] OR B[i]

ss[i].value = false

ss[i].carry = false

// Now all the processors are looking back distance 1

// No processor has a value

// Give a value to processor 0

ss[0].value = true

ss[0].carry = false // just to be explicit here

// Now iterate until every processor has a value

Do log_2(N) times:

Each processor i Do:

oneStep(ss[])

// Now every processor has a value

// Finally, put the answers in C

Each processor i Do:

if ss[i].carry == false:

C[i] = ss[i].sumIfNoCarry

else

C[i] = ss[i].sumIfCarry

Figure 2.4: The complete algorithm for parallel binary addition

9

/* We assume that a_0, a_1 and a_2 are given

* and that c_1, c_2, c_3 and d are known

*/

double findTerm(k){
if(k == 0) return a_0;

if(k == 1) return a_1;

if(k == 2) return a_2;

return c_1*findTerm(k-1) + c_2*findTerm(k-2) +

c_3*findTerm(k-3) + d;

}

Figure 2.5: Using recursion to find sequence values given by a recurrence.

c1an−1 + c2an−2 + c3an−3 + d for n ≥ 3, where c1, c2, c3 and d are real constants, and
initial values are given for a0, a1 and a2.

The most casual search for “Fibonacci Numbers” will reveal a breathtaking collection
of applications for this sequence of numbers, including cryptography and bar codes
[1], quasi-periodic formations in flames, flowers and waves [8], searching [7] and,
of course, mathematics. These and many more applications can be found for the
broader class of recurrences described above.

Here, we will want to consider two types of questions about these recurrences: Eval-
uate: What is the kth term? Search: Among the first so-many terms, a0, a1, . . .,
which value of ai gives the best answer for our particular problem, whatever it might
be.

A very simple program to compute the kth term in this sequence might look like
that shown in Figure 2.5.

This very simple implementation is easy to code and returns the right answer. But
the number of steps required to compute the nth term grows exponentially, and is
about 1.84n [6].

We use memoization, a standard technique of dynamic programming, to improve this
running time. Each time we compute a value, we store the result in a lookup table of
some sort. And before computing a value, we look in the table to see if we’ve already
computed it. This “recursion with memoization” is shown in Figure 2.6.

10

/* We assume that a_0, a_1 and a_2 are given

* and that c_1, c_2, c_3 and d are known.

* We memoize our results in the table[] array.

*/

double findTerm(k){
if(table[k] != -1) // -1 means "not found yet"

return table[k];

if(k == 0) return a_0;

if(k == 1) return a_1;

if(k == 2) return a_2;

table[k] = c_1*findTerm(k-1) + c_2*findTerm(k-2) +

c_3*findTerm(k-3) + d;

return table[k];

}

Figure 2.6: Using recursion with memoization to find sequence values given by a
recurrence.

2.2.1 Parallel Considerations — Rules and Values

Let us first consider the question of search: How can we search the first million (for
example) terms of a sequence defined recursively by an = c1an−1+c2an−2+c3an−3+d?
As with the case of binary addition, it might seem that it should take about a
million steps, since in order to even determine term a1000000, we need to know terms
a999999, a999998 and a999997. And in order to find a999999 we need to find ..., and so on.
Fortunately, we may develop a brand new algorithm here that allows us to solve this
problem more efficiently.

We will model our algorithm here on the binary addition example discussed above,
where each processor had either a rule or a value. A processor with a value was
done with its computation, while a processor with a rule could either evaluate if it
is looking back at a processor with a value, or double if it is looking back at another
processor with a rule.

Let us suppose we have a processor for each term of the sequence. (More on dealing
with the unrealistic-ness of this later.) The first step is to simplify the lookback, for
if we use the recurrence as-is, then each processor needs to look back to the three
processors preceding it, and this trifurcation complicates the step where we double

11

our lookback distance. It should be possible, for example, for processor Pi, looking
back to Pi−1, to determine its value if Processor Pi−1 has its value.

We begin to accomplish this by storing at each processor Pi a data structure con-
sisting of the triple (ai, ai−1 and ai−2). Now Processor Pi+1 may compute its triple
(x, y, z) = (ai+1, ai and ai−1) from Pi via the equations:

x = c1ai + c2ai−1 + c3ai−2 + d

y = ai (∗)
z = ai−1

These equations amount to a rule for computing a value. A very natural way to
express this rule is with a 4× 4 matrix, yielding the equation below:

(
ai ai−1 ai−2 1

)
c1 1 0 0
c2 0 1 0
c3 0 0 0
d 0 0 1

 =
(
ai+1 ai ai−1 1

)

Notice that this requires that we augment the “value” data structure stored at each
processor so that it includes a “1” in its fourth coordinate.

Now we have a very natural way to compose rules. Let us denote a rule at Processor
i looking back at Processor j by Ri,j (we use a capital letter since it’s a matrix) and
a value at Processor i by vi. Then the following hold:

• vj · vi = Ri,j.

• Ri,k = Ri,j ·Rj,k

2.2.2 Fibonacci Example

Let’s illustrate with the Fibonacci recurrence, ai = ai−1 + ai−2. Here, c1 = 1, c2 =
1, c3 = d = 0. If a processor has a value, then we store that value in the first row
of the rule matrix. This saves us having to have separate data structures at each
processor for the rule and the value.

12

Processor 0 Processor 1 Processor 2 Processor 3
3 2 1 1
0 0 0 0
0 0 0 0
0 0 0 0

1 1 0 0
1 0 1 0
0 0 0 0
0 0 0 1

1 1 0 0
1 0 1 0
0 0 0 0
0 0 0 1

1 1 0 0
1 0 1 0
0 0 0 0
0 0 0 1

Initialized rules: Processor 0 has a value, Processors 1, 2 and 3 have rules.

