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I. OUTLINE

This document deals with the numerical simulation of electronic and thermal transport
in nanostructures and the numerical methods for their simulation. The approach is
based on the Boltzmann transport equation which is used to describe the behavior
of both electrons (charge current carriers) and phonons (thermal current carriers) and
their interaction with each other, as well as their interaction with external potentials
by coupling the transport equations with the Poisson equation. The method of solving
the transport equations and simulating charge and thermal transport are developed and
utilized. For one-dimensional systems like single-walled carbon nanotubes (SWCNTs),
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the equations for transport and potentials are discretized in space, momentum, and time,
and solved by an explicit upwind method. Methods presented herein are applicable to a
wide range of semiconductor nanostructures including silicon/germanium, carbon-based,
and compound semiconductors, layered heterostructures, nanocomposites, as well as
many geometries such as nanomembranes and nanowires.
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II. INTRODUCTION AND MOTIVATION

For many years the computer industry has relied for progress on the stellar rate of
scaling in integrated circuits. The usual expectation, based on Moore’s law, is that the
number of transistors packed on a very large scale of integration (VLSI) chip doubles
roughly every eighteen months. This requires aggressive research into the numerous
bottlenecks that threaten to slow down this amazing rate. Much research has gone
into photolithography needed to produce such dense circuits, into device structures that
would allow smaller channel lengths, and many other issues that help this trend to
continue. Now there is an emerging issue that threatens to impose an absolute limit on
how many transistors can be packed onto a die. This is the issue of heat.

The amount of heat generated by the current technology continues to scale with the
number of transistors in an integrated circuit, a number which is now nearing a billion.
Furthermore, the introduction of multi-core architectures, now ubiquitous, has scaled
the heat dissipation further, making thermal issues even more prominent. In order to
stay within the allowable envelope for thermal dissipation, manufacturers most often
have to resort to scaling the clock frequency back, a move which degrades performance
since the number of instructions which can be executed per unit time depends directly
on the operating frequency of the processor. For this reason, we can say that thermal
issues are already impacting integrated circuit performance, and will continue to do so
for many years to come. Indeed, the power density of modern integrated circuit chips
has also followed an exponential trend, increasing by an order of magnitude roughly
every eight years, based on data reported in [1]. Based on this data, on-chip power
density has already exceeded that of a nuclear reactor at 100 W/cm2.

Therefore, the heat produced by a chip will very soon exceed temperatures that silicon
can withstand without a phase change. When a current of electrons flows through a
device, electrons collide with the crystal lattice. These collisions allow the electron to
either absorb or dissipate energy in the form of a packet of thermal vibration of the
lattice known as a phonon. In order to probe the issue of heat we must probe the
mechanisms of heat generation in the next generation of nanostructures. One way to do
this is by extending the capabilities of current simulation tools to include the ability to
accurately simulate the generation of phonons. This allows us to examine where and how
heat is generated, and thereby explore possible ways to minimize heat within the given
constraints of a transistor device. In order to simulate electron-phonon interactions, we
must take into account the complex details of the phonon dispersion—the relationship
between phonon energy and momentum. With a more detailed knowledge of heat
generation in a device, we can look at the causes of and simulate possible solutions
to the problem of heat generation, including the use of nanostructures such as carbon
nanotubes (CNTs).
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III. SIMULATION OF CHARGE AND THERMAL TRANSPORT

A. Introduction
In order to study charge and thermal transport at the nanoscale, we must consider not

just the classical formulation of transport in the spatial domain, but instead we must
take together both real space and reciprocal, or momentum, space aspects of charge and
thermal transport. In order to do this, we use the Boltzmann transport equation (BTE).
This is a semiclassical formulation of transport, which is capable of including self-
consistently the transport of both electrons and phonons, as well as externally applied
electric fields, electron-phonon interaction, anharmonic phonon decay, and many other
types of scattering to a desired level of accuracy and detail. The principle behind the
BTE is the simple idea of charge conservation. Each particle, in the present case either
electron or phonon, is assumed to occupy a spatial and a momentum coordinate, which
is the classical aspect of the BTE. A distribution function then counts the number of
particles occupying each set of coordinates in space and momentum. Then conservation
of particles in both space and momentum is enforced by equating the total rate of change
in time to the change of the distribution function due to various scattering mechanisms.

B. Boltzmann Transport Equation for Electrons
In the semiclassical formulation [2], particle position and momentum are both inde-

pendent and functions only of time, so we can expand the gradient and apply the chain
rule (1).

df(x, k, t)

dt
=

∂f

∂t
+

∂f

∂x

dx

dt
+

∂f

∂k

dk

dt
=

(
df

dt

)
|scat (1)

Furthermore, we can identify the derivative of position as the electron velocity dx/dt =
v(k). Velocity is computed from the gradient of electronic band-structure (2).

v(k) =
1

~
dE(k)

dk
(2)

The derivative of momentum can be identified as the effect of the field

dk

dt
=

eF (x)

~
where e is the electron charge, and F (x) is the electric field strength at a given position.
Finally, we obtain the final form of the BTE (3), which is exactly the BTE that can be
derived from more detailed considerations of electron conservation [2].

∂f

∂t
+ v(k)

∂f

∂x
+

eF (x)

~
∂f

∂k
= δf |scat (3)

This form shows us that we have a first-order system of partial differential equations
to solve in dimensions of time, space, and momentum. The advantage of solving for
a distribution function in this formulation is that we can now obtain the total charge
along the tube quite simply by integrating the distribution function over the momentum
variable and multiplying by the electron charge (4).

