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Overview
• We want to understand electrical and thermal 

transport in nanoscale systems
• Simulate transport in nanotubes, nanoribbons, 

nanowires, etc. 
– Why BTE?
– Derivation of the BTE
– Classical vs. Quantum
– Carbon Nanotubes
– Simulation of 1D systems
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Why Boltzmann Transport Eqn. (BTE)?

• Originally derived for a dilute gas of non-interacting particles
• Extended to the simulation of electron and phonon transport
• Particle motion treated classically as in the Liouville equation
• Particle interactions introduced through quantum-mechanical 

perturbation theory
• Very flexible, general, and powerful
• Can include many other important effects:

– electron bandstructure
– phonon dispersion
– self-consistency (Poisson equation)
– Electro-thermal transport
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Distribution function

• Distribution function fT(r,k,t) represents the probability for a 
particle to occupy position r with momentum k at time t.

• Distribution function fT contains all the information about the 
transport in the system.

• From fT we can obtain average quantities like current, mobility, 
mean-free-path, etc.

• It is 7-D in general: 3-D spatial (r) + 3-D momentum (k) + time 
(t) dependence.

• In 1-D materials like CNTs and nanowires, space and 
momentum are 1-D, so fT is 3-D altogether.
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Semi-classical vs. Quantum
• Semi-classical BTE treats particles as classical point particles

– Includes scattering through Fermi’s Golden Rule
– Assumes collisions are instantaneous
– Position and momentum are independent and functions of time

• Quantum BTE is capable of including quantum transport effects
– quasi-particle states
– level shift and broadening
– requires a straightforward modification to the scattering rates

• Wigner equation takes this another step further to include the effects
of confining potentials
– Add higher derivatives (3rd, 5th, etc.) of the potential and distribution
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Particles change state by 3 different mechanisms:

1. Motion in real space due to electron velocity
2. Acceleration in momentum due to electric field
3. Scattering due to phonons

Consider a small cube in combined x and k space:

dx dkx
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Particles change state by 3 different mechanisms:

1. Motion in real space due to electron velocity
The net particle gain is the difference at the two faces times the 

velocity in the x direction:

In the limit of small dx this becomes:

dx

vx f(x,y,z,t) vx f(x+dx,y,z,t)

df(x, y, z, t)

dt
= −vx ∂f(x, y, z, t)

∂x

df (x, y, z, t)

dt
= vx [f (x, y, z, t) − f (x + dx, y, z, t)] dx
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Particles change state by 3 different mechanisms:

1. Motion in 3D space:
• In general 3-D space, when there is a spatial gradient to the 

electron distribution, electrons will travel from a region of 
higher density to region of lower density.

• The gradient of the distribution points in the direction of 
greatest change, therefore direction of electron motion.

• Therefore the rate of change of the distribution function 
(scalar!) is equal to the electron velocity (a vector!) dotted 
with the gradient (another vector!):

∂fT (r,k, t)

∂t
= v(r) ·∇rfT (r,k, t) = dr

dt
·∇rfT (r,k, t)
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Particles change state by 3 different mechanisms:

1. Motion in real space:
• Particle velocity is the time derivative of its position

• Velocity can be obtained from the bandstructure or 
dispersion

• Putting these together produces

v(k) =
dr(t)

dt

∂fT (r,k, t)

∂t
= −1

~
∇kE(k, µ) ·∇rfT (r,k, t)

v(k) =
1

~
∇kE(k, µ) , v(q) = ∇qω(q, µ)
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Particles change state by 3 different mechanisms:

2. Acceleration in momentum due to electric field
Again consider a small cube in k-space, and look at kx direction.
The net gain is the difference at the two faces times the velocity in 

the kx direction:

In the limit of small dkx this becomes:

dkx

vkx f(kx,ky,kz,t) vkx f(kx+dkx,ky,kz,t)

df(kx, ky, kz, t)

dt
=
dkx
dt

∂f(kx, ky, kz, t)

∂kx

df (kx, ky, kz , t)

dt
= vkx [f (kx, ky , kz , t) − f (kx + dkx, ky , kz , t)] dkx
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Particles change state by 3 different mechanisms:

2. Acceleration under the force of the electric field:
• When an electric field E is applied to an electron, it produces 

an accelerating force F= –eE on the electron.
• Magnetic field can also be added F=-e(E+vxB)
• Analogous to F= ma = m*dv/dt = dp/dt, we have:

• Therefore the rate of change of the distribution function 
(scalar!) is equal to the applied force F (a vector!) dotted with 
the gradient in momentum (another vector!):

∂fT (r,k, t)

∂t
= −eE

~
·∇kfT (r,k, t)

dk
dt =

1
~F = − eE~
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Electrons change state by 3 different mechanisms:
3. Scattering in and out of a momentum state:

• Can be derived by examining a small differential element in 
momentum space

• Particles occupying a state k with probability fT(k) can 
scatter out of k with transition probability S(k,k’) 

• Particles occupying a state k’ with probability fT(k’) can 
scatter into state k with transition probability S(k’,k)

S(k,k’)fT(k)

S(k’,k)fT(k’)

fT(k’)fT(k)

dk
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Electrons change state by 3 different mechanisms:
3. Scattering in and out of a momentum state:

• Every scattering into k increases the occupancy fT(k)
• Every scattering out of k decreases fT(k)
• The net change in occupancy fT(k) is the in-scattering minus 

the out-scattering
• For each state k, add up contributions from all other states k’

S(k,k’)fT(k’)

S(k’,k)fT(k)

fT(k’)fT(k)

∂fT (k)

∂t
=
X
k0
[S(k0,k)fT (k0)− S(k,k0)fT (k)]

dk
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Degeneracy and exclusion
• Pauli’s Exclusion Principle tells us that only one electron can occupy 

a given state at a given time (ignoring spin). 
• Because of exclusion, an electron can scatter into a state only if it is 

empty.
• To account for exclusion, we multiply the transition rate by the

probability that the state is not occupied, given by (1-fT(k)).
• Finally we add all the contributions by summing over all the possible 

final states k’

• This form referred to as “degenerate statistics” 

∂fT (k)

∂t
=
X
k0
[S(k0,k)fT (k0)(1− fT (k))− S(k,k0)fT (k)(1− fT (k0))]
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Boltzman Transport Eqn. (BTE)
• Particles are conserved so rate of change in time has to equal 

the change due to scattering
• Therefore we simply equate the two rates to obtain the BTE :

• The sum can be converted to an integral in the limit of small dk. 
• This makes the BTE a difficult integro-differential equation.

dfT (r,k, t)

dt
=

µ
dfT (r,k, t)

dt

¶
scat.

∂fT (r,k, t)

∂t
− eE(r)

~
·∇kfT (r,k, t) + 1

~
∇kE(k, µ) ·∇rfT (r,k, t) =

Ω

(2π)3

Z
d3k0 [S(k0,k)fT (k0)(1− fT (k))− S(k, k0)fT (k)(1 − fT (k0))]
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“Shorthand” BTE
• The BTE can be derived quickly by starting with the 

semiclassical assumption and applying the chain rule
• Start by noting the distribution function fT is a function of 

position r, momentum k, and time t
• Assume r(t) and k(t) are independent and only functions of time
• REMINDER: Chain rule in 1-D and n-dimensions

• Apply the chain rule to obtain the complete time derivative:

df(g(t))

dt
=
∂f(g)

∂g

dg(t)

dt

df(g(t))

dt
= ∇gf(g) · dg(t)

dt

dfT (r,k, t)

dt
=

∂fT (r,k, t)

∂t
+∇rfT (r,k, t) · dr

dt
+∇kfT (r,k, t) · dk

dt
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Interpreting the BTE:

The BTE is saying that probability is conserved along the 
path of the particle
• Use Taylor expansion in phase space:

• Factor out the “dt” term and group together:

fT (r+ dr,k+ dk, t+ dt) =

fT (r,k, t) +
∂fT (r,k,t)

∂t dt+∇rfT (r,k, t) · dr+∇kfT (r,k, t) · dk

fT (r+ dr,k+ dk, t+ dt) =

fT (r,k, t) + dt
³
∂fT (r,k,t)

∂t +∇rfT (r,k, t) · drdt +∇kfT (r,k, t) · dkdt
´
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Interpreting the BTE:

The BTE is saying that probability is conserved along the 
path of the particle
• Recognize the expression for total time derivative
• Substitute in the conservation equation:

dt

f(r,k,t) f(r+v*dt,k+F*dt,t+dt)

fT (r+ dr,k+ dk, t+ dt) =

fT (r,k, t) + dt
³
fT (r,k,t)

dt

´
= fT (r,k, t) + dt

³
fT (r,k,t)

dt

´
scat.
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Interpreting the BTE:

The BTE is saying that probability is conserved along the 
path of the particle:
• Particles will move in space according to their velocity:

• Particles change momentum according to the forces acting on 
them

• Particles can scatter from a momentum state k into another 
momentum state k’ due to interactions with phonons, photons, 
plasmons,  impurities, boundaries, etc.

dr = dr(t)
dt dt = v(k)dt

dk = dk
dt dt = −eE(r)~ dt
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Solving the BTE
• The BTE poses tremendous computational burdens due to high 

dimensionality (7-D=3-D space+3-D momentum + time)
• In order to solve it, we must simplify:

