
GalaxSee HPC Module I:

The N-Body Problem, Serial and Parallel Simulation

What is the N-Body problem and why should I care?

Definition of the N-Body problem

The N-Body problem is a problem in which more than 2 particles interact in such a way that every particle has the potential to interact with every other particle in a meaningful way. Typically this is defined to be any problem where you expect to see forces acting at a distance, such as gravitational interactions on astronomical spatial scales, or electroweak interactions on molecular spatial scales. The force acting on an individual mass 
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 in an N-Body problem can be written as
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Since forces occur in equal and opposite pairs, this can be thought of as 
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 objects interacting with 
[image: image4.wmf]1

-

N

 other objects, resulting in a total of 
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 unique forces.

The characteristics of the N-Body problem are that it has historically pushed the boundaries of our ability to handle both large computational problems and chaotic computational problems. The N-Body problem pushes the limits of large problems in its 
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 overall scaling, but with the typical number of stars in a globular cluster being about 1 million, and over 100 million base pairs in the largest human chromosome, calculations in the N-Body problem can be exhausting to consider. Additionally, with even three bodies in the right configuration, any pattern being established by one pair of bodies can be constantly perturbed by the third. Overcoming these obstacles makes the N-Body problem an ideal case study for issues in high performance computing.

Additionally, the methods used in solving the N-Body problem can illustrate general principles and practices in applied mathematics and computing. The Particle Mesh algorithm, for example, can be used to illustrate the solution of partial differential equations using spectral techniques. The Barnes-Hut algorithm can be used as an exercise in recursive tree data structures. Even determining units for astronomical simulations requires an understanding of scaled units in order to keep the key quantities being computed within the range of typical floats and doubles, to avoid potential roundoff and overflow errors.
Applications to gravitational dynamics

In the gravitational N-Body problem, objects interact through Newton’s law of gravity.
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This law states that for any two objects, there is an attractive force between them that is proportional to the product of the two objects’ masses and inversely proportional to the square of the distance between them. Note that for objects that are very close, there is a singularity in the force. For this reason, we often soften the computation of the force, either by including a cutoff radius (sometimes referred to as a shield radius)
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or a softening term
.
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Additionally, in the case of stellar dynamics, one might also include dynamical friction, in which interaction between the stars and the interstellar medium results in a dissipative force of the form
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where  
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 represents a drag coefficient.

A typical problem one might consider is the study of the internal velocities of a globular cluster. Consider such an object with a radius of one kiloparsec and a mass of 100,000 solar masses. An approximation of the cluster might be made by assuming we have 500 stars of 200 solar masses each. This is allowed to collapse over the life of the universe (~14,000,000 years). If the mass of the system starts out uniformly spread out and at rest, it will collapse so that the bulk of the cluster is centered around some point, and will maintain some internal velocity.

The following images show the collapse of this cluster, at t=0, t=7,000, and t=14,000 Myrs.
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The change over time of the mean distance from the origin and the mean velocity are shown as well.
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Note that the cluster collapses over time such that the size and typical internal speed of the cluster level off.

The structure of the collapsing cluster appears roughly spherical as the initial velocity contains no rotation in the simulation. One could introduce an initial velocity such that bodies rotated about a central axis in the cluster. The following simulation shows the same cluster over the same period of time, assuming that some angular momentum is present at the beginning. What is shown is a “top-down” view on the left and a “side” view on the right, after the simulation has evolved for 14,000 Myrs.
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Notice the “flattening” of the cluster due to the rotation.

If we look at the mean distance and mean velocity of objects relative to the center of the system and the bulk velocity we see again that the systems settles down to a steady velocity. The size appears to be expanding, though looking at the system it may be that some fraction of the cluster has been ejected and is drifting away, as from the image of the galaxy the central disk appears to be relatively stable.

[image: image18.png]1300 1400 1500

1200

°
0000

0

T T T T
2000 4000 6000 8000 10000

t

T
14000



[image: image19.png]018 020 022 024 026

016

T T T T T T T
0 2000 4000 6000 8000 10000 14000

t




Questions

The following questions assume the use of the GalaxSee code provided with this module. Some questions may require slight modifications to the code to answer.
1. Using the GalaxSee code provided, run a series of simulations for the cluster described above. If the cluster is more massive, what does that do to the collapse time?