ρ(t, x) = e

∫
f(x, k, t)dk (4)
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The charge density can now be used to determine the strength of the electric field
along the tube. Similarly, the current can be determined by integrating the velocities of
all the momentum states weighted by their distribution (5).

I(x, t) = e

∫
v(k)f(x, k, t)dk (5)

Expression (5) allows us to obtain a value for the current once the steady-state
distribution function f(x, k, t) is known. The coupling of external applied potentials
and the electronic transport in the nanotube is achieved through the Poisson equation
(6).

∇2V (x) =
d2V (x)

dx2
=

ρ(x)

ϵ
(6)

C. Electron Scattering Rates
As shown in (3), the forcing term of the equation is the change in the distribution

function due to collisions. Electrons can interact with quantized physical vibrations,
called phonons, as well as impurities and other electrons in the nanotube lattice. In the
absence of scattering, the distribution would advect in space and momentum under the
influence of electron velocity and applied field. Scattering serves to limit this process
and bring the distribution function to a steady-state value after some initial transient
time. The scattering integral can be derived by considering the probabilities of transitions
from one momentum state k to another state k′, represented by S(k, k′), and reverse
S(k′, k). The probability of occupying those states is given by the distribution functions
f(k) and f(k′). Then the scattering-out term is S(k, k′)f(k) and the scattering-into of
a state k is S(k′, k)f(k′). Taking the difference and integrating over all the states k′
gives the total change in the distribution function due to collisions (7).

df(x, k, t)

dt
=

∫
dk′ [S(k, k′)f(x, k, t)− S(k′, k)f(x, k′, t)] (7)

The scattering probabilities S(k, k′) can be derived from quantum-mechanical pertur-
bation theory, thereby including the correct scattering statistics [2]. We can also extend
this calculation to include Pauli’s exclusion principle, which states that no more than one
electron can occupy the same quantum-mechanical state. This translates directly into
an additional factor which counts the probability of a final state not being available,
represented by (1− f(k)). Inserting this factor complicates slightly the expression for
the scattering integral (8).

δf |scat =
∫

dk′ [S(k, k′)f(k)(1− f(k′))− S(k′, k)(1− f(k))f(k′)] (8)

A slightly simpler form can be derived from (7) by assuming that the distribution
function is only slightly perturbed from equilibrium by a small function, which we label
δf(x, k, t) (9).

d

dt
(feq + δf) =

∫
dk′ [S(k, k′) (feq + δf)− S(k′, k) (feq′+ δf ′)] (9)

Since the equilibrium distribution, given by the familiar Fermi-Dirac statistics (10),
is in a steady state, the overall scattering integral in equilibrium is zero (11) [3]. This
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principle is referred to as detailed balance, since each process is exactly balanced out
by an opposite but equal counterpart, causing no net change to the distribution function.

feq(x, k, t) =

[
exp

(
E(k)− EF (x)

kBT
+ 1

)]−1

(10)

dfeq(x, k, t)

dt
=

∫
dk′ [S(k, k′)feq(x, k, t)− S(k′, k)feq(x, k′, t)] = 0 (11)

This leaves only an expression involving δf(x, k, t) (12).

dδf(x, k, t)

dt
=

∫
dk′ [S(k, k′)δf(x, k, t)− S(k′, k)δf(x, k′, t)] (12)

The perturbed portion, δf , is an odd function of momentum δf(x, k, t) = −δf(x,−k, t),
while the scattering probabilities are even functions S(k, k′) = S(−k, k′), so the second
term in the integral cancels, leaving us with a simplified form (13).

dδf(x, k, t)

dt
= δf(x, k, t)

∫
S(k, k′)dk′ (13)

The integral over all the scattering probabilities produces the total scattering rate
Γ(k), which is the inverse of the momentum relaxation time τm(k) (14).

Γ(k) =
1

τm(k)
=

∫
S(k, k′)dk′ (14)

To first order, this probability would be calculated from Fermi’s golden rule [2], [4],
[5], where H is the matrix element, and ω(q) is the phonon frequency. The minus and
plus signs refer to emission and absorption, respectively. Equation (15) is simplified
somewhat by using the rigid pseudo-ion approximation [6] for the matrix element.

S(k, k′) =
2π

~
|H(k, k′)|2δ(E(k)− E(k′)± ~ω(q)) (15)

=
2π

~
|D(q)|2I2(q)

ρω(q)

(
N(x, q, t) +

1

2
± 1

2

)
δ(E(k)− E(k′)± ~ω(q))

Implementing this formula requires numerical integration over the whole momentum
space and use of the complete phonon and electron dispersion relationships. This would
then be repeated on some fine grid, and for each point we would have a numerical
integration to perform [7], [8]. This would give us a probability to scatter from each
position in momentum space.

df(x, k, t)

dt
=

δf(x, k, t)

τm(k)
=

f(x, k, t)− feq(x, k, t)

τm(k)
(16)

We can see from (16) that any disturbance to the equilibrium distribution relaxes back
to equilibrium with a time-constant equal to the relaxation time. The time dependent
solution of the BTE then represents a balance between drift and diffusion acting to
displace the distribution function from equilibrium, and scattering acting to return it
back to equilibrium through the relaxation time. The relaxation time can be precomputed
by appropriate methods and stored for use in the simulation.
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D. Phonon Boltzmann Transport Equation
The principle of conservation of particles applies equally to phonons. Therefore, the

same equation governs their transport, with some modifications. The key difference
between electrons and phonons is that phonons have no charge and therefore do not
interact directly with each other, or with any applied potentials. Their only interaction
is through the atomic potential, leading to spontaneous decay if the potential is not
perfectly quadratic, a property often termed anharmonic [9]. The phonon BTE will
therefore have one less term on the left-hand side of (17) since the only change of the
distribution function is due to the motion of phonons in real space.