– Consider momentum space only (homogeneous/bulk materials)
• Iterative methods, spherical harmonics expansions, Rode’s Method 

– Consider real space only
• Moments of the BTE, Hydrodynamic equations, Drift-Diffusion

– Assume distribution is near equilibrium
• Relaxation time approximation, Analytical methods

– Only consider samples of the f(r,k,t)
• Monte Carlo method for device simulation

– Consider 1-D systems (produces a 3-D problem)
• Good for carbon nanotubes, silicon nanowires, etc.
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Transport simulation in Carbon 
Nanotubes

• CNT bandstructure and Density-of-States (DOS)
• CNT phonon dispersion
• 1-D BTE for CNTs
• Upwind Discretization
• Stability and Boundary Conditions (BCs)
• Poisson Equation (self-consistent potentials)
• Scattering Rates
• Linear Analytic method
• Results and Future Work
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Single-walled Carbon Nanotubes
• CNTs are rolled-up sheets of monolayer 

graphene
• Have many interesting properties:

– Extremely strong
– Great thermal conductors
– High optical phonon frequency
– Can be both semiconducting or metallic 

depending on how the graphene sheet is 
rolled up (zig-zag, armchair, chiral)

• Potential applications as 
– FET devices
– Interconnects
– Sensors
– Cooling solutions
– Filters, etc.
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CNT Bandstructure
• In general, bandstructure is obtained by solving the stationary 

Schroedinger equation for the periodic atomic potential
• CNT Bandstructure obtained by zone folding tight-binding graphene

data according to:

• N is the number of atoms in the unit cell, and k is the CNT wave-vector
• K1 and K2 are reciprocal basis vectors of the honeycomb lattice
• This allows a simple and sufficiently accurate treatment of electronic 

structure
• Other methods, including ab initio/DFT possible

kzf = k
K2

kK2k + µK1 µ = 0, 1, . . . , N − 1
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CNT Bandstructure
• Graphene bandstructure can be computed using tight-binding 

by solving the secular equation:

• E is the energy we are solving for, and H and S are given by:

• Momentum dependence enters through the form factor f(k)
• Parameters s and t are the overlap and transfer integrals, and 

are computed from first-principles calculations.
• Typical values are: epsilon=0, s=0.129, and t=-3.033 eV.

H =

µ
²2p tf(k)
tf(k)∗ ²2p

¶
, S =

µ
1 sf(k)

sf(k)∗ 1

¶
det [H − ES ] = 0
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CNT Bands and DOS results
• Results for a (10,10) metallic 

tube
• Note the bands crossing at zero 

energy. These will contribute 
most to electronic transport.

• Often only this portion is taken 
into account.

• Also note the non-zero density 
of states around Fermi level

• This makes the nanotube
metallic (states available for 
transport even in equilibrium).

EF
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Electron velocities

• Metallic (10,10) tube
• Velocity given by the gradient of 

the dispersion:

• Velocity highest near Fermi 
level EF. This is the typical 
value of around 8.1*105 m/s.

v(k, µ) =
1

~
dE(k, µ)

dk

=
1

~
bT1,2 (H ‘− ES‘ )b1,2

bT1,2Sb1,2

vF
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CNT Phonon dispersion

• Obtained by zone-folding the 
graphene dispersion

• Force Constant approach by 
fitting to measured data

• Factors due to bending of the 
graphene sheet into a tube

• High density of optical (OP) and 
zone-boundary (ZB) modes

• Strong interaction between 
electrons and OP and ZB modes

OP

AC

ZB
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CNT Phonon velocities

• Phonon group velocities also 
obtained from the gradient of 
the dispersion:

• Optical modes have flat 
dispersion giving rise to low 
group velocities

• Optical modes contribute little to 
thermal transport

vg(q, µ) =
dω(q, µ)

dq
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1D Boltzmann Transport Eqn. (BTE)

• Electron BTE (1D):

• Sum converted to an integral in the limit of small dk. 
• RHS looks like a standard 2D advection equation.
• Can apply standard discretization techniques.

∂fT (x, k, t)

∂t
+
eF

~
d

dk
fT (x, k, t) + v(k, µ)

d

dx
fT (x, k, t) =

Ω

2π

Z
dk0 [S(k0, k)fT (k0)(1− fT (k))− S(k, k0)fT (k)(1− fT (k0))]
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Upwind Discretization
• Determine direction of differencing based on the sign of velocity and 

field at each (j,k) point

• Constant τk is the “ralaxation time” computed from the scattering rate 
integral over all k

fn+1j,k = fnj,k −
fnj,k − fneq,j,k

τk

−1 + sgn(vk)
2

νk(f
n
j,k − fnj,k−1)−

1− sgn(vk)
2

νk(f
n
j,k+1 − fnj,k)