2. To the equilibrium radius?

3. To the equilibrium velocity?

4. If the cluster is more spread out initially, what does that do to the collapse time?

5. To the equilibrium radius?

6. To the equilibrium velocity?

7. The code allows you to enter a typical initial velocity for each object, can you find a typical velocity for which the cluster is stable? Relate this velocity to the virial theorem.
Other Applications of N-Body

Applications to molecular dynamics

Another area of interest is molecular dynamics, where typical studies involve the folding, structure, and docking of proteins as well as the structure and purity of solid state surfaces. Programs such as NAMD and GROMACS are available to study the molecular dynamics of large molecules in a solvent.
Fluid Dynamics and Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics is a method that allows for the solution of the equations of hydrodynamics, a set of coupled PDEs related to density, bulk velocity, and energy, by representing the fluid as a series of particles.
What algorithms are used to integrate the N-Body problem?

Why you should never use Euler’s method

The Euler’s method is the first method most of us learn in studying the numerical integration of ODEs. Its simplicity makes it ideal as a teaching example, easy to understand and easy to code. It can be stated quite simply as

NEW = OLD + CHANGE

CHANGE = RATE OF CHANGE * TIMESTEP

More formally, one could write this as
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This can be derived from a Taylor’s expansion of 
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which can be seen to reduce to
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Higher order approximations exist which allow you to cancel out some of the error terms, and get methods with smaller error for the same step size. For example, if we could know 
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 exactly, one could in principle have the following expansion 
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, though in practice one must use an approximation of 
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 that also has a high order of h. Most of the higher order integration methods are based on creative recombinations of Taylor’s expansions and derivative approximations.

Consider the solution of a simple system of coupled equations from the predator prey problem.


[image: image28.wmf]dRW

cR

dt

dR

bW

aRW

dt

dW

-

=

-

=


for initial conditions near equilibrium. Two graphs are shown, for the same timestep, one solution is using Euler’s method, the other is using a Runge-Kutta 4th order method.
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Note that the error in the Euler method grows rapidly, while the Runge-Kutta method does not.
Leapfrog Algorithms

One method of obtaining higher accuracy from Euler’s method depended on knowing
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. Your velocities, in effect, are one half time-step out of sync from your position and acceleration.
Runge-Kutta Algorithms

Runge-Kutta algorithms are higher order methods that involve calculating estimates of 
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. The second order Runge Kutta method (also known as the midpoint Euler method and very similar in implementation and accuracy to the improved Euler method) follows the following algorithm.
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Note that the equations explicitly include the dependence of the derivative on t and x separately in higher order methods, as higher order methods generally require multiple attempts at calculating 
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. Like the leapfrog algorithm described above, RK2 is a 
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The fourth order Runge-Kutta method uses additional estimates of 
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Pseudocode for implementing RK4 would look as follows:

1. Solve for the change during a single step using Euler’s method

2. Solve for the change over a half step starting from the Euler’s method half-step solution

3. Iterate once to improve accuracy

4. Use the resulting change to calculate an approximation of the change at the end of the step

5. Use a weighted average of all 4 changes to implement the actual step before returning

RK4 is a 
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Predictor Corrector Algorithms

Predictor Corrector algorithms belong to a class of algorithms known as multi-step methods, that attempt to use some information about multiple previous states of a system to determine the future state. In addition to making use of multiple previous states, the predictor-corrector method operates in 2 steps, first predicting the state in the future, and then using that predicted future state to calculate a rate of change in the future, which is then used to corrected the prediction using an additional pass of a multi-step method. Predictor-Corrector methods are generally considered a compromise between the increased stability of a implicit integration method and the speed of an explicit integration method, and are often used for large systems of equations for which implicit schemes would be impractical.