∂N(x, q, t)

∂t
+ v(q)

∂N(x, q, t)

∂x
= δN(x, q, t)|el−ph − δN(x, q, t)|anharm. (17)

The right-hand side of the phonon BTE is considerably more involved than its
electron counterpart. The phonon distribution function, usually notated by N(x, q, t),
increases every time an electron-phonon scattering event takes place, and decreases
for every anharmonic phonon decay. Therefore we will have two terms, one owing to
the interactions with electrons, and the other due to anharmonicity. The first term is
derived by rearranging the corresponding term for electrons. We notice that for every
transition an electron makes from an initial state k to a final state k′, a phonon with a
momentum q = ±(k − k′) is either absorbed or emitted, depending on the energies of
the two electron states. Every emission increases the phonon occupancy and adds one
to N(x, q, t), while every phonon absorption does the opposite, and decreases N(x, q, t)
by unity [10]. The electron states are weighted by their probability of occupancy, given
by the electron distribution function f(x, k, t). The total rate of change of the phonon
distribution function is obtained by summing over all the electron states, as in (18).

dN(q)

dt
=

2π

Ω

∫
dk

|D(q)|2I2(q)
ρ~ω(q)

{(N(x, q, t) + 1) f(x, k ± q, t)δ(E(k ± q)− E(k)± ~ω(q))
−N(x, q, t)f(x, k, t)δ(E(k)− E(k ± q)± ~ω(q))} (18)

The second term in the scattering portion of the phonon BTE (17) is due to coupling
with other phonon modes through the anharmonic part of the atomic potential. This gives
rise to a decay process for phonons which is especially important in optical branches,
which, due to their higher energies, have ample opportunity to decay into pairs of
acoustic phonons. Because such processes involve three phonons, they are also known
as three-phonon decay or scattering. There are also higher order processes involving
four or more phonons, but these are less directly applicable to our study. Also, owing
to the higher order of four- and five-phonon process, the strength of the interaction is
smaller by an order of magnitude or more because the atomic potential is smooth and
does not give rise to significant quadric or quintic terms.

E. Phonon Scattering and Anharmonic Decay
The anharmonic phonon decay can be thought of as very similar to the electron-

phonon interaction, in the sense that we view the scattering event as one phonon entering
with an initial state q and two phonons exiting with final states q′ and q ± q′. Energy
and momentum are conserved, governed by the expressions q = q′ ± q” and ω(q) =
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ω(q′)±ω(q± q′), similar to the electron case. This produces an expression for the rate
of change of the phonon distribution function (19) that depends on the distributions at
the final states in a nonlinear fashion, again much like the electron-phonon interaction.

dN(x, q, t)

dt
=

2π

Ω

∫
dq′ c2(q, q′, q ± q′)

ρ~ω(q)ω(q′)ω(q ± q′)
δ(ω(q)− ω(q′)± ω(q ± q′))

{N(x, q, t) (N(x, q′, t) + 1) (N(x, q ± q′, t) + 1)

− (N(x, q, t) + 1)N(x, q′, t)N(x, q ± q′, t)} (19)

The interaction potential is derived from the cubic portion of the atomic potential, but
can be simplified considerably by assuming it depends only on an average parameter
γ called the Grüneisen constant, which is determined experimentally from thermal
expansion and compressibility [9]. This allows a simple relationship to be derived for
the anharmonic coupling potential (20).

c(q, q′, q ± q′) = − i√
N

2M√
3v(q)

γω(q)ω(q′)ω(q ± q′) (20)

As for the electron case, a relaxation time expression can be derived for phonons
from the BTE (18) by considering only a perturbation δN to the equilibrium distribution
function.

d (δN)

dt
=

2π

Ω

∫
dq′ 4M

2γ

3Nv(q)
ω(q)ω(q′)ω(q ± q′)

{(Neq(x, q, t) + δN) (Neq(x, q′, t) + 1) (Neq(x, q ± q′, t) + 1)

− (Neq(x, q, t) + δN + 1)Neq(x, q′, t)Neq(x, q ± q′, t)}
δ(ω(q)− ω(q′)± ω(q ± q′)) (21)

The expression in (21) is simplified by considering the equilibrium condition (22),
again based on detailed balance.∫

dq′{Neq(x, q, t) (Neq(x, q′, t) + 1) (Neq(x, q ± q′, t) + 1)

− (Neq(x, q, t) + 1)Neq(x, q′, t)Neq(x, q ± q′, t)}
δ(ω(q)− ω(q′)± ω(q ± q′)) = 0 (22)

Finally we arrive at a relaxation time expression for phonons (23) which is valid as
long as the final modes are near equilibrium.

dN(x, q, t)

dt
=

N(x, q, t)−Neq(x, q, t)

τ(q)

=
2π

Ω

∫
dq′ 4M

2γ

3Nv(q)
ω(q)ω(q′)ω(q ± q′)

{δN(x, q, t) (N(x, q′, t) + 1) (N(x, q ± q′, t) + 1)

−δN(x, q, t)N(x, q′, t)N(x, q ± q′, t)}
δ(ω(q)− ω(q′)± ω(q ± q′)) (23)



9

From expression (23) we can factor out the perturbed portion δN and divide by it in
order to obtain an expression for the three-phonon scattering rate, or the inverse of the
relaxation time (24).