3 2 1 1
0 0 0 0
0 0 0 0
0 0 0 0

5 3 2 1
0 0 0 0
0 0 0 0
0 0 0 0

2 1 1 0
1 1 0 0
0 0 0 0
0 0 0 1

2 1 1 0
1 1 0 0
0 0 0 0
0 0 0 1

After one step, Processors 0 and 1 have values, Processors 2 and 3 have rules.

Matrices for Processors 1, 2 and 3 were updated by multiplying each by the matrix to its left.
3 2 1 1
0 0 0 0
0 0 0 0
0 0 0 0

5 3 2 1
0 0 0 0
0 0 0 0
0 0 0 0

8 5 3 1
0 0 0 0
0 0 0 0
0 0 0 0

13 8 5 1
0 0 0 0
0 0 0 0
0 0 0 0

Now all processors have values.

Matrices for Processors 2 and 3 were updated by multiplying each by the matrix two to its left.

Notice how as in the case of binary addition, each processor was interested in com-
puting only one bit, namely its bit in the sum, but our data structure contained
many more values. We have a similar situation here, where each processor wants to
compute only a single number, but its data structure has sixteen entries.

2.2.3 Finding a Single Value and Processor-specific Recur-
rences

We end this section by exploring the second type of question we’d like to answer about
recurrences: How can we find the nth term? We may extract from our lookback idea
a simple solution. Note that the nth value vn can be computed by multiplying n
copies of the rule matrix R, and then multiplying by the value vector v0. That is,
vn = v0 ·Rn. To find Rn rapidly, we may compute the sequence R,R2, R4, R8, . . . , Rp,
where p is the largest power of 2 not exceeding n. We can find each term in this
sequence by repeatedly squaring the previous term, taking about log2 n steps to
create the whole sequence. Then we write n as a sum of powers of 2 (which is

13

equivalent to writing n in binary) and multiply together the corresponding matrices.
For example, 73 = 20 + 23 + 26, so R73 = R20 ·R23 ·R26 .

We therefore have an algorithm for computing the nth term in a recurrence in
O(log n) steps.

Note that this method would not work, for example, if the recurrence were of the
form:

ai = ai−1 +
2

i
· ai−3 − i

In this case, the matrix R is not constant, which is required for the method just
given. Our search algorithm described above would work just fine, however, since
each processor makes its own copy of the rule for looking back, which is just some
4× 4 matrix. Our composition functions would not need to be changed at all.

14

Chapter 3

A Parallel Addition Applet

In the parallel binary addition algorithm just discussed we had a processor compute
each node of the sum by doubling its lookback on each step. We have included with
this module an applet (based on an AgentSheets model) that shows another way of
increasing lookback that is more hierarchical in nature, and perhaps better-suited to
situations where there are more processors than can comfortably fit within a single
shared-memory environment, but are instead distributed across separate compute
nodes.

Figure 3.1: This module includes an applet showing 8-, 16- and 32-bit parallel addi-
tion.

15

We use the same data structure as that shown in Figure 2.2. The sumIfNoCarry and
sumIfCarry bits are shown as 0s and 1s, but the carryIfNoCarry and carryIfCarry

bits are not shown explicitly. Instead, we use shading and “wires” to depict whether
there is a carry in each case. We use red shading behind each bit if that case produces
a carry, and to the left of the bit pairs are “wires” that depict whether or not the
processor would produce a carry in each case. Thus if a bit does not produce a carry,
its wire would lead to the top row in the processor to its left, and if it does produce
a carry, then its wire leads to the bottom row in the processor to its left.

Figure 3.1 shows an eight-bit example. (The applet also has 16- and 32-bit examples,
and lets you set your own bits, or random bits, to add.) The top two (uncolored)
rows show the two addends. After the first step, the sumIfNoCarry and sumIfCarry

bits for each processor are shown in the top yellow row (with blue and red dividers)
with the carry bits shown as backgrounds as described above. Every processor is
looking back distance one at this point.

As an interesting side note, we observe that at this point it is possible for the
user to read off the sum visually, by following the wires starting at the top-right
wire, and reading right-to-left. In fact, we have constant-time parallel addition
at this point if the CPU has a “follow wire and write bits” instruction that runs
in a single clock step.

Now to generate any row from the row above we apply the following rule: For each
yellow block of processors that has a red border on its right, have each processor look
back to the processor just across that red border, and update its own sum structure
based on what it sees there in the carryIfNoCarry and carryIfCarry bits. The
processors in a yellow block bordered on the right by a blue border do not update on
that step. Thus on each step, only half the processors update their data structures,
and within a yellow block, the processors are all looking back different distances. And
the right-most yellow block contains the processors that know their values.

To get the answer for the addition, we continue until all processors are in the “right-
most yellow block” and then read off the top row of bits. We read the top row
because the sum starts with no carry from any bits to the right of the addends. Only
this top row is shown at the bottom of the applet.

16

Chapter 4

Implementing in CUDA

We will use floats for all of our numbers in the CUDA implementation. These are
32-bit numbers, and are primitive data types on devices of all compute capabilities.
doubles are native only on devices of compute capability 1.3 and higher, so we won’t
use them here. (See section F.1 in [5] for more about compute capabilities and
double-precision.)

4.1 Can we Have a Million Processors?

As we mentioned earlier, we will plan and program as if we had one processor per
term in the sequence. But if we want to generate a million terms, even CUDA falls
short of having a million processors. Fortunately, we may think in terms of threads
when we program in CUDA, and CUDA allows us to have 241 threads, theoretically
speaking. These threads don’t run all at the same time, and the blocks of threads
must be able to run in any order — but otherwise we may program as if we had this
many processors.