The Adams-Bashforth-Moulton Predictor Corrector algorithm
 can be written as
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Note that the Adams-Bashforth-Moulton method requires knowledge of the state (or at least the derivative of the state) at three prior positions with equal spacing in order to calculate the next timestep. As a result, starting or restarting the ABM method will require some other means of calculating three steps in order to initialize the method. This is typically done by a lower order method, such as RK4.
Aarseth’s Algorithm for individual timesteps

More complicated integration schemes exists as well for handling situations that require high precision for particles experiencing close interaction with another particle, but that do not require high precision otherwise. Such schemes create an individual timestep for each body, and integrate particles individually, using a lower order interpolation to calculate the effect of particles with a large timestep on those with a small timestep. Individual timestep integrators have the advantage of being able to scale the timestep to just the objects that need a small timestep, but have the disadvantage of being very difficult to parallelize.
Tests for accuracy

Ejection of mass

While close interactions between multiple bodies can result in transfer of energy between objects with one object being ejected from the system, it is not generally expected that this will result in the ejection of significant amounts of mass within an N-body system. A count of “ejected mass” could be used to gauge whether or not one is seeing a greater than expected degree of ejection from a collapsing system.
Conservation of Energy

The following graph is the total energy during the collapse of a cluster with the same mass distribution and time step for different integration methods.
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In this case, the RK4 algorithm is shown in black coming the closest to conserving energy, followed by the Adams-Bashforth-Moulton method in blue. The midpoint Euler (red) and improved Euler (blue) method follow next in their ability to conserve energy, and the Euler and Leapfrog algorithms in this case overlap and are shown in purple as not conserving energy.

Conservation of Momentum

For the above simulations, the center of mass and total momentum were identically zero at the outset of the simulation, and remained zero to within close to machine precision (actual values ~1.0e-14) for all integration methods.
Satisfaction of Virial Theorems

A series of models were run with an initial random velocity such that the ratio of kinetic to potential energy was ½, with the following result after a similar time for the collapse of the zero initial velocity model.
	Method
	KE
	PE
	(KE/PE)

	1 (RK4)
	7.95e4
	1.49e5
	0.53

	2 (Leapfrog)
	7.95e4
	1.48e5
	0.54

	3 (MP_Euler)
	7.95e4
	1.49e5
	0.53

	4 (I_Euler)
	7.94e4
	1.49e5
	0.53

	5 (Euler)
	7.93e4
	1.48e5
	0.54

	6 (ABM)
	7.95e4
	1.49e5
	0.53


How is the N-Body problem parallelized?

Ahmdahl’s Law

Two major concerns in any attempt at parallelizing a problem are the degree of concurrency and the amount of communication required between processes. Both provide fundamental limitations to how parallel nbody simulations can be applied.

Ahmdahl’s law, version 1

The general presentation of Ahmdahl’s law rests on the assumption that in any parallel code there is at least some portion of the code that cannot be done concurrently. This may be as simple as parsing of command line arguments, initializing variables, and rank ordering the parallel processes, or it may (and often will be) a more complicated process involving redundant calculation between processes, wait time for worker nodes, or inhomogeneity in load-balancing.

If we consider the fraction of a code that can be run concurrently to be 
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and normalize total running time of the job using a single process to be 1, then the speedup when using 
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In the limit that p –s very large, the maximum speedup obtainable on any parallel system of an algorithm with concurrency 
[image: image49.wmf]c

 and thus redundancy 
[image: image50.wmf]c

r

/

1

=

 is


[image: image51.wmf]r

c

S

1

)

1

(

1

max

=

-

=

.

The following plot shows speedup as a function of number of processors if c=0.9
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Ahmdahl’s law, version 2

The preceding section addresses the fundamental limitations of a concurrent algorithm, but in practice there is not only redundancy that needs to be addressed in parallel computing, but communication as well. The cost of communication can be addressed by more involved architectures, such as shared memory machines for which the cost is essentially the speed of reading and writing to memory provided that there is little contention for resources and enough memory available to store information at a high level in the memory hierarchy, or enhanced interconnects that allow for lower latency connections between nodes (for example Infiniband® or Myrinet®) or more direct connections between nodes, such as hypercube interconnect geometries. While more advanced interconnect and memory architectures can reduce the impact of communication cost, they cannot eliminate it.