1

τ(q)
=

dδN(x, q, t)

dt

1

δN(x, q, t)

=
2π

Ω

∫
dq′4M

2γω(q)ω(q′)ω(q ± q′)
3Nv(q)

{N(x, q′, t) +N(x, q ± q′, t) + 1}

δ(ω(q)− ω(q′)± ω(q ± q′)) (24)

This integral can be evaluated numerically on a grid in momentum space and the
relaxation time stored for use in simulation.
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IV. BOLTZMANN TRANSPORT SIMULATION OF SINGLE-WALLED CARBON
NANOTUBES

A. Introduction
Carbon nanotubes have emerged in the last decade as a potential rival to the estab-

lished CMOS technology. They can be metallic or semiconducting, depending on their
physical structure and radius, and therefore have been suggested as potential candidates
for both device and interconnect applications. Immense research efforts have gone into
understanding their chemical and physical properties. Several experiments have led
to measurements of current-voltage relationships (I-V curves) in selected nanotubes,
thereby shedding some light on the current transport in them [11], [12]. Several Monte
Carlo studies also succeeded at elucidating some of the electron-phonon scattering
properties and their relationship to transport, but applied only to the momentum space
aspect of transport, by assuming a fixed field and an infinitely long tube [13], [14]. This
study aims to fill the gap and study transport in both real space, where effects of the
electric field are applied, and in momentum space, where electron-phonon scattering
can be included accurately by directly discretizing the Boltzmann transport equation
(BTE). Electron-phonon scattering is the dominant mechanism because it gives rise to
heat and limits the amount of current a nanotube can transport [11], [15]. Therefore,
an accurate description of electron-phonon coupling is essential. The electric field is
then included self-consistently by coupling with the Poisson equation. In order to make
the problem tractable for fast simulation, the entire problem is divided up in the spatial
domain into strips to be solved simultaneously on a parallel computer. This technique
is called “domain decomposition”.

B. Upwind Discretization of the Boltzmann Transport Equation
Under the relaxation time assumption, the BTE (3) becomes a linear parabolic equa-

tion coupled to an elliptic Poisson equation (6) through the charge density (4) and field.
The boundaries of the solution domain make a rectangular box in space, time, and
momentum coordinates, so the use of a finite-difference discretization is appropriate
and convenient. We divide the time interval from t0 = 0 up to tF into Nn intervals of
length ∆t = tF/Nn. Space and momentum are divided also into Nj and Nk segments,
respectively, each of length ∆x = L/Nj and ∆k = K/Nk, where L is the nanotube
length, K = 2π/a is the length of the first Brillouin zone in momentum space, and
a is the atomic spacing of the unit cell in the particular nanotube being considered.
The derivative in space can be approximated by a forward difference (25), while the
derivatives in space and momentum can be either forward or backward differences (26),
(27).

∂

∂t
f(x, k, t) =

fn+1
j,k −fn

j,k

∆t
+O(∆t2) (25)

∂

∂x
f(x, k, t) =

fn
j+1,k−fn

j,k

∆x
+O(∆x2) (26)

=
fn
j,k−fn

j−1,k

∆x
+O(∆x2)

∂

∂k
f(x, k, t) =

fn
j,k+1−fn

j,k

∆k
+O(∆k2) (27)

=
fn
j,k−fn

j,k−1

∆k
+O(∆k2)
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The derivatives in time, space, and momentum are first order, but both field and
velocity can be either positive or negative in various positions in space and momentum.
In order to treat this coupled set of equations, we have to use an upwind discretization
scheme for the BTE, and choose the direction of differencing based on the sign of
the local velocity and field [16]. Using an explicit time-stepping scheme also allows a
straightforward inclusion of scattering. The update equation for the discretized distri-
bution function can then be given as (28). Similar expressions will be derived for the
phonon BTE (34), only omitting the interaction with the electric field.

fn+1
j,k = fn

j,k +
fn
j,k − fn

eq,j,k

τk

−1 + sgn(vk)

2
νk(f

n
j,k − fn

j,k−1)

−1− sgn(vk)

2
νk(f

n
j,k+1 − fn

j,k)

−1 + sgn(Fj)

2
νj(f

n
j,k − fn

j−1,k)

−1− sgn(Fj)

2
νj(f

n
j+1,k − fn

j,k) (28)

Here νj = |F (j∆x)|∆t
∆x

≤ 1 in space, and for momentum νk = |v(k)|∆t
∆k

≤ 1 for
stability of the numerical scheme. These conditions, known as the Courant-Friedrichs-
Lewy (CFL) conditions, restrict the maximum time step depending on the maximum
field and velocity expected, as well as the mesh in space and momentum.