4.2 How Many Threads per Block?

On devices of compute capability 1.x there is 16kB of shared memory per block.
Recall that “shared memory” is the fast (compared to global) memory that can be
shared among the threads in a single block. Each of our threads needs 16 floats for its

17

> nvcc -Xptxas -v -DthreadsPerBlock=128 recursion.cu

ptxas info : Compiling entry function

’_Z20copyHeadDataFromTempP4RuleS0_i’ for ’sm_10’

ptxas info : Used 4 registers, 12+16 bytes smem,

32 bytes cmem[0], 8 bytes cmem[1]

... ...

ptxas info : Compiling entry function

’_Z15initializeRulesP4Rule’ for ’sm_10’

ptxas info : Used 20 registers, 64+0 bytes lmem,

8196+16 bytes smem, 32 bytes cmem[0], 16 bytes cmem[1]

Figure 4.1: Compiling with the -Xptxas -v flags shows memory usage.

rule, which corresponds to 64 bytes. 16kB/64 = 256. Thus each block may have at
most 256 threads. (Note that “512” is imposed by CUDA as the maximum number
of threads per block for any program running on devices of compute capability 1.x.
It’s “1024” for devices of compute capability 2.x. Again, see section F.1 in [5].)
Unfortunately, the system will also make use of some of our shared memory, as we’ll
see below, so we’ll have to use fewer than 256 threads per block.

There is also a limit on the number of (32-bit) registers available. Devices of compute
capability 1.0 and 1.1 have 8k per multiprocessor (= 32kB), devices of compute
capability 1.2 and 1.3 have 16k (= 64kB), and devices of compute capability 2.x
have 32k (= 128kB). It is somewhat difficult to predict exact register usage, but it
is possible to discover how the compiler has allocated registers, by compiling with
the -Xptxas -v option. Figure 4.1 shows the output from a compiling run of the
program recursion.cu included with this module:

The program has five kernel functions (declared __global__ in the source). For
brevity, the output for only two is shown in Figure 4.1. The output produced by
these flags is not very well-documented, but what little there is can be found in The
CUDA Compiler Driver NVCC [2], page 28. The third “ptxas” line (split into two
lines for the figure) shows the kernel function being compiled, initializeRules, and
the next line shows memory usage. We see that each thread will use 20 registers,
64 bytes of local memory, 8196+16 bytes of shared memory, 32 bytes of program-
declared (__constant__) constant memory and 16 bytes of compiler-generated con-
stant memory.

18

Note on “smem” and “lmem”: Some documentation and forum postings
seem to suggest that “8196+16” means that the total amount of shared memory
used is 8196 bytes, of which 16 bytes is used by the system. A fair bit of ex-
perimentation, though, leads me to believe that the amount of shared memory
used is in fact the sum of those values, or 8212 bytes. This is supported by the
“12+16” value for shared memory usage in the first line (12 < 16, so the “12”
can’t include the “16”) and by experiments where I allocated more and more
shared memory, until I had exceeded the amount available, and got an error only
and exactly when the sum of the two values exceeded the available amount.

We are interested in the register usage. Among the five kernel functions, initializeRules
uses the greatest number of registers: 20. On a device of compute capability 1.1 (such
as my old MacBook Pro) where there are 8192 registers available, we’d be able to
run at most 8192/20 = 409 threads per block. This is well above the limit imposed
by shared memory usage, so register usage won’t be a factor here.

Let’s look again at shared memory usage. We see that initializeRules used
8196+16 bytes of shared memory when we use 128 threads per block, as indicated
by the commandline flag -DthreadsPerBlock=128. Each thread allocates its own
4×4 array of floats, which uses 64 bytes. So we would expect to see 128×64 = 8192
bytes used, plus another four bytes for the function parameter, which is a pointer.
Indeed we do see 8196 bytes, plus another 16 that the system is using. In general we
can see that with T threads per block, we’ll use 64T + 20 bytes of shared memory.
If we solve 64T + 20 < 16384 for T , we find that we may have up to 255 threads per
block for devices of compute capability 1.x.

4.3 Dealing with Block Independence

Since we want to search through not hundreds, but hundreds of thousands of values
of the recurrence, we will need to generate many blocks of threads. The most natural
configuration for our grid would be a single row containing all the blocks we want
to create. CUDA imposes a limit of 65536 on the dimensions of a grid. So if we
wanted all of our threads to lie in a one-dimensional grid, we could have no more
than 16,711,680 threads, with one sequence element per thread. Fewer if we use (for
some reason) less threads per block.

We want blocks to do as much work as possible within their shared memory, and

19

we need to assure that the blocks of threads can be scheduled in any order without
sacrificing correctness. Our strategy is to use a two-layered approach. In the lower
layer we have all the threads within the blocks, and in the higher layer we have just the
heads of the blocks, that is, the first thread in each block. We store the rules / values
for each processor (thread) on the device in an array called devRules[]. Here is the
outline of our implementation, with the relevant functions from recursion.cu:

1. Initialize the devRules[] array so that devRules[0] has a value, and all other
entries have rules. (initializeRules)

2. Threads within a block compose their rules by doubling their lookback until
every thread is looking back to the head thread in the block. Threads in the
first block will all have values at this point. Threads in all the other blocks will
have rules. (propagate)

3. The head threads of all blocks (except the first) compose their rules with the
last thread of the previous block, so that the head of every block (except the
first) is now looking back to the head of the previous block. (linkBlockHeads)

4. Now we have just the heads of the blocks double their lookbacks until every
head has computed a value. (doubleHeadLookback, copyHeadDataFromTemp)

5. Within each block we propagate the value at the head thread to all the other
threads in that block via lookback doubling. (propagateAllBlocks)

Steps 1, 2 and 3 are each called once. Step 4 is called ceil((log2(number of blocks))
times, and step 5 is called once. At the end of step 5, every thread has computed
its value, and the values are stored in the devRules[] array. In Step 1, each thread
initializes itself independent of all the other threads, and Step 2 is a per-block process,
with no inter-block dependence, so there is no need to worry about the order in which
blocks are executed in those steps. Step 3 does have inter-block dependence, but the
value that block i needs from block i−1 doesn’t change during the execution of Step
3, so again, there is no problem with the order in which blocks run. And Step 5, like
Step 2, is a per-block process.

