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ABSTRACT 
Antibiotic-resistant strains of Mycobacterium tuberculosis have 
rendered some of the current treatments for tuberculosis 
ineffective, creating a need for new treatments.  Today, the most 
efficient way to find new drugs to treat tuberculosis and other 
diseases is to use virtual screening to quickly consider millions of 
potential drug candidates and filter out all but the ones most likely 
to inhibit the disease.  These top hits can then be tested in a 
traditional wet lab to determine their potential effectiveness.  
Using supercomputers, we screened over 4 million potential drug 
molecules against each of two enzymes that are critical to the 
survival of Mycobacterium tuberculosis.  During this process, we 
determined the top candidate molecules to test in the wet lab. 

Categories and Subject Descriptors 
J.3 [Life and Medical Sciences]: Biology and genetics. 

General Terms 
Experimentation. 

Keywords 
Computational science education, drug discovery, virtual 
screening, parallel computing education. 

1. INTRODUCTION 
Since their discovery in the early 20th century, antibiotics have 
seen exponential growth in usage due to their unparalleled 
efficacy for the treatment of bacterial diseases [1]. Unfortunately, 
because this method of treatment is relatively new, we are only 
just now observing the ramifications of their ubiquity; widespread 
use and misuse of antibiotics has become a force of natural 
selection for bacteria, and as a result, these pathogens are evolving 
to resist them [2]. Antibiotic-resistant strains of many disease-
causing bacteria have been observed, and among these is the 
causative agent of tuberculosis, Mycobacterium tuberculosis [2, 
3]. Tuberculosis affects millions of people worldwide to this day, 
and a variety of reasons that have contributed to resistant strains 
of the disease have resulted in a critical need to search for novel 
drug treatments [3, 4]. In the past, this has been accomplished by 
taking soil samples and plating them to look for naturally 
occurring antibiotic producers, but as this research has gone on, it 
is more difficult to find novel antibiotic producers [5]. With this in 
mind, it is easy to see a need for new methodologies to come into 

play. In the age of technology, there has been an increase in the 
use of computers to ease research processes like this.  For 
example, there are several molecular docking programs which 
exist now that are designed to simulate the binding interactions of 
molecules with protein targets, including AutoDock Vina, DOCK, 
GOLD, and Glide [6, 7, 8, 9].  Screening molecules with a 
molecular docking program is much faster and more convenient 
than testing for inhibitors with in vitro methods.  We can use this 
technology to investigate novel mechanisms for antibacterial 
compounds. Rather than waiting a week or more for a panel of 
bacterial plates to respond to exposure to potential drug 
candidates, these programs can give us an idea of how strong the 
interaction would be in a matter of minutes of compute time per 
compound. In this study, we used an in silico virtual drug 
screening process to comb through approximately 4.2 million 
ligands as potential drugs to target a critical enzyme in M. 
tuberculosis. To deal with the logistical issues of the sheer 
compute time this required, we decided to run the virtual screen 
on a supercomputer capable of running thousands of simulations 
at the same time, achieving a throughput unmatched by any in 
vitro assay method.  However, while the results of a virtual screen 
indicate which molecules are likely to bind to a target protein, it 
does not necessarily mean the molecules will actually bind to the 
protein and even more importantly, inhibit the protein [10].  
Because of this shortcoming, the virtual screening process is used 
as a first phase in the drug discovery process, filtering out the vast 
majority of molecules which likely will not bind to the protein 
[11].  After the virtual screening is completed, the top hits are 
screened with biological assays to test which molecules will 
actually work as treatments [11]. 