Furthermore, we can identify the derivative of position as the electron velocity dx/dt =
v(k). Velocity is computed from the gradient of electronic band-structure (2), which is
obtained by zone-folding graphene data according to Equation (29). Graphene band-
structure is computed using tight-binding by solving the secular Equation (30) where the
matrices H and S are given in Equation (31). Parameters s and t are called the overlap
and transfer integrals, and are computed from first-principles calculations. Typical values
are: ϵ = 0, s = 0.129, and t=-3.033 eV. Parameter f(k) is the form factor of the lattice
given by the positions of the atoms in space according to Equation (32). Taking only the
three nearest neighbours simplifies calculation considerably. Then we obtain the final
form presented in Equation (33). The resulting band-structure is computed from this
equation and plotted in Fig. 1 for a (10,10) metallic carbon nanotube. Electron velocity
for a (10,10) metallic single-walled carbon nanotube (SWNT) is shown in Fig. 2.

kzf = k
K2

∥K2∥
+ µK1 µ = 0, 1, . . . , N − 1 (29)

det [H − ES ] = 0 (30)

H =

(
ϵ2p tf(k)

tf(k)∗ ϵ2p

)
, S =

(
1 sf(k)

sf(k)∗ 1

)
(31)
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f(k) = eik·Rj , j = 1, . . . , 3 (32)

Eg2D(k) =
ϵ2p ± tw(k)

1± sw(k)
(33)

w(k) =
√

∥f(k)∥2 =

√
1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
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Fig. 1. Electron energy versus momentum E(k) for the various bands of a (10,10) metallic nanotube, and the
corresponding density-of-states (DOS). The electronic band-structure varies depending on the radius and structure
of the nanotube, and determines strongly the electronic transport properties by dictating the electron velocity and
influencing electron-phonon scattering rates. Two bands cross at zero energy (Fermi level) thereby making this a
metallic nanotube.

In order to understand self-heating in SWNTs, we can include phonon transport in
the same way as the electron transport, using the upwind discretization scheme for the
BTE. Coupling between electrons and phonons can then be achieved self-consistently by
solving both problems in lockstep and using the solutions for both distributions to update
the subsequent time step. Electrons and phonons then influence each other through the
scattering integrals (8), which have to be recomputed at each time step reflecting the



13

0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

6

q (a−1)

ve
lo

ci
ty

 (
m

/s
)

Fig. 2. Electron velocity versus momentum v(k) for the various bands of a (10,10) metallic nanotube. Electron
velocity is obtained as the gradient of the electronic band-structure. Electron velocity is highest for the pair of bands
that cross at the Fermi level, where it reaches around 8.5× 105 ms−1.

updated solutions for the two distribution functions. This process can allow a detailed
simulation of the complex dynamic interaction between electrons and phonons, and
achieve a full coupling leading to an accurate determination of non-equilibrium phonon
distributions. Phonon dispersion is also obtained from the zone-folding procedure on
the graphene data shown in Fig. 3. The dispersion of a (10,10) metallic tube is plotted
in Fig. 4, while the phonon velocities, obtained from the gradient of the dispersion,
are shown in Fig. 5 for a few select acoustic and optical branches in order to illustrate
the difference in the velocity of the acoustic and optical phonon branches, leading to a
much lower contribution of optical branches to thermal transport.

Nn+1
l,q = Nn

l,q +
Nn

l,q −Nn
eq,l,q

τq

−1 + sgn(vq)

2
νq(N

n
l,q −Nn

l,q−1)

−1− sgn(vq)

2
νq(N

n
l,q+1 −Nn

l,q) (34)

The stability condition for phonons is only restricted by the phonon velocity νq =
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Fig. 3. Phonon dispersion relationship of graphene computed from a force constant model by considering interactions
up to the fourth nearest neighbor.

|v(q)|∆t
∆q

. Here once again we have for momentum νq = |v(q)|∆t
∆k

≤ 1 for stability of
the numerical scheme.

The Poisson problem for the potential (6) can be treated on the same grid in space
using finite-differences. Having only one dimension in space simplifies the problem
greatly and produces a simple scheme (35).

V n
j+1 − 2V n

j + V n
j−1 =

∆x2ρnj
ϵ

(35)

The electric field strength at any point is then given by a simple derivative of the potential
V (x). Now the field strength at any point in space can be determined from the derivative
of the potential and the result coupled back into (3). The boundary conditions at either
end of the nanotube are equal to the applied external potentials. We can assume that one
end is at zero voltage, say the x = 0 end, and the other at some voltage V (x = L) = VL

which will be taken as an input parameter to the simulation.

C. Simulation Results
By adjusting the input parameters for nanotube length and applied voltage, we can

obtain a series of current-voltage characteristics for a range of lengths. We chose values
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Fig. 4. Phonon dispersion versus momentum ω(q) for the various branches of a (10,10) metallic nanotube, and
the corresponding lattice-vibrational density-of-states (DOS). The phonon dispersion was obtained by applying the
zone-folding procedure to the dispersion of graphene. The vibrational DOS shows a strong peak in the optical modes,
highlighting their contribution to the electron-phonon interaction.

ranging from 50 nm up to 1 µm, representing a range that may be encountered in future
applications. The I-V curves all show the characteristic current saturation which has been
confirmed experimentally on several occasions, as in Fig. 6. This is a consequence of the
relaxation term increasing as the applied voltage, and consequently field, is increased,
resulting in a non-linear relationship between applied voltage and the resulting current.
At low bias, the current-voltage relationship is linear, thereby making the current scale
also linearly with the applied electric field. Figure 7 shows that the results conform well
to a line with a slope close to 80 kΩ per micron of length. Metallic carbon nanotubes,
such as the (10,10) tube simulated here, are well suited for interconnect applications,
where their predictable resistivity can be easily engineered.