Step 4, however, could definitely cause trouble if we’re not careful. For exam-
ple, if the head from Block 8 completes all of its lookback-doubling before Block
4 computes its lookback, then Block 8 could be using an incorrect rule when it
reads Block 4’s rule. We achieve the needed synchronization by having a vari-
able in main() called lookback which starts at 1, and doubles until it exceeds
or equals the number of blocks. For each value of lookback, main() runs the
doubleHeadLookback() kernel with lookback as a parameter. This kernel will com-

20

plete before it is run again with the new value of lookback. In this way, after every
run of the doubleHeadLookback() kernel, the head threads are all looking back the
same, predictable distance as one another.

4.4 Implementation Miscellany

All the code for this algorithm is contained in the file recursion.cu.

There are three __device__ functions. These are functions that run on the device,
and which are called by a kernel or other device functions. The functions setValue()
and updateRule() are fairly self-explanatory, and simply carry out the algorithm
described in the text. The propagate method is a bit more interesting. It implements
Step 2, and is called at the end of Step 1, in the initializeRules() function. Notice
that this function declares a local, two-dimensional array tmp[4][4] used for storing
temporary copies of the thread’s rule[4][4]. If we stored these in shared memory,
then we’d have to have fewer threads per block. Fortunately we have plenty of room
in the registers, so we store them there by simply declaring the tmp array to be local
to the thread.

The two kernel functions linkBlockHeads() and doubleHeadLookback() each run
half the number of threads, and process half the number of rules, per block as the
other kernel functions. This is seen in the statements: H = threadsPerBlock / 2,
where H is the actual number of threads per block in those kernels. The reason is
that in each case, we need in shared memory two copies of a Rule data structure for
each thread.

Finally, we note that for maximum flexibility we have allowed for more than 65536
blocks of threads by not assuming that our blocks all comprise a single row of the
grid. (For more on blocks and grids, see Chapter 2 of the CUDA C Programming
Guide [5]). We may thus have (theoretically) 255×65536×65536, just over a trillion
threads.

Finally, we note that the explorations given in this paper regarding the Fibonacci
numbers actually run more slowly than the investigations would run on a single CPU
with well-written code. This is because the computation we are performing on each
Fibonacci number is very minimal, while the overhead of computing the value of each
entry is significant, as it requires the multiplication of 4× 4 matrices, as well as the
many reads and writes to and from global memory. For example, if we were to do
something compute-intensive with each entry (more than simply compute it) then

21

the gains from parallelism would make the overhead time less significant. Also, as
block size increases, the number of accesses needed to global memory will decrease
proportionally; and as the number of CUDA cores increases, the running time for
propagating head values to the blocks will decrease proportionally as well.

22

Chapter 5

Lab Explorations

1. Exercise. Suppose the threads in a kernel use 8 bytes of shared memory
each, and the system requires 12 bytes per block of threads. If you are going
to be running on a GeForce GTX 260, then what would be a good number
of threads per block for this kernel? (See Appendices A and F of the Cuda
C Programming Guide [5].) Repeat the calculation if instead of 8 bytes per
thread we need 48 bytes per thread.

2. Exercise. The program below is included with this module: exercise.cu.
(Some non-essential lines have been deleted to make it fit on the page. The
included file has everything needed to compile.) It can be compiled with nvcc

exercise.cu and run with ./a.out. Before running the program, decide what
the program does, and then check your answer by running it.

23

typedef struct{
int a[4][4];

} Matrix;

__global__ void compute(Matrix* mIn, Matrix* mOut){
__shared__ Matrix m1;

int row = threadIdx.x / 4;

int col = threadIdx.x % 4;

m1.a[row][col] = (*mIn).a[row][col];

int i; /* counter */

int sum = 0;

for(i = 0; i < 4; i++)

sum += m1.a[row][i] * m1.a[i][col];

(*mOut).a[row][col] = sum;

}

int main(void){
int i, j; /* counters */

Matrix *m1, *m2;

m1 = (Matrix*)malloc(sizeof(Matrix));

for(i = 0; i < 4; i++)

for(j = 0; j < 4; j++)

(*m1).a[i][j] = random() % 10;

Matrix *mDevIn, *mDevOut;

cudaError_t err = cudaMalloc(&mDevIn, sizeof(Matrix));

err = cudaMalloc(&mDevOut, sizeof(Matrix));

err = cudaMemcpy(mDevIn, m1, sizeof(Matrix), cudaMemcpyHostToDevice);

compute <<< 1, 16 >>> (mDevIn, mDevOut);

m2 = (Matrix*)malloc(sizeof(Matrix));

err = cudaMemcpy(m2, mDevOut, sizeof(Matrix), cudaMemcpyDeviceToHost);

}

24

3. The Euler-Mascheroni Constant. Let’s do a quick warm-up. The sum
1+1/2+1/3+1/4+1/5+ · · ·+1/n is approximately equal to lnn, the natural
log of n. As n gets large, the difference between the sum and lnn approaches
the Euler-Mascheroni constant γ, which is about 0.5772156649. We will use
our recurrence to evaluate the sum, which we will then compare to the natural
log.