2. RELATED WORK 
Using virtual screening to narrow down the list of compounds to 
test in a wet lab with biological assays has become accepted over 
the last number of years, and people from various research 
groups1 are using this method [12]. The corresponding author has 
worked with teams using virtual screening on several projects 
[13]. In one such study, the target was an essential enzyme found 
in Plasmodium sp., the causative agent of malaria [14]. The open-
source docking simulation program AutoDock Vina, designed at 
the Scripps Research Institute, was used to screen the 
full_nci_ALL_TAUTOMERS_2011 library of about 320,000 
chemical compounds from the ZINC database against the enzyme 
PfUCHL3 [6, 15]. The top scoring compounds were then re-
screened against the human analog for this enzyme to determine 
which would be safest for human use; these were then screened in 
vitro in the lab to confirm their efficacy against Plasmodium. As a 
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result, the authors determined two compounds with very high 
promise as novel malaria treatments which would be effective 
without causing side effects due to binding with the human 
orthologous protein. Franco et al. also screened DrpE1 in an 
attempt to find a novel cure for tuberculosis [16]. 

3. METHODS 
The first step in our drug discovery process was to pick a target. 
We first decided on targeting M. tuberculosis because of its recent 
trend in antibacterial resistance; novel drugs for tuberculosis 
would be especially sought after as a result [3]. We chose two 
enzymes (called Target 1 and Target 2 in this paper) that are 
critical to the survival of Mycobacterium tuberculosis, and we 
understand the mechanisms of their action. Next, we found the 
structures for these proteins from the Protein Data Bank (PDB) 
and prepared them for docking using AutoDock Tools [17, 18]. 
The structures were derived from X-ray diffraction, and were 
specific to Mycobacterium tuberculosis [17].  Of the different 
structures available, we selected the wild-type structures including 
a ligand in the binding pocket.  We also used AutoDock Tools to 
locate the coordinates of the binding site and noted these down. 
We then uploaded the prepared molecules and coordinates to the 
Blue Waters and Stampede supercomputers, along with the 
molecular docking program AutoDock Vina. We obtained about 
4.2 million ligand files from the ZINC database and downloaded 
these as well, and created shell scripts to break the work into 
pieces. We created another shell script to run the program for each 
compound, and another to collect and package the results for 
download and analysis. Once we downloaded the data, we 
uploaded it to an SQL database and searched for the top hits.  

4. RESULTS 
The results of the virtual screens were grouped into bins based on 
the binding affinities of the compounds.  These bins allow us to 
separate the most promising compounds from the rest and 
determine which compounds should be tested with assays.  Table 
1 and Table 2 show the number of compounds in each binding 
affinity range. For Target 1, 4,182,163 compounds were screened 
and for Target 2, 4,182,137 compounds were screened.  Figure 1 
and Figure 2 show the binding affinities for the compounds 
screened against Target 1 and Target 2, respectively.  Figure 3 and 
Figure 4 break down the top hits for Target 1 and Target 2 into 
bins of narrower width.  It is important to note that the best 
binding energies are the ones with the most negative values, so a 
compound with a binding energy of -13 is more likely to bind to 
the target than a compound with a binding energy of -12.  The top 
hits for Targets 1 and 2 are given in Table 3 and Table 4.     

5. CONCLUSIONS 
Using the Blue Waters and Stampede supercomputers, we have 
screened over 4.1 million compounds against two enzymes that 
are critical to Mycobacterium tuberculosis surviving.  The virtual 
screens have indicated 12 compounds with a binding affinity of   
< -13 that are likely to bind to Mycobacterium tuberculosis.  If 
those compounds can indeed bind to the target enzymes in 
tuberculosis and inhibit the functioning of those enzymes, then the 
compounds may be useful in treating tuberculosis. 

6. FUTURE WORK 
For future work, we will test as many of the top hits as we can in 
the wet lab.  The compounds that scored in the -13.0 to -13.9 
range will be prioritized.  High scoring compounds with different 
structures will also be prioritized to give a wide range of coverage 
of different types of compounds.  We note that an entity with 

Table 1 - Summary of Binding Affinities of Virtual Screen 
against Target 1 

Binding Affinity 
Range (kcal/mol) 

