Parallelization: Area Under a Curve
By Aaron Weeden, Shodor Education Foundation, Inc.

Exercise 2

This exercise will take you through writing a small piece of C code, outfitting it with
MPI and OpenMP directives, and running it on a cluster.

To complete this exercise, you will need access to a Linux cluster with a Portable
Batch System (PBS) scheduler, a gcc or gfortran compiler, and an MPI binding
with support for C or Fortran 90.

The example cluster used in this module is al-salam, part of the Earlham College
Cluster Computing Group. If you wish to use al-salam for this exercise, you can
contact the Cluster Computing Group to obtain accounts by sending email to

ccg@cs.earlham.edu.

You will make use of the vi text editor, which is provided by default on most Linux-
based operating systems, such as the one used by Earlham’s cluster.

In this exercise, any line with a dollar sign ($) in front of it is a command to be
entered in a shell (a command line utility used by the operating system to interact
with the user).

PartI: Write, compile, and run a serial program

1. Log into the cluster. The example here is al-salam - note that you must first
log into hopper, which is al-salam’s gateway.

$ ssh <yourusername>@cluster.earlham.edu
$ ssh as0
$

2. Create a small “Hello, World” program in C or Fortran 90:
a. Openanew file called hello.corhello.F90 in vi:
$ vi hello.c

$

OR
$ vi hello.F90
$

b. Enter vi's “insert mode” by pressing the i key.

Parallelization: Area Under a Curve
Exercise 2
Page 1

c. Write a small C or Fortran 90 code that will print “Hello, World!”
on the screen:

C
#include <stdio.h>
int main(int argc, char** argv)
{

printf ("Hello, World!\n");

return O;

Fortran 90

PROGRAM hello
IMPLICIT NONE

PRINT *, “Hello, World!”

END PROGRAM hello

d. Press Escape (esc) to exit vi's insert mode.
e. Save the file and exit vi by entering <Shift>-Z-Z.

3. Compile the code with GNU’s compiler. This will produce an executable file
called hello:

$ gcc -o hello hello.c

$

OR
S gfortran -o hello hello.F90
$

If any errors are listed, make sure there are no typosinhello.c or
hello.F90 (go back through step 2).

4. Create a script to run the program on the cluster.
a. Open anew file called hello.gsub in vi:
$ vi hello.gsub
b. Enter insert mode (as you did in step 2b) and write a small Portable
Batch System (PBS) script:

#PBS —g ec
#PBS -0 hello.out
Parallelization: Area Under a Curve
Exercise 2
Page 2

#PBS

—-e hello.err

cd $PBS O WORKDIR

./hello

Each line of this script tells the scheduler to do something:

#PBS —g ec says to use the “ec” queue. Change this value to the name of
the queue on the cluster you are using.

#PBS —-o hello.out says to save the output of standard out to a file
called hello.out rather than to print it on the terminal.

#PBS —e hello.err says to save the output of standard error to a file
called hello.err rather than to print it on the terminal.

cd $PBS O WORKDIR tells the scheduler to change directories to the
directory from which the job is submitted.

./hello saystorunthe hello executable.

c. Save the file and exit vi (as you did in steps 2d and 2e).

5. Submit a job to the scheduler:
$ gsub hello.gsub
19098.as0.al-salam.loc
$
6. This will submit a job and output its job ID, 19098 in this example. Your job
will now be waiting in the queue, running, or finished. You can monitor it at
any time by entering gstat 19098 (or whatever your Job ID is) in the shell.
You may see something like the following:
gstat 19098
gstat: Unknown Job Id 19098.as0.al-salam.loc
This means the job is complete.
If the job were instead still running, you would see something like the
following table:
Job id Name User Time Use S Queue
19098.as0 STDIN amweeden06 0 R ec

In this output, the S column is the status column. The letter under this
column tells you the status of the job; Q means it is waiting in the queue and
R means it is running,.

Parallelization: Area Under a Curve
Exercise 2
Page 3

7. Once the job is complete, show the contents of hello.out with the cat

command:

$ cat hello.out
Hello, World!

$

8. hello.err should be empty if there were no errors in running the

program. Show the contents of hello.err with the cat command:
$ cat hello.err

S

If this command returns just a prompt ($), then the file is empty and there
were no errors. Otherwise, the errors will be listed.