Consider the file recursion.c. Lines 305-311 in main() set up the recurrence:

// Set up the initial values {a[-2], a[-1], a[0], 1}
float myInit[] = {1.0, 0.0, 0.0, 1.0};
cudaMemcpyToSymbol(init, myInit, 4*sizeof(float));

// Set up the initial recursion {c1, c2, c3, d}
float myRec[] = {1.0, 0.0, 0.0, 1.0};
cudaMemcpyToSymbol(rec, myRec, 4*sizeof(float));

The initialization given above corresponds to the recurrence ai = ai−1 + 1.
This is saved in __constant__ memory, as indicated by cudaMemcpyToSymbol.
Since about 8192 bytes of constant memory can be cached, all threads will have
fast access to this recurrence. (See Section 5.3.2.4 of the Cuda C Programming
Guide [5] for more on constant memory.) The program as provided with this
module has “rule[threadIdx.x].a[3][0] = (float)1.0/idx;” on line 147.
This gives each thread its own value for “d” so that the recursion rule is ai =
ai−1 + 1/i. (Note that if the recursion depends on i, then we must allow each
thread to build its own rule, using its own index. This takes place in the
initializeRules() kernel function.) Compile the program recursion.cu as
follows:

nvcc -o recur -DNUMELTS=1000 -DthreadsPerBlock=255 recursion.cu

(The -D options #define the number of elements to inspect (NUMELTS) to be
a thousand, and to use 255 threads per block.) Then type ./recur to run the
program.

You should see a printout of the first 1000 partial sums: 0, 1, 1.5, 1.83333,
2.083333, The last value is 1 + 1/2 + 1/3 + · · · + 1/999 which should be
about ln 999. Compare this with the actual value of ln 999 to get our first
estimate of the Euler-Mascheroni constant. Experiment by re-compiling with
more elements, and seeing how far you can push this approximation. Note that

25

you may want to modify the printout() function to reduce output.

4. Compiling with Doubles. In a real scientific application where more preci-
sion was needed than 32-bit floats could provide, doubles (64 bits) or perhaps
arbitrary precision numbers would be used. Unfortunately, devices of compute
capability 1.2 or lower do not support native doubles. Included with this mod-
ule is a file recursionDouble.cu which, if compiled with the -arch=sm_13

flag (see Section 3.1.3 of the CUDA C Programming Guide) will use doubles
instead of floats (but only on devices of compute capability at least 1.3) to
compute the Euler-Mascheroni constant.

(a) How many threads per block are you able to have now?

(b) If you run the code, do the partial sums look any more accurate when
doubles are used than when floats are used?

(c) One thing often overlooked is the error that creeps in whenever we use
computers to do arithmetic on real numbers, such as 1/3 or π. Replace
line 147 of recursionDouble.cu to read

rule[threadIdx.x].a[3][0] = abs(1-((double)1.0/idx)*idx);

All of these values are “mathematically” equal to 0, but if we add them all
up (as we added 1/i in the previous problem) you can see how the error
accumulates. Compile recursionDouble.cu without the -arch=sm_13

flag to force it to use floats, and see how large the error is when adding
1000 elements.

(d) How would you expect things to turn out if we used doubles instead of
floats? Repeat the exercise with recursionDouble.cu, compiled with
the -arch=sm_13 flag, to see if your intuition is correct. (Of course, this
assumes that you have a device of compute capability at least 1.3 on which
to try this.)

(e) Finally, repeat Problem 1 using recursionDouble.cu. Do you notice any
difference in your approximations of γ?

5. Integer Exploration. If we tried to compute the Fibonacci numbers with
floats, or even doubles, we would not be able to get very far. Computation
with doubles fails to get the exact value before even the 100th term, and a
double can’t even hold the 1500th term because it exceeds the maximum size
of a double.

26

The program recursionInt.cu uses ints instead of floats or doubles, and
makes use of a MOD macro which can be defined at compile time. The program
will then compute all values modulo MOD, which no value will ever exceed.
Modular arithmetic is such that if we are computing only sums and products,
then we may reduce modulo MOD as often as we wish during our computation,
and our end result will be the same. This conveniently allows us not to have
to otherwise modify our algorithm. If we compile the program to run mod 7:

nvcc -DMOD=7 -DNUMELTS=100 -o recurInt recursionInt.cu

then we can see the first 100 terms of the Fibonacci sequence mod 7. The
sequence begins: 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, 2, 3,
Notice that it repeats after the first 16 terms, so that the sequence will be
periodic with period 16.

(a) After the while loop in main has ended, all of the threads have computed
their values, and they are sitting in global memory, in an array of Rule
structures pointed to by devRules. Write a new kernel (__global__)
function that can be called at this point that will inspect these values
and find the period. This can always be determined by finding the first
re-ocurrence of the consecutive values “0, 1”.

(b) As part of the preceding problem, you need to devise a way to get a value
(the period) off of the device. How did you solve this problem?

(c) Another problem is that you may have many blocks all trying to shove
an answer into the same location in memory, if they have discovered an
occurrence of “0, 1” in the devRules array. But only the first occurrence
should be returned. How did you solve this problem?

(d) The period of the Fibonacci numbers mod 49 is 112. It seems that for all
primes p, the period of the Fibonacci numbers mod p2 is strictly greater
than the period mod p. Nobody knows if this is the case for all primes,
though. Check it out for some primes on your own, and see if you can
find a counter-example. If you do, make sure you show a number theorist
at your school, because everyone’s wondering if there is such a counter-
example.

(e) Try some experiments with a modified Fibonacci recurrence, such as ai =
ai−1 + ai−2 + 1. What is the period of this sequence mod p for the primes
under 50?

27

(f) Finally, answer the same question for the recurrence ai = ai−1 + ai−2,
where a0 = 1 and a1 = 1. Is anything periodic here?

6. Binary Addition. Implement in CUDA the algorithm for binary addition of
numbers with millions of bits. Even on a device with only 256 megabytes of
global memory you can store two addends and a sum, each with 670 million
bits, with room left over. Have each thread (processor) be responsible for one
unsigned int (32 or 64 bits) worth of data. This will allow you to compute in
a single instruction the sum of all the bits in the unsigned int at once, taking
care of all the carries internally, and producing one carry.

