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ABSTRACT
Graduates with high performance computing (HPC) skills are more
in demand than ever before, most recently fueled by the rise of
artificial intelligence and big data technologies. However, students
often find it challenging to grasp key HPC issues such as parallel
scalability. The increased demand for processing large-scale sci-
entific computing data makes more essential the importance of
mastering parallelism, with scalability often being a crucial fac-
tor. This is even more challenging when non-computing majors
require HPC skills. This paper presents the design of a parallel com-
puting course offered to atmospheric science majors. It discusses
how the design addressed challenges presented by non-computer
science majors who lack a background in fundamental computer
architecture, systems, and algorithms. The content of the course
focuses on the concepts and methods of parallelization, testing,
and the analysis of scalability. Considering all students have to
confront many (non-HPC) scalability issues in the real world, and
there may be similarities between real-world scalability and parallel
computing scalability, the course design explores this similarity in
an effort to improve students’ understanding of scalability issues in
parallel computing. The authors present a set of assignments and
projects that leverage the Tianhe-2A supercomputer, ranked #6 in
the TOP500 list of supercomputers, for testing. We present pre- and
post-questionnaires to explore the effectiveness of the class design
and find an 11.7% improvement in correct answers and a decrease
of 36.8% in obvious, but wrong, answers. The authors also find that
students are in favor of this approach.
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1 INTRODUCTION
Many modern scientific developments depend on large scale data
processing and the exploitation of parallelism on supercomputer
systems. Examples include computational simulations for scientific
and engineering applications in atmosphere, earth, and environ-
mental realms [1], in addition to commercial applications such as
data mining and transaction processing.

Integrating parallel computing earlier into the undergraduate
curriculum has been under exploration since the 1990s. In 1994,
Donald Johnson et al. [2] proposed teaching parallel computing to
freshmen by integrating parallel computation into a data structures
course. The Curriculum Development and Education Resources
(CDER) center for parallel computing education proposed a detailed
curriculum and promoted progress in parallel computing under-
graduate courses [3]. Nonetheless, introducing parallel computing
into the early years of a bachelors curriculum remains challenging.

Reflecting the growing importance of parallel computing in un-
dergraduate curricula, CS2013 (the ACM/IEEE Joint Computer Sci-
ence Curricula) stated, “Previous curricular volumes had paral-
lelism topics distributed across disparate KAs [knowledge areas]
as electives. Given the vastly increased importance of parallel and
distributed computing, it seemed crucial to identify essential con-
cepts in this area and to promote those topics to the core” [4, p 29].
CS2013 introduced a new KA in parallel and distributed computing
which explicitly names scalability [5] as a core-tier2 topic.

Understanding scalability issues is key for learning parallel com-
puting. This paper introduces the design of a compulsory parallel
computing course at the College of Meteorologic Oceanography
at National University of Defense Technology in China. Atmo-
spheric scientists need parallel computing to solve design issues
for the parallelization of optimal interpolation algorithms and at-
mospheric data analysis [6]. This course is intended to provide a
broad overview of the topics in parallel computing, as a lead-in for
more advanced classes that follow it. These non-computing majors
need to leverage HPC to make optimal use of their applications and
to solve problems on different scales. Proper solutions resulting in
satisfactory speedup are necessary but difficult to design. To start,
these applications need to consider the physical architecture to
and fully exploit hardware parallelism. The increase in large-scale
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scientific computing data aggravates the difficulty of exploiting
parallelism.

1.1 Challenges of Understanding Scalability
Scalability is the mechanism by which a parallel system’s speedup
changes with the number of available processors. Amdahl’s law
dictates the achievable speedup and efficiency — specifically what
happens to efficiency when both the number of processors and
the problem size increase. The scalability of a parallel algorithm
on a parallel architecture is a measure of the algorithm’s ability
to effectively utilize an increasing number of processors. Scalabil-
ity analysis is helpful in selecting the best algorithm/architecture
combination for a given problem under different constraints on the
growth of the problem size and the number of processors [7, 8].

Scalability is divided into hardware scalability and software scal-
ability, which refers to the ability of system to deliver greater com-
putational power when the amount of resources is increased. Hard-
ware scalability refers to the capacity of the whole system, which
theoretically can be proportionally increased by adding more hard-
ware. Software scalability refers to parallelization efficiency - the
ratio between the actual speedup and the ideal speedup over a given
number of processors [9].