Part II. Outfit the program with MPI

9. We will now make a parallel version of the code using MPI. First we will tell
the program to include the MPI library. We also tell the program that we are
using MPI by putting MPI Init atthe top of mainand MPI Finalize at
the bottom.

a. Openhello.corhello.F90 and add the lines to the code as
below:

C

#include <mpi.h>
#include <stdio.h>

int main(int argc, char** argv)
{
MPI Init (&argc, &argv);
printf (“Hello, World!\n”);

MPI Finalize();

return O;

Fortran 90

PROGRAM hello
IMPLICIT NONE
INCLUDE 'mpif.h'

INTEGER :: ierror
Parallelization: Area Under a Curve
Exercise 2
Page 4

CALL MPI_INIT(ierror)
PRINT *, "Hello, World!"
CALL MPI_FINALIZE(ierror)

END PROGRAM hello
b. Save and quit the file.

10. Compile the code with GNU’s MPI compiler:
$ mpicc -o hello hello.c

$

OR
$ mpif90 -o hello hello.F90
$

If any errors are listed, make sure there are no typosinhello.cor
hello.F90 (go back through step 9).

11. Edit the PBS script to use the MPI run command:
a. Openthe hello.gsub filein vi:
S vi hello.gsub
b. Enter insert mode and change the last line to use mpi run as below:

#PBS —g ec
#PBS -0 hello.out
#PBS —-e hello.err

cd $PBS_O_WORKDIR
mpirun -np 2 ./hello

Here —np 2 tells MPI to use 2 processes. Both processes will run the hello
executable.

c. Save and quit the file.

12. Submit a job to the scheduler:
$ gsub hello.gsub
19099.as0.al-salam.loc
$

13. Monitor the job with gstat. Once it finishes, view the contents of standard
out and standard error:
Parallelization: Area Under a Curve
Exercise 2
Page 5

S cat hello.out
Hello, World!
Hello, World!
S cat hello.err

$
What do you notice about hello.out this time?

14. Let’s have the processes print some useful information. We will have them
print their rank, the total number of processes, and the name of the
processor on which they are running.

a. Openhello.corhello.F90 invi:
$ vi hello.c

S

OR
$ vi hello.F90
S

b. Add the following linestohello.corhello.F90:

C

#include <mpi.h>
#include <stdio.h>

int main(int argc, char** argv)

{

int rank = 0;
int size = 0;
int len = 0;

char name[MPI MAX PROCESSOR NAME] ;
MPI Init (&argc, é&argv);

MPI Comm rank (MPI COMM WORLD, &rank);
MPI Comm size (MPI COMM WORLD, é&size);

MPI Get processor name (name, &len);

printf ("Hello, World from rank %d of %d on %s\n",
rank, size, name);

MPI Finalize();

return O;

Parallelization: Area Under a Curve
Exercise 2
Page 6

Fortran 90
PROGRAM hello
IMPLICIT NONE
INCLUDE 'mpif.h'

INTEGER :: ierror, rank, size, len
CHARACTER* (MPI_ MAX PROCESSOR NAME) :: name

CALL MPI INIT (ierror)

CALL MPI COMM RANK (MPI COMM WORLD, rank, ierror)
CALL MPI COMM SIZE (MPI COMM WORLD, size, ierror)
CALL MPI GET PROCESSOR_NAME (name, len, ilerror)

PRINT *, "Hello, World from rank ", rank, “of ”, size, &

A\Y ”

on ”, name
CALL MPI_FINALIZE(ierror)

END PROGRAM hello

rank will be the rank of the process, size the total number of processes,
and name the name of the processor on which the process is running.

c. Save and quit the file.

15. Compile the code with GNU’s MPI compiler:
$ mpicc -o hello hello.c

$

OR
$ mpif90 -o hello hello.F90
$

16. We don’t need to change the PBS script because we will be using the same
mpirun -np 2 ./hellocommand to execute the program. We will
expect to see something differentin hello.out, however. Let’s submit the
job and see what we get:
$ gsub hello.gsub
19100.as0.al-salam.loc
S

17. Monitor the job with gstat, and once it is finished check the contents of
hello.outand hello.err:

$ cat hello.out
Hello, World from rank 0 of 2 on asl.al-salam.loc

Parallelization: Area Under a Curve

Exercise 2
Page 7

18.

#PBS
#PBS
#PBS
#PBS

Hello, World from rank 1 of 2 on asl.al-salam.loc
S cat hello.err

S
On which processor did Rank 0 run for you? How about Rank 1?

Let’s try running across multiple nodes instead of just one node (asl.al-
salam. loc in the example above). Edit the hello. gsub file to include the
following lines:

-gq ec

-0 hello.out

-e hello.err

-1 nodes=2:ppn=1

cd $PBS O WORKDIR

mpirun -np 2 ./hello

19.

20.

The line that we added, #PBS -1 nodes=2:ppn=1, says to run the job on
2 nodes with 1 core per node.