7. A Tree-Full of Heads. The implementation presented here starts with many
blocks of threads, each with a rule for updating from the thread adjacent to it,
and at some point has linked all of their heads. At this point we may copy those
heads to a separate part of global memory, so that each head has a rule for
updating from the head adjacent to it. If these all lie in a single block of threads,
then we can use propagate, as opposed to many calls to doubleHeadLookback,
to give a value to all heads. If those heads comprised several blocks, then we
can recursively iterate the process, taking the heads of those blocks, linking
them, copying them to another part of global memory, etc..., iterating until all
the heads lie in a single block, at which point we propagate the values in that
one block. The original steps, and this modification, are shown below:

28

Original Algorithm

(a) Processor (thread) 0 gets a value.
All others get rules looking back one
thread.

(b) Threads within a block all build rules
that look back to the head of the
block. Those in Block 0 get values.

(c) Every head builds a rule looking back
at the previous head.

(d) Head threads double their lookback
until they all get values from the head
of Block 0.

(e) Threads within a block all get their
values from the head of their block.

Modified Algorithm

(a) Processor (thread) 0 gets a value.
All others get rules looking back one
thread.

(b) If the threads all fit into one block,
propagate the value at the head to the
rest of the threads

(c) If they don’t fit into one block, have
each head build a rule looking back to
the previous head, fill new blocks with
just the heads, and solve this problem
by recursively going back to step 1.

(d) When we exit a recursive call, have the
head of each block propagate its value
to the block that it was originally
from. Threads per block should be a
multiple of warp size to avoid wast-
ing computation on under-populated
warps and to facilitate coalescing.

Code this modified algorithm, then run tests to see if there is any difference in
performance compared to the original algorithm.

8. CUDA Global Memory. On page 48 of the CUDA C Best Practices Guide
[4] we read, “Threads per block should be a multiple of warp size [warp size =
32] to avoid wasting computation on under-populated warps and to facilitate
coalescing.” So we do a bit of experimentation. Figure 5.1 shows the running
times for recur computing on a million elements. On the horizontal axis we
vary the number of threads per block, from 32 to 255, and the vertical axis
shows running time in seconds. It seems that the worst running times occur
when the number of threads per block is a multiple of 32. Some investigation
reveals that the culprit is the kernel function copyHeadDataFromTemp. Look
over section 3.2.1 of the CUDA C Best Practices Guide to see if non-coalesced
memory accesses are the cause. And look over Section 3.2.2 of the CUDA C
Best Practices Guide to decide if memory bank conflict could be the culprit. It
may be both, one or neither.

29

Figure 5.1: Run times in seconds vs. number of threads per block.

30

Chapter 6

The Code

6.1 Head Matter

#include <stdio.h>

#include <cuda.h>

#include <math.h>

#include <stdint.h>

typedef struct{

float a[4][4];

} Rule;

#ifndef threadsPerBlock

#define threadsPerBlock 128

#endif

#ifndef NUMELTS

#define NUMELTS 5000

#endif

/*

* This array defines the recursion rule.

* a_n = rec[0]*a_{n-1} + rec[1]*a_{n-2} + rec[2]*a_{n-3} + rec[3]

*/

__constant__ float rec[4];

31

/*

* This array defines the initial values

* a[i] = init[i] for 0 <= i <= 3

*/

__constant__ float init[4];

6.2 Device Functions

/**

* replaces the rule "here" with the product of the

* rules (4x4 matrices) found "here" and "there".

* The "there" matrix is not changed

*

* Note that the caller needs to make sure there is no

* unwanted dependency upon the order in which the blocks

* of the grid call this function.

**/

__device__ void updateRule(Rule* rule, int here, int there){

float tmp[4][4];

if(there >= 0){

for(int i = 0; i < 4; i++)

for(int j = 0; j < 4; j++){

tmp[i][j] = 0;

for(int k = 0; k < 4; k++)

tmp[i][j] += rule[there].a[i][k] * rule[here].a[k][j];

}

}

// Write from registers back to shared memory

for(int i = 0; i < 4; i++)

for(int j = 0; j < 4; j++)

rule[here].a[i][j] = tmp[i][j];

}

/**

* Replaces the "here" rule with a "here" value

* instead. A "value" is just a row, the first row,

32

* holding the value of a_n, a_{n-1}, a_{n-2} and a_{n-3}

* for the rule at index n.

***/

__device__ void setValue(Rule* rule, int here, int there){

int i, k;

for(i = 0; i < 4; i++){

float sum = 0;

for(k = 0; k < 4; k++){

sum += rule[here].a[i][k] * rule[there].a[k][0];

}

rule[here].a[i][0] = sum;

}

}

/***

* This routine propagates the rule or value at the

* head to rules or values, resp., at the other

* threads in the block

**/

__device__ void propagate(Rule* rule){

float tmp[4][4];

int lookback = 1;

while(lookback < threadsPerBlock){

if(threadIdx.x < lookback + 1)

return;

int here = threadIdx.x;

int there = here - lookback;

if(here < 0)

here = 0;

for(int i = 0; i < 4; i++)

for(int j = 0; j < 4; j++){

tmp[i][j] = 0;

for(int k = 0; k < 4; k++)

tmp[i][j] += rule[there].a[i][k] * rule[here].a[k][j];

}

syncthreads();

if(threadIdx.x >= lookback)

33

for(int i = 0; i < 4; i++)

for(int j = 0; j < 4; j++)

rule[here].a[i][j] = tmp[i][j];

lookback = lookback << 1;

}

}

6.3 Kernel Functions

/**

* Kernel - Initialize rules

*

* Fills the section of memory pointed to by devRules

* with values. So that the nth devRule contains

* a_n, a_{n-1}, a_{n-2} and a_{n-3}

**/

__global__ void initializeRules(Rule* devRules){

// set up some variables

int idx = (gridDim.x * blockIdx.y + blockIdx.x) * blockDim.x

+ threadIdx.x;

if(idx >= NUMELTS)

return;