The scalability of a system can take many forms, including speed,
efficiency, size, applications, generation, and heterogeneity [10, p
63]. In terms of speed, a scalable system is capable of increasing its
speed in proportion to the increase in the number of processors. In
terms of efficiency, a scalable parallel system means its efficiency
can be kept fixed as the number of processors is increased, pro-
vided that the problem size is also increased. Scalability testing
can be performed at the hardware or software levels. Parameters
used for scalability testing differ from one application to another.
Different forms of scalability were also mentioned in [10, p 66], “In
his vision on the scalability of parallel systems, Gordon Bell indi-
cated that in order for a parallel system to survive, it has to satisfy
five requirements. There are size scalability, generation scalability,
space scalability, compatibility, and competitiveness." Three of these
survivability requirements are the forms of scalability. Here size
scalability measures the maximum number of processors a system
can accommodate. Generation scalability refers to the ability of a
system to scale up by using next-generation components.

HPC application scalability is inherently complicated as the per-
formance of modern HPC systems approach exascale. Exascale
computing refers to computing systems capable of at least a billion
billion calculations per second. It is becomming even more complex
for HPC applications to fully exploit hardware parallelism, due to
many factors. In addition, many applications have poor scalability
regardless of the underlying hardware. See [11] for more details.

Scalability modeling and evaluation for real problems are often
abstract. Programs are often designed and tested for smaller data
sets on fewer processors, but the real problems are much larger
and need more hardware, in recent times scaling up to millions of
cores. Performance and correctness of programs based on scaled-
down systems is difficult to establish [12, p 208], but it remains a
cost efficient and practical means of testing. Based on such tests,
performance extrapolation is not intuitive.

1.2 Research Goals
This work has three research goals:

RG1 Explore the effects of understanding or misunderstanding
parallel computing scalability on students’ performance.

RG2 Explore the relationship between real-world scalability and
parallel computing scalability from the perspective of under-
standing and learning.

RG3 Explore students’ questions valuable to the understanding
of parallel computing scalability.

2 BACKGROUND
2.1 Parallel Computing Course and Scalability
Many modern instructors agree that parallel computing topics
should be covered in first- or second-year undergraduate classes [2,
13–15]. Additionally, in Section 1, the authors discussed the fact that
parallelism is also a growing trend to which CS2013 has responded.
The primary reasoning is that a solid understanding of parallel
computing concepts will tremendously improve students’ ability
to write software that is able to effectively utilize the underlying
parallel hardware architecture. For example, Yousun Ko et al. [14]
found if parallel computing concepts were introduced as a senior-
level undergraduate or graduate elective, students had difficulty
transitioning from sequential to parallel thinking. Lori Pollock et
al. [16] also thought parallel programming required a very differ-
ent thought process from traditional sequential programming, as
the programmer must think differently, such as performing tasks
in parallel, organizing information communication, and balancing
workload between parallel processes. Making such a switch from
sequential thinking to parallel thinking was a big step for many
students. CS2013 recommends parallel computing could be their
freshmen or sophomores courses.

Some challenges in parallel computing courses are closely re-
lated to scalability. For example, Yousun Ko et al. [14] presented a
challenge problem for understanding parallelism. They chose an
analogy from cooking to introduce task, data, and pipeline par-
allelism. They also used the concrete example to illustrate task
parallelism and data parallelism. Another challenge they presented
is about parallel program performance evaluation. They observed
the inevitable question was, "Why is my parallel program slower
than the sequential version?" They answered this question by intro-
ducing the definition of speedup, scalability, and efficiency, followed
by Amdahl’s law and performance bottleneck analysis. Besides the
above two challenges, Yousun Ko et al. [14] presented three other
course modules and challenge problems. They used the decomposi-
tion approach of knowledge to structure the course as five course
modules, among which each module teaches one fundamental con-
cept of parallel programming. All parallel programming concepts
were introduced with the help of worked-out programming exam-
ples.

Besides the challenges of switching from sequential thinking to
parallel thinking mentioned above, Pollock et al. [16] presented
the practical challenges for inexperienced programmers: i) lack of
stable and useful debugging tools; ii) the need to analyze why their
program is not performing well in parallel and how to improve its
performance. They used cooperative learning to meet the practical
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challenges, as well as to provide a more real-world context to the
course. In the experience of teaching HPC [17], H. Neeman et al.