Number of 
Compounds in Range 

-13 ≥x > -14 8 

-12 ≥x > -13 139 

-11 ≥x > -12 3,576 

-10 ≥x > -11 55,866 

-9 ≥x > -10 413,115 

-8 ≥x > -9 1,377,570 

-7 ≥x > -8 1,607,582 

-6 ≥x > -7 606,245 

-5 ≥x > -6 94,722 

-4 ≥x > -5 20,151 

-3 ≥x > -4 3,082 

-2 ≥x > -3 94 

-1 ≥x > -2 6 

0 ≥x > -1 2 

x > 0 5 

 

 

Table 2 - Summary of Binding Affinities of Virtual Screen 
against Target 2 

Binding Affinity 
Range (kcal/mol) 

Number of 
Compounds in Range 

-13 ≥x > -14 4 

-12 ≥x > -13 91 

-11 ≥x > -12 3,756 

-10 ≥x > -11 71,393 

-9 ≥x > -10 571,938 

-8 ≥x > -9 1,453,342 

-7 ≥x > -8 1,101,984 

-6 ≥x > -7 443,499 

-5 ≥x > -6 192,355 

-4 ≥x > -5 108,482 

-3 ≥x > -4 68,534 

-2 ≥x > -3 47,881 

-1 ≥x > -2 33,959 

0 ≥x > -1 25,098 

x > 0 59,821 

 



 

 

 

 

Table 3 - Top Hits for Target 1 from the ZINC Database Libraries Screened 

Score Library Folder Compound 

-13.5 full_nci_ALL_TAUTOMERS_2011 SetOf10k_0004 ZINC01588230.pdbqt 

-13.3 ChemBridge_FullLibrary2011 SetOf10k_0037 ZINC02880067.pdbqt 

-13.2 asinex_newMay2011_fixedForVinaInDec SetOf10k_0000 ZINC06281466.pdbqt 

-13.2 asinex_newMay2011_fixedForVinaInDec SetOf10k_0014 ZINC13564997.pdbqt 

-13.1 asinex_newMay2011_fixedForVinaInDec SetOf10k_0019 ZINC13565797.pdbqt 

-13.1 asinex_newMay2011_fixedForVinaInDec SetOf10k_0014 ZINC13564995.pdbqt 

-13.0 asinex_newMay2011_fixedForVinaInDec SetOf10k_0014 ZINC13564992.pdbqt 

-13.0 asinex_newMay2011_fixedForVinaInDec SetOf10k_0018 ZINC13084337.pdbqt 

-12.9 ChemBridge_FullLibrary2011 SetOf10k_0000 ZINC02833848.pdbqt 

-12.9 asinex_newMay2011_fixedForVinaInDec SetOf10k_0014 ZINC13565000.pdbqt 

-12.9 asinex_newMay2011_fixedForVinaInDec SetOf10k_0042 ZINC13564941.pdbqt 

 

 

 

 

 

 

 

Table 4 - Top Hits for Target 2 from the ZINC Database Libraries Screened 

Score Library Folder Compound 

-13.9 full_nci_ALL_TAUTOMERS_2011 SetOf10k_0016 ZINC04824645.pdbqt 

-13.1 asinex_newMay2011_fixedForVinaInDec SetOf10k_0008 ZINC04838539.pdbqt 

-13.1 ChemBridge_FullLibrary2011 SetOf10k_0069 ZINC19634897.pdbqt 

-13.0 asinex_newMay2011_fixedForVinaInDec SetOf10k_0025 ZINC06475337.pdbqt 

-12.9 ChemBridge_FullLibrary2011 SetOf10k_0007 ZINC04980431.pdbqt 

-12.8 full_nci_ALL_TAUTOMERS_2011 SetOf10k_0015 ZINC04428442.pdbqt 

-12.7 ChemBridge_FullLibrary2011 SetOf10k_0087 ZINC16662786.pdbqt 

-12.7 ChemBridge_FullLibrary2011 SetOf10k_0029 ZINC02893797.pdbqt 

-12.6 ChemBridge_FullLibrary2011 SetOf10k_0074 ZINC19634255.pdbqt 

-12.6 ChemBridge_FullLibrary2011 SetOf10k_0049 ZINC19632616.pdbqt 

-12.6 ChemBridge_FullLibrary2011 SetOf10k_0074 ZINC23281397.pdbqt 

 