If we consider a second look at Ahmdahl’s law, where we consider that some amount of time will have to be spent communicating with other nodes, and we consider some portion of the algorithm in which communication with 
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other nodes is required taking up roughly 
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 of a 2 process algorithm, then the total running time from above will be given by
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Note that we cannot simply find the maximum speedup in this case by taking the limit as the number of processes gets large as eventually the communication will dominate the wall time. The following plot shows speedup as a function of number of processors for c=0.9 and i=0.001.
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SIMD

A typical approach to parallelizing the N-body problem is to focus on the dominant amount of computation in the code, the force calculation. As the number of calculations required to determine the forces scales as 
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 depending on the force calculation algorithm used, this will grow faster than the remaining portion of the calculation as the number of bodies increases. If we solve for this concurrently, and perform a redundant calculation of the integration of these forces on every process, we can reduce the amount of communication required at each step.

The SIMD algorithm is as follows

1. Rank 0 initializes the positions of all particles, and broadcasts that information to other nodes.

2. All processes calculate some of the forces based on all of the positions

3. All processes share their forces with each other

4. All processes calculate all of the new positions based on all of the forces

5. If t<tfinal, repeat from step 2

Step 2 is the only step that is parallelized, and provided that (a) step 2 takes much more time than every other step, the code will speed up well. Typically, as the number of processes increases, step 3 will at some point begin to take more time than step 2 and it is no longer worthwhile to use more processes.
Force calculation compared to running time for different problem sizes, direct force calculation

Note that for even very small problem sizes, the force calculation dominates the total running time. With less than 50 particles, force calculation makes up nearly all of the running time for a direct force calculation.
	N
	TFINAL
	Force Time
	Wall Time
	Fraction

	2
	1.0e5
	0s
	2s
	~0

	10
	1.0e4
	2s
	3s
	66%

	20
	1.0e4
	6s
	8s
	75%

	50
	1.0e3
	4s
	4s
	~100%


Running time as a function of number of processors for assorted problem sizes

Shown here are running times for a series of GalaxSee models with 500 to 5000 objects running for the same simulation time and the same timestep. Note that for the models with small N, even at a relatively small number of processors you begin to see the total wall time increase. Also note the irregularities in running time for some problems when moving from 8 to 16 or from 16 to 32 processes. (How many cores per node do you expect were on the cluster used for this test?)
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Real (Wall) Time as a function of number of processes
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Speedup as a function of number of processes

Problems

1. Many n-body codes use parallel algorithms on the force calculation only. Based on the values of fraction of real time spent on force calculation compared to the total simulation, does this seem reasonable? Explain.

2. Looking at the figures for GalaxSee running in parallel, how do the speedup curves for each problem size compare to the theoretical speedup plots for Ahmdahl’s law with and without communication? Do some problem sizes seem to be dominated by communication more than others?

3. How do you expect the communication requirements as a fraction of total computation time to change as the problem size gets larger? As the number of processes gets larger?

4. Consider a model for the real time required to solve the N-Body problem with a direct force calculation that assumes 
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communications per time step (computational is proportional to number of points squared, divided over all processes, communication is proportional to number of points, and must be done between all processes.) This would suggest a theoretical real time for a simulation with N objects spread over P processes of 
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. For a cluster of some size (P available cores), run simulations in parallel for a variety of model sizes (N bodies), and use the results to determine whether or not the theoretical model above is a valid description of real time for a parallel n-body code.

5. For your cluster, estimate values for A and B in the theoretical model from the previous question. Use the model to predict the maximum number of processes that you would want to use for a simulation involving 100,000 objects on your cluster (assuming an “infinite” number of cores/nodes are available.)

6. What hardware issues will most affect the values of A and B on a given cluster?
� Aarseth, Sverre, J.  Gravitational N-Body Simulations: Tools and Algorithms.  Cambridge University Press.  p. 21. 2003.


� �HYPERLINK "http://math.fullerton.edu/mathews/n2003/AdamsBashforthMod.html"�http://math.fullerton.edu/mathews/n2003/AdamsBashforthMod.html�
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