D. Conclusions
This section treated electron and transport in SWNTs in the BTE formalism. The

BTE is solved self-consistently with the Poisson equation and iterated in time using
an upwind finite-difference scheme until a steady state is reached. Phonon scattering is
included in the relaxation time approximation. Current-voltage characteristics of small
diameter metallic nanotubes are explored with lengths ranging from 50 nm up to 1 µm.
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Fig. 5. Phonon group velocity versus momentum v(q) for the various branches of a (10,10) metallic nanotube.
Phonon velocity is low for optical modes and much higher for acoustic modes, leading to a small contribution of
optical modes to thermal transport.

Current-voltage results show saturation at high bias near the value of 25 µA. Resistance
of the tubes is shown to scale linearly with their length in the low bias regime with a
slope of 80 kΩ/µm.

E. Assessment
Use the sequential Matlab implementation of the BTE code, or go on-line and access

the interactive version of the code on the NanoHub [17] at:

http://nanohub.org/resources/cntbte

to explore the answers to the following questions:
1. The relaxation time was shown to encapsulate the response of the system of

particles to perturbations away from equilibrium, such as the application of an external
voltage. Change the relaxation time τ from its default value to a few larger and smaller
values. Plot the transient current response with the same fixed voltage applied to the
nanotube. Describe the effect of changing the relaxation time τ on the timing and
magnitude of the current.

2. The discretization used in this code has some inherent limitations. The numerical
solution has to be able to track the propagating wavefront in both the real space (as
given by particle velocity) and momentum space (as determined by the strength of
the applied forces acting on particles). Vary the timestep by increasing and decreasing
it away from its default value. Which direction (increasing or decreasing) leads to
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Fig. 6. Current-voltage characteristics of metallic (10,10) tubes of various length ranging from 50 nm up to 1 µm.
All curves show saturation at high bias.

numerical instability (instability can be seen from a rapid oscillatory solution)? Explain
why using the CFL stability criteria provided in the previous chapter.

3. Now vary the size of the discretization mesh in momentum space δk. What happens
to the stability of numerical solution when δk is decreased?

4. Vary the size of the spatial discretization mesh δx employed in the code. What
happens to the numerical stability of the solution as δx is reduced? Now increase the
applied voltage (this has the effect of ”speeding up” the system in momentum space due
to the larger electrostatic force experienced by the particles) and observe what happens
to the stability when δk is decreased. Is the stability criterion easier or harder to satisfy
(in other words, when you increase the applied voltage, does the critical δk at the onset
of numerical instability increase or decrease)? Use the CFL stability criteria to explain
your answer.

5. Based on the answers to the previous three questions, which of the two CFL
conditions (one on the real space discretization δx and the other on the momentum
space δk) is more stringent (i.e. which of the two makes it easier to make the numerical
solution unstable) in this particular example of carbon nanotubes? Explain why.
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Fig. 7. Resistance versus length for a (10,10) tube at low bias (100 mV). The length dependence of the resistance
is linear with a slope of around 80 kΩ per micrometer of length.
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V. PARALLEL PROGRAMMING WITH THE MESSAGE PASSING INTERFACE

A. Introduction
With the advent of new and more affordable computer technologies in the last few

decades, parallel processing has emerged as a powerful new technology. However,
programming multi/many processor machines remains a major hurdle in the utilization
of high-performance and massively parallel resources. The software hurdle must be
overcome before the technology can be used effectively. The Message Passing Interface
(MPI) is a language-independent computer communications descriptive application pro-
gramming interface for message-passing on a parallel computer system. MPI’s goals are
high performance, scalability, and portability. MPI is generally considered low-level. It
expresses parallelism explicitly rather than implicitly. Most MPI implementations consist
of specific set of routines callable from FORTRAN, C, or C++, and any other languages
capable interfacing with such routine libraries. MPI has for long stood out as the only
message passing library which can be considered a standard. It is supported on virtually
all HPC platforms. There is no need to modify the code when porting applications to
different platform architectures. Deployment of existing code is equally possible on both
shared and distributed memory hardware. Nonetheless, the target platform for MPI codes
has been mainly distributed memory systems including clusters.

MPI is relatively easy to learn and implement, although perhaps not as easy as some
other implicit parallel languages like OpenMP. Nonetheless, all parallelism in MPI
codes is explicit: the programmer is responsible for correctly identifying parallelism
and implementing the resulting algorithm using MPI constructs. For this reason, MPI
has been considered successful in achieving high performance and high portability, but
it has often been criticized for its low-level qualities. At present there is no effective
replacement to MPI and its worldwide practical acceptance. There are several MPI
implementations, mostly open source. Examples are MPI-1.2, MPI-2, MPICH, LAM,
and several others that can easily be located on the internet. MPI-2 is primarily designed
for C++ and FORTRAN 90 and includes new features such as scalable I/O, dynamic
process management and collective communications.

B. Basic MPI Commands
MPI programs are based on the Single Program Multiple Data (SPMD) paradigm.

Although the details of what happens when an MPI program is executed vary from
machine to machine, the essentials are the same on all machines, provided we run
one process on each processor. The user issues a directive to the operating system
which has the effect of placing a copy of the executable program on each processor.
Each processor begins execution of its copy of the executable. Different processes can
execute different statements by branching within the program. Typically the branching
will be based on process ranks. Every MPI program must contain the preprocessor
directive #include "mpi.h". This file contains the definitions, macros and function
prototypes necessary for compiling an MPI program. Before any other MPI functions
can be called, the function MPI_Init must be called, and it should only be called once.
Its arguments are pointers to the main function’s parameters argc and argv. It allows
systems to do any special set up so that the MPI library can be used. After a program
has finished using the MPI library, it must call MPI_Finalize. This cleans up any
unfinished business left by MPI, such as pending receives that were never completed.
Note that FORTRAN uses slightly different syntax from C.
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MPI provides the function MPI_Comm_rank, which returns the rank of a process
in its second argument. Its syntax is

int MPI_Comm_rank(MPI_Comm comm, int rank)