__shared__ Rule rule[threadsPerBlock];

// Initialize the value of the very first element

if(idx == 0){

for(int i = 0; i < 3; i++){

rule[idx].a[0][2-i] = init[i];

for(int j = 1; j < 4; j++)

rule[idx].a[j][i] = 0;

}

rule[idx].a[0][3] = init[3];

for(int j = 1; j < 4; j++)

rule[idx].a[j][3] = 0;

}

// Initialize the rules for the rest of the elements

else{

34

for(int i = 0; i < 4; i++){

rule[threadIdx.x].a[i][0] = rec[i];

for(int j = 1; j < 4; j++){

rule[threadIdx.x].a[i][j] = 0;

}

}

// Set up a custom value for "+d" in the line below

rule[threadIdx.x].a[3][0] = (float)1.0/idx;

rule[threadIdx.x].a[0][1] = 1;

rule[threadIdx.x].a[1][2] = 1;

rule[threadIdx.x].a[3][3] = 1;

}

syncthreads();

// Have all threads in this block obtain the rule or value from

// their head thread

propagate(rule);

// Copy our rule or value to the global memory

memcpy(&devRules[idx], &rule[threadIdx.x], sizeof(Rule));

}

/**************************************

* Kernel - linkBlockHeads

*

* This kernel gives the head of each block the rule

* for updating from the head of the previous block

*

* This is called only once, just after initialization, to link the blocks.

*

* Note that ’threadsPerBlock’ is not the number

* of threads per block in this kernel. This kernel

* actually has NUMELTS = threadsPerBlock/2 threads per block.

***************************************/

__global__ void linkBlockHeads(Rule* devRules){

int idx = (gridDim.x * blockIdx.y + blockIdx.x) * blockDim.x + threadIdx.x;

if(idx * threadsPerBlock >= NUMELTS)

return;

int H = threadsPerBlock/2;

35

int myHere = 2 * (idx % H);

__shared__ Rule rule[threadsPerBlock];

// Copy the headrule and the tail of the previous block into

// adjacent spaces in rule

memcpy(&rule[myHere], &devRules[idx * threadsPerBlock - 1],

2*sizeof(Rule));

if(idx != 0){ /* Not the first block, which needs no link */

updateRule(rule, myHere+1, myHere);

}

// Write the updated rule back to memory

memcpy(&devRules[idx * threadsPerBlock], &rule[myHere + 1],

sizeof(Rule));

}

/**************************************

* Kernel - propagateAllBlocks

*

* This kernel propagates the rule or value at the head of each block to

* the other threads in its block.

*

* Before the call, each thread’s rule is already looking back to the head thread.

***************************************/

__global__ void propagateAllBlocks(Rule* devRules){

int idx = (gridDim.x * blockIdx.y + blockIdx.x) * blockDim.x

+ threadIdx.x;

if(idx >= NUMELTS)

return;

__shared__ Rule rule[threadsPerBlock];

rule[threadIdx.x] = devRules[idx];

syncthreads();

if(threadIdx.x != 0){

updateRule(rule, threadIdx.x, 0);

devRules[idx] = rule[threadIdx.x];

}

36

}

/**************************************

* Kernel - doubleHeadLookback

*

* This kernel composes the rule at the head of the block with the

* rule at the head of the block "lookback"-many blocks previous,

* and saves the composition in temporary storage.

*

* This is called logarithmically many times.

***************************************/

__global__ void doubleHeadLookback(Rule* devRules, Rule* headRulesTemp,

int lookback){

int idx = (gridDim.x * blockIdx.y + blockIdx.x) * blockDim.x

+ threadIdx.x;

if(idx * threadsPerBlock >= NUMELTS)

return;

// int idx = blockIdx.x * blockDim.x + threadIdx.x;

int H = threadsPerBlock/2;

int myHere = 2 * (idx % H);

__shared__ Rule rule[threadsPerBlock];

// Return if our blocks already have values

if(idx < lookback)

return;

// We will update. Copy the two rules into shared memory

memcpy(&rule[myHere + 1], &devRules[idx * threadsPerBlock],

sizeof(Rule));

memcpy(&rule[myHere], &devRules[(idx-lookback) * threadsPerBlock],

sizeof(Rule));

syncthreads();

updateRule(rule, myHere + 1, myHere);

// Save this new rule or value to our temporary head memory

memcpy(&headRulesTemp[idx], &rule[myHere + 1], sizeof(Rule));

}

37

/**

* Kernel - Simple kernel to copy the temporary copies of the

* head rules back to the device array containing all rules.

*

* called logarithmically many times, once after each head

* lookback doubling.

*

***/

__global__ void copyHeadDataFromTemp(Rule* devRules, Rule* headRulesTemp,

int lookback){

int idx = (gridDim.x * blockIdx.y + blockIdx.x) * blockDim.x

+ threadIdx.x;

// int idx = blockIdx.x * blockDim.x + threadIdx.x;

if(idx < lookback || idx * threadsPerBlock >= NUMELTS)

return;

memcpy(&devRules[idx * threadsPerBlock], &headRulesTemp[idx],

sizeof(Rule));

}

6.4 Host Functions

/**

* For printing the arrays

**/

void printout(Rule* r, bool wholeArray){

printf("Start of printout **************************************\n");

for(int i = 0; i < NUMELTS; i++){

if(true || i % threadsPerBlock == 0){ /* Which values should display? */

if(!wholeArray)

printf("Value %d = %f%c", i, r[i].a[0][0], i%4==3 ? ’\n’ : ’\t’);

else{

printf("************** Block %d *******************\n", i);

for(int j = 0; j < 4; j++){

for(int k = 0; k < 4; k++){

printf("%f ", r[i].a[j][k]);

}

printf("\n");

}

38

printf("\n");