−1 + sgn(Fj)
2

νj(f
n
j,k − fnj−1,k)−

1− sgn(Fj)
2

νj(f
n
j+1,k − fnj,k)

relaxation time
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Stability and BCs
• Explicit time-stepping places a restriction on step-size ∆t

dependent on the discretization

• For ∆x~1nm, ∆t~1fs
• This is comparable to the relaxation time (10~50fs)
• Relaxation time poses another limitation on the timestep

(∆t<<mink(τk))
• Periodic BCs in momentum (lattice is periodic)
• Homogenous Neumann BCs in space (quasi-equilibrium)
• Fermi-Dirac initial condition (start off with equilibrium)

¯̄̄̄
eE

~

¯̄̄̄
∆t

∆k
< 1

|vmax| ∆t
∆x

< 1
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Poisson Equation

• Charge and current can be obtained from

• Solve the Poisson equation for the potential along the tube

• Boundary conditions given by applied potentials
• Extend to full 3-D Poisson for semiconducting CNTs

ρ(t, x) = e

Z
f(x, k, t)dk

I(x, t) = e

Z
v(k)f(x, k, t)dk

V nj+1 − 2V nj + V nj−1 =
∆x2ρnj
²
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CNT Scattering Rates
• Scattering rates derived from quantum-mechanical “Fermi’s Golden 

Rule”
• Coupling potentials between electrons and phonons given by 

Bardeen’s Deformation Potential theory
• Acoustic rates have a factor of q squared:

• The signs depend on absorption or emission of a phonon.
• The δ function controls energy conservation 
• Can be replaced by a Lorentzian to allow collisional broadening

1

τ (ki, µi)
=
X
kf ,µf

~D2ac

·
q2 +

³
2µp
D

´2¸
2ρωq,µp

µ
Nq,µp +

1

2
∓ 1
2

¶
δ
¡
E(ki, µi) − E(kf , µf) ± ωq,µp

¢
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CNT Scattering Rates

• Zone Boundary:

• Optical rate:

1

τ(ki, µi)
=
X
kf ,µf

~D2
ZB

2ρωq,µp

µ
Nq,µp +

1

2
∓ 1
2

¶
δ
¡
E(ki, µi)−E(kf , µf )± ωq,µp

¢

1

τ(ki, µi)
=
X
kf ,µf

~D2
OP

2ρωq,µp

µ
Nq,µp +

1

2
∓ 1
2

¶
δ
¡
E(ki, µi)−E(kf , µf )± ωq,µp

¢
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Broadening
• When the scattering rate is high (δ∼ kBT) transitions can occur 

between perturbed “quasi-particle” states
• This is described by the particle “self-energy”
• For simplicity assume self-energy is pure imaginary (no level shift, 

only broadening).
• Replace δ-function with a Lorentzian distribution
• Can add self-consistency by using optical theorem:

• Take into account initial and final state broadening:

δ = δ(ki, µi) + δ(kf , µf )

δk,µ = −~
2
Im Σ(k, µ) =

~
2τ(k, µ)
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Broadening
• Replace δ-function with a Lorentzian distribution

• This makes numerical calculation of scattering rate (relaxation time) 
easier

• Energy no longer conserved exactly, only on the average

δ (E(ki, µi)−E(kf , µf )± ~ω(q, µp))

1
π

δ
δ2+(E(ki,µi)−E(kf ,µf )±~ω(q,µp))2
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Linear Analytic Method

• Break integral apart into many small segments in k
• Expand energies to 1st order and integrate analytically over each 

small segment in k-space
• Add up contributions form all segments in k-spaceZ

dk
1

π

δ

δ2 + (E(ki, µi)−E(kf , µf )± ~ω(q, µp))2

=
X
kf ,µf

Z
dk

1

π

δ

δ2 + (∆E + ~v(kf )(k − kf ))2

=
X
kf ,µf

1

π~v(k)

µ
tan−1

~v(kf )dk −∆E
δ

+ tan−1
~v(kf )dk +∆E

δ

¶
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Results: IV curves for (10,10) SWNT

• Current saturates around 25µA due to onset of strong optical scattering
• Resistance scales linearily with length in the low-field regime (interconnect 

applications)
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Comments and Extensions
• Extends naturally to many other 1-D systems:

– Carbon Nanoribbons (CNRs) are candidates for future FET devices
– Semiconducting CNTs show interesting current up-kick
– Rough Si nanowires show great potential for energy harvesting

• Phonon (thermal) transport is treated with a similar 
discretization scheme (no interaction with the electric field)

• Non-equilibrium transport can be explored in detail
• Thermo-electric properties can be simulated
• This requires coupling through scattering integrals          

(for each k sum over all k’, expensive ~1hr/tstep)
•   Possible efficient parallel implementation
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