The first argument is a communicator: a collection of processes that can send mes-
sages to each other. For basic programs, the only communicator needed is the general
”catch-all” communicator contained in the variable MPI_COMM_WORLD. It is predefined
in MPI and consists of all the processes running when program execution begins. Many
of the constructs in our programs also depend on the number of processes executing
the program, so MPI provides the function MPI_Comm_size for determining this.
Its first argument is a communicator, and it returns the number of processes in that
communicator in its second argument. Its syntax is

int MPI_Comm_size(MPI_Comm comm, int size)

The actual message passing in a parallel program is carried out by the MPI functions
MPI_Send and MPI_Recv. The first command sends a message to a designated pro-
cess, and second receives a message from a process. These are the most basic message
passing commands in MPI. In order for the message to be successfully communicated
the system must append some information to the data that the application program
wishes to transmit. This additional information forms the envelope of the message,
which contains the following information: the rank of the receiver, the rank of the
sender, a tag, and a communicator. These items can be used by the receiver to distinguish
among incoming messages. The source argument can be used to distinguish messages
received from different processes. The tag is a user-specified integer that can be used
to distinguish messages received from a single process.

The syntax of the send and receive commands is as follows:

int MPI_Send(void* message, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Recv(void* message, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status* status)

Like most functions in the standard C library most MPI functions return an integer
error code; too often ignored, these error codes can be made use of for error checking
purposes. With these six basic MPI commands, it is possible to set up and communicate
messages between processors using the MPI interface. This will suffice for the imple-
mentation of most basic scientific parallel codes. Further improvements are possible
by using overlapped and collective communication commands. However, these are not
necessary to get started in implementing basic parallel solvers, such as the BTE solver
example explored in the following section.

C. Parallel Efficiency
The primary goal of a parallel implementation is often efficiency. Parallelism may also

be introduced in order to conduct simulations at higher resolution with the same time
to solution, or to take advantage of the fact that there is typically much more memory
available when running on many processors than when running on a single processor.
We rely on high-performance computing (HPC) resources in order to separate the work
done in the program into as many independent components as possible so that the overall
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execution time is reduced by executing these components simultaneously. Therefore, the
ultimate goal is to make the best possible use of HPC resources by creating efficient
parallel programs. Efficiency of a parallel program is measured by its effectiveness
relative to the serial counterpart. It may not be immediately obvious, but there is typically
more work to be done in a parallel program due to the additional overhead of dividing
up the work into as many independent subtasks as possible, and the additional work
necessary to synchronize the parallel processes and assemble the final solution. How is
efficiency achieved in a parallel code? It is achieved by utilizing as many simultaneous
processes as the problem and the hardware allow. There are several factors impacting
parallel efficiency. The first is the overhead already mentioned, which is the additional
work not present in the serial computation. The second is the concurrency, which is the
ability to utilize many processors working alongside at the same time. The third is the
load balance, or even distribution of work among the processors. Without the ability
to perform the computation concurrently and evenly with many processors, efficiency
cannot be achieved in a parallel program.

We can define the efficiency of p processors working together more precisely as the
ratio of the serial cost to the parallel cost Ep = Ts/pTs, where Ts and Tp are the
serial and parallel execution times. From this definition we can see that efficiency will
rarely exceed unity due to the overhead incurred in setting up the parallel execution,
dividing the work among p processors, and assembling the final solution. We can
also define the Speedup due to parallel execution as the ratio of serial and parallel
execution times Sp = Ts/Tp = pEp. Ideal efficiency of unity and ideal speedup
equal to the number of processors working in parallel therefore mean the same thing:
perfect load balance, maximum concurrency, and zero overhead. As we increase the
number of processors working in parallel, it becomes increasingly difficult to achieve
good load balance, concurrency, and low overhead. Therefore, we often talk about
the scalability of an algorithm as its ability to maintain reasonable efficiency as the
number of processors increases. We can also consider algebraic density as the ratio
of computation to be performed on each individual portion of the data to the amount
of communication required with other processes to obtain their data. Problems with
large algebraic density require less interaction between processors relative to the overall
work to be accomplished and make it easier to achieve high efficiency. The extreme
case are those problems where each data point or subset of the data is manipulated
and computed on independently, without having to interact with other data on other
processes. Such problems are called embarrassingly parallel; some examples are simple
image manipulation and some Monte Carlo integration algorithms.

One simple and popular measure of efficiency is expressed by Amdahl’s Law. Let us
divide the work in a given problem into two distinct portions: a fraction s(0 ≤ s < 1)
which is inherently serial and cannot be broken down into independent parts, and another
fraction (1− s) which is p-fold parallel. Then the parallel time, efficiency, and speedup
can be expressed in terms of the fraction of serial work s and number of processors p
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as

Tp = sTs + (1− s)
Ts

p

Ep =
Ts

pTp

=
1

sp+ (1− s)

Sp =
Ts

Tp

=
p

sp+ (1− s)
. (36)

From Amdahl’s Law we can see that the serial fraction can severely limit parallel
efficiency and scaling of a parallel algorithm. In fact, for any s > 0, the limit of
efficiency, as we increase the number of processors p, goes to zero. Therefore, if as
little as one percent of the work cannot be parallelized, we can never achieve speedup
better than Sp = 100 and use more than one hundred processors efficiently. The ultimate
goal of any parallel implementation is to minimize the serial fraction of the work in
order to make the best use of as many processors as the hardware makes available.
As future supercomputers come on-line with more and more computational power, the
number of processors available to us continues to increase; this makes our work in
writing efficient parallel code more challenging.