}

}

}

}

/***

* main

***/

int main(void){

// Set up constant values to put on device’s constant memory

int blocksPerGrid = (NUMELTS + threadsPerBlock - 1) / threadsPerBlock;

printf("threadsPerBlock = %d, blocksPerGrid = %d\n", threadsPerBlock,

blocksPerGrid);

// Set up the initial values {a[-2], a[-1], a[0], 1}

float myInit[] = {1.0, 0.0, 0.0, 1.0};

cudaMemcpyToSymbol(init, myInit, 4*sizeof(float));

// Set up the initial recursion {c1, c2, c3, d}

float myRec[] = {1.0, 0.0, 0.0, 1.0};

cudaMemcpyToSymbol(rec, myRec, 4*sizeof(float));

// Set up some memory spaces for rules, One rule per entry

Rule* returnRules = (Rule*) malloc(NUMELTS*sizeof(Rule));

Rule* devRules; /* Device copy of one rule per entry */

Rule* headRulesTemp; /* space for one rule per block */

cudaError_t err = cudaMalloc(&devRules, NUMELTS*sizeof(Rule));

printf("Malloc device rules: %s\n",cudaGetErrorString(err));

err = cudaMalloc(&headRulesTemp, blocksPerGrid * sizeof(Rule));

printf("Malloc temp head rules device: %s\n",cudaGetErrorString(err));

int griddim = (int)ceil(sqrt(blocksPerGrid));

dim3 dimGrid(griddim, (blocksPerGrid + griddim - 1)/griddim);

initializeRules <<< dimGrid, threadsPerBlock >>> (devRules);

err = cudaThreadSynchronize();

printf("Kernel: initializeRules: %s\n",cudaGetErrorString(err));

39

int headThreadsPerBlock = threadsPerBlock / 2;

int headBlocksPerGrid = (blocksPerGrid + headThreadsPerBlock - 1) /

headThreadsPerBlock;

int headgriddim = (int)ceil(sqrt((double)headBlocksPerGrid));

dim3 headDimGrid(headgriddim, (headBlocksPerGrid + headgriddim - 1)/

headgriddim);

linkBlockHeads <<< headDimGrid, headThreadsPerBlock >>> (devRules);

err = cudaThreadSynchronize();

printf("Kernel: linkBlockHeads: %s\n",cudaGetErrorString(err));

// Now repeatedly double the head lookback, and propagate to the blocks

// We will do this logarithmically many times.

int lookback = 1;

while(lookback < blocksPerGrid){

// Kernel to double our lookback distance

doubleHeadLookback <<< headDimGrid, headThreadsPerBlock >>>

(devRules, headRulesTemp, lookback);

err = cudaThreadSynchronize();

printf("Kernel: doubleHeadLookback with lookback %d: %s\n", lookback,

cudaGetErrorString(err));

// Kernel to store temporary head data back to the devRules (permanent) array

int tmpCopyBlocksPerGrid = (blocksPerGrid + threadsPerBlock - 1) /

threadsPerBlock;

int tmpgriddim = (int)ceil(sqrt(tmpCopyBlocksPerGrid));

dim3 tmpDimGrid(tmpgriddim, (tmpCopyBlocksPerGrid + tmpgriddim - 1)/

tmpgriddim);

copyHeadDataFromTemp <<< tmpDimGrid, threadsPerBlock >>>

(devRules, headRulesTemp, lookback);

err = cudaThreadSynchronize();

printf("Kernel: tmpCopyBlocksPerGrid with %d blocks and

%d threads per block %s\n",

tmpCopyBlocksPerGrid, threadsPerBlock, cudaGetErrorString(err));

// Double the lookback

lookback = lookback << 1;

}

propagateAllBlocks <<< dimGrid, threadsPerBlock >>> (devRules);

40

err = cudaThreadSynchronize();

printf("Kernel: propagateAllBlocks with lookback %d: %s\n",lookback,

cudaGetErrorString(err));

err = cudaMemcpy(returnRules, devRules, NUMELTS*sizeof(Rule),

cudaMemcpyDeviceToHost);

printf("Post-kernel copy memory off of device: %s\n",

cudaGetErrorString(err));

printout(returnRules, false);

printf("Done\n");

}

41

Bibliography

[1] S. Agaian. Generalized fibonacci numbers and applications. In Systems, Man and
Cybernetics, 2009. SMC 2009. IEEE International Conference on, pages 3484 –3488,
oct. 2009.

[2] The NVIDIA Corporation. The CUDA Compiler Driver NVCC. NVIDIA Corporation,
2008.

[3] The NVIDIA Corporation. The CUDA API Reference Manual, v4.0. NVIDIA Corpo-
ration, 2011.

[4] The NVIDIA Corporation. The CUDA C Best Practices Guide v4.0. NVIDIA Corpo-
ration, 2011.

[5] The NVIDIA Corporation. The CUDA C Programming Guide v4.0. NVIDIA Corpo-
ration, 2011.

[6] Jishe Feng. More identities on the Tribonacci numbers. Ars Combin., 100:73–78, 2011.

[7] David E. Ferguson. Fibonaccian searching. Commun. ACM, 3:648–, December 1960.

[8] P.D. Shipman, Z. Sun, M. Pennybacker, and A.C. Newell. How universal are fibonacci
patterns? The European Physical Journal D - Atomic, Molecular, Optical and Plasma
Physics, 62:5–17, 2011. 10.1140/epjd/e2010-00271-8.

42

	Introduction
	Overview
	Organization of the Module

	Developing the Parallel Algorithm
	Parallel Addition
	Linear Recurrences
	Parallel Considerations — Rules and Values
	Fibonacci Example
	Finding a Single Value and Processor-specific Recurrences

	A Parallel Addition Applet
	Implementing in CUDA
	Can we Have a Million Processors?
	How Many Threads per Block?
	Dealing with Block Independence
	Implementation Miscellany

	Lab Explorations
	The Code
	Head Matter
	Device Functions
	Kernel Functions
	Host Functions