Submit a job:

$ gsub hello.gsub
19104 .as0.al-salam.loc
$

Monitor the job with gstat until it finishes, then output the contents of
hello.out and hello.err

$ cat hello.out

Hello, World from rank 0 of 2 on asZ2.al-salam.loc
Hello, World from rank 1 of 2 on asl.al-salam.loc

S cat hello.err

S

Now on which processor did Rank 0 run for you? Rank 1?

PartIIl. Outfit the program with OpenMP

1. If we are writing in C, we first need to tell the program to include the
OpenMP library. Open hello.c and add a line to the top:

#include <omp.h>
#include <mpi.h>
#include <stdio.h>

Parallelization: Area Under a Curve
Exercise 2
Page 8

If we are writing in Fortran 90, we need to tell the program to use the
OMP GET THREAD NUM () and OMP_GET NUM THREADS () functions.
Open hello.F90 and add a line under the INCLUDE ‘mpif.h’ line:

INTEGER, EXTERNAL :: OMP GET THREAD NUM, &
OMP_GET NUM THREADS

2. Compile the code with OpenMP support through the GNU compiler by
using the - fopenmp option:
$ mpicc —-fopenmp -o hello hello.c

$

OR
S mpif90 —-fopenmp -o hello hello.F90
$

3. OpenMP does not require any special run command or arguments. We
may wish to tell the program how many OpenMP threads over which to
parallelize, however. Open hello.gsub and add a line before the
mpirun command:

cd $PBS O WORKDIR
export OMP NUM THREADS=2
mpirun -np 2 ./hello

This line tells the program to spawn 2 OpenMP threads per process when
it executes an OpenMP parallel region.

4. Submit a job with gsub, monitor it with gstat until it finishes, and then
view the contents of hello.outand hello.err
$ gsub hello.gsub
19105.as0.al-salam.1loc
$ gstat 19105
gstat: Unknown Job Id 19105.as0.al-salam.loc
S cat hello.out
Hello, World from rank 0 of 2 on as2.al-salam.loc
Hello, World from rank 1 of 2 on asl.al-salam.loc
$ cat hello.err

$

What do you notice about the output? You might expect to see 4 “Hello,
World”s because the program is supposed to spawn 2 OpenMP threads
per process. However, OpenMP will not spawn any threads unless it is

Parallelization: Area Under a Curve
Exercise 2
Page 9

explicitly told to do so by marking an OpenMP parallel region, hence we
still only get 2 “Hello, World’s.

5. Let's mark the print statement as part of a parallel region so each thread
will print the rank of the process, the total number of processes, the
thread number, the total number of threads, and the processor on which
itis running. Open hello.corhello.F90 invi and make the
following change to the print statement:

C

fpragma omp parallel

{
printf ("Hello, World from rank %d of %d, thread %d

of %d on %s\n", rank, size, omp get thread num(),
omp get num threads (), name);

}
Fortran 90

!SOMP PARALLEL

PRINT *, “Hello, World from rank “, rank, “of “, size, &
“thread “, OMP GET THREAD NUM(), “of “, &

OMP GET NUM THREADS (), “on ™, name

!SOMP END PARALLEL

Note that in the C version we have now surrounded the printf by
tpragma omp parallel followed by curly braces. This indicates that
the printf is part of a parallel region that will be executed by multiple
OpenMP threads. Note that in the Fortran 90 version we have now
surrounded the PRINT by ! $OMP PARALLEL and ! $OMP END
PARALLEL. This indicates that the PRINT statement is part of a parallel
region that will be executed by multiple OpenMP threads.

Note also that we added the functions omp get thread num() and
omp get num threads (). These will return the thread number of
the thread and the total number of threads, respectively.

6. Compile the code and submit a job. Monitor it with gstat until it
finishes, then view the contents of hello.out and hello.err:
S mpicc —-fopenmp -o hello hello.c
$ gsub hello.gsub
19106.as0.al-salam.loc
$ gstat 19106
gstat: Unknown Job Id 19106.as0.al-salam.loc

Parallelization: Area Under a Curve
Exercise 2
Page 10

S cat hello.out

Hello, World from rank 0 of 2, thread 1 of 2 on
as?2.al-salam.loc

Hello, World from rank 0O of 2, thread 0 of 2 on
as2.al-salam.loc

Hello, World from rank 1 of 2, thread 0 of 2 on
asl.al-salam.loc

Hello, World from rank 1 of 2, thread 1 of 2 on
asl.al-salam.loc

S cat hello.err

S
What do you notice about the output now?

This completes the exercise.

Parallelization: Area Under a Curve
Exercise 2
Page 11