D. Parallel Implementation
Since the problem discretization (28) has both space and momentum dependence

at each time update, it lends itself to parallelization quite naturally. We can divide
the space-momentum domain into strips either along the spatial or the momentum
coordinate. Then adjacent strips couple together either by drift in momentum space or
diffusion in real space. After each update, we have to sum over the grid in momentum to
obtain the charge density (4), and then solve the Poisson equation on the grid in space.
If we divide the domain into strips in space, then the sums on the momentum grid will
not require any communication, as each grid point in space is an independent sum over
all the momentum grid points. But the Poisson equation will require communication
with the neighbors to solve it, as will the update equation for the distribution function
(28). This means we need to pass 2Nk + 2 doubles per processor at each iteration.

If the domain is divided into strips in momentum, then adding up the distribution to
obtain the charge will require communication to perform a reduction, and the Poisson
problem will then be solved on only one processor, but the update will not require any
communication. Therefore we have to communicate Nj doubles per processor to obtain
the sum for the charge density. A possible disadvantage is that the Poisson problem is
not parallelized because all the spatial dependence of the charge density ends up on one
processor after the sum over the momentum grid. Using rectangular patches to divide
the domain will result in an approach somewhere between the two aforementioned
approaches.

The idea that appears the most natural is the division into strips in space, depicted in
Fig. 8. This allows each processor to perform the sum in momentum space and obtain
the charge density independently. Then the Poisson problem can be solved efficiently
because it requires only communication with the neighbors, but this communication
requires only two doubles to be passed per processor. Dividing the domain into rect-
angular patches may also be efficient for the relaxation time formulation, but might
complicate more elaborate and detailed schemes for computing the scattering integral.
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Fig. 8. Division of the space-time domain into strips in space. The update then requires communication with the
immediate neighbors, as depicted. The computation of charge density in each strip is independent, and does not
require any communication. Finally, solving the Poisson equation in parallel also requires communication with the
neighbors. This approach makes it easy to extend and include more detailed scattering, phonon transport, and even
changing properties along the nanotube in the future.

Nonetheless, for large domains and large numbers of processors, the scheme based on
rectangular patches, or the two dimensional domain decomposition, will be the most
flexible approach.

E. Parallel Performance
An important property of a parallel implementation is the ability to scale with large

numbers of processors, in order to facilitate its application to large-scale scientific
problems. We tested our implementation on a range of numbers of processors on the
Turing cluster in the Computational Science program at the University of Illinois and
collected the running times, plotted in Fig. 9. A logarithmic plot of the running times
shows a slope of −0.81, Fig. 10. This is close to ideal speedup, with a slope of −1,
and allows us to predict the running time for various numbers of processors. Figure
11 shows the speedup, defined as the ratio of the sequential to the parallel running
time. This curve confirms our prediction that the parallel times will scale close to linear
speedup. This departure is due to additional overhead due to communication, as well
as some overhead due to loading input files containing bandstructure and velocity data
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Fig. 9. Plot of running times over a range of processor numbers, showing a marked decrease in the running time
of the implementation when run on a large number of processors.

which is needed for updates. Overall, this implementation is suitable for large parallel
machines, and enables simulation and analysis of future nanoscale electronics to be
performed in reasonable time-frames.

F. Assessment
1. Use Amdahl’s law to show that the efficiency of a parallel implementation can

never exceed 1. What is the value of p where Ep = 1 occurs?
2. Show that, as the number of processors increases, the speedup approaches 1/s, the

inverse of the serial fraction. (Hint: take the limit p → ∞ and eliminate all terms that
are small relative to p i.e. all terms not involving p).

3. Figure 11 shows that for p = 32, Sp ≈ 16. What does this tell us about the fraction
of sequential work in the program? (Hint: calculate s from the given speed up Sp = 16).

4. Assume that the sequential work for a 2-dimensional Boltzmann transport problem
of dimension Nx by Nk is Ts = NxNk. If we divide the problem into p 1-dimensional
strips in space, each of dimension NxNk/p, then we add an additional communication
overhead of 2Nk + 2 per processor. Assuming that the total cost of computation does
not change, calculate the resulting speedup due to the parallel implementation.
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Fig. 10. Logarithmic plot of the running times (circles) and a linear fit to the data (dashed line). The slope of the
linear fit is -0.81.

5. Starting with the same assumptions as in problem 4, let’s divide up the problem
described in the preceding chapter into p equally sized rectangular patches of dimen-
sions Nx/

√
p by Nk/

√
p instead of the 1-dimensional strips. Now assume the cost of

communication between neighboring patches will be equal to the length of the perimeter
of each patch (as it would be when we need to communicate just those points which are
shared by adjacent neighbors in the problem domain) which gives a total communication
cost per processor of 2Nx/

√
p+ 2Nk/

√
p+ 2. Calculate the resulting speedup.

6. Plot the speedups obtained in problems 4 and 5 for values of p ranging from 1 all
the way up to 1024. Discuss which of the two possible decompositions of the problem
gives better speedup, and over what range up p.
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Fig. 11. Plot of speedup, or ratio of sequential to parallel running times (solid line) along with perfect linear
speedup (dashed line).
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