 

 



 

Figure 1 - Results of Virtual Screen of Compounds against Target 1 with Binding Affinities Grouped in Ranges 

 

 

 

Figure 2 - Results of Virtual Screen of Compounds against Target 2 with Binding Affinities Grouped in Ranges 



 

Figure 3 - The Top Binding Affinities for Virtual Screen of Compounds against Target 1 Grouped in Ranges 

 

 

 

 

Figure 4 - The Top Binding Affinities for Virtual Screen of Compounds against Target 2 Grouped in Ranges 



significant financial resources might test all the compounds 
scoring -12 or better. 

We will apply the top scoring compounds to cultures of a model 
organism, Mycobacterium bovis, and determine if any of these 
compounds has an inhibitory effect on the growth of the bacteria 
[19]. We will use Mycobacterium bovis because unlike 
Mycobacterium tuberculosis, Mycobacterium bovis is not 
pathogenic [19].  Should one or more compounds prove effective 
at inhibiting the bacterial growth, the next step requires the 
resources of a larger organization.  Further testing of the 
successful compounds would be necessary to confirm their action 
on the cells.  Following this, research would be done to determine 
whether the targeted proteins have any human orthologs, or 
similar proteins which occur in the human body which may also 
be affected by the compound, resulting in unwanted side effects.  
In vivo testing with a model host would be the next step, as the 
compound would need to be proven safe for the consumption of 
the host organism. 

7. REFLECTIONS 
The project described in this paper was the first author’s Blue 
Waters Student Internship project where he learned to incorporate 
computation and high-performance computing into his research.  
This section details the first author’s reflections about his 
internship and the impact that it has had on his current and future 
academic endeavors:  When I took my first course in computer 
science, I did not anticipate that it would give me the power to 
make a difference like this.  At the time of beginning this project, 
I was a Biology major, with minors in Chemistry and 
Neuroscience.  I could tell you a lot about how diseases like 
tuberculosis can ravage the human body.  I could tell you how the 
increase in the prevalence of antibacterial soaps may have actually 
led to the rise of hyper-resistant superbugs.  However, I could 
never have explained to you any way in which I could make a 
difference as an undergraduate student in any of these areas.  
Before I got involved with computer science, university was 
simply a place for learning, not for doing.  I started with a single 
course on modeling and simulation which required no formal 
coding skill (we used drag-and-drop programming environments 
like Scratch), and grew into learning the basics of C++ in a week 
before attending the 2-week intensive high performance 
computing workshop for Blue Waters interns.  At the workshop, I 
learned parts of the C and FORTRAN programming languages in 
order to learn the basics of the parallel computing libraries 
OpenMP, CUDA, MPI, and OpenACC.  Having only taken a 
single introductory course in computer science before attending 
the workshop, I am proud of how much I was able to learn.  Now, 
I am confident using a Linux command prompt and I can write 
some basic shell scripts.  Having learned these skills, I am capable 
of using supercomputers for my research, which spans biology 
and chemistry.  One of the most lasting impacts that this 
incredible experience has left me with, however, is my recent 
decision to stay an extra year at UMW in order to pursue a double 
major in Computer Science alongside my Biology major, and to 
add a Data Science minor.  I am planning on finding a graduate 
school that will have the same zeal for interdisciplinary projects 
that I have now, and I believe that these experiences will make me 
very competitive in the application process.  Having this Blue 
Waters Internship was genuinely a turning point in my college 
career and my life in general, and having this opportunity to do 
real research with real-world implications is a once-in-a-lifetime 
experience.  This project represents the mixing of the disciplines 
that needs to happen if science as a whole is going to make new 

discoveries this century to rival the marvels of the past.  Computer 
modeling for scientific applications is certainly the way research 
will be conducted in the future, and the future is not so far away 
after all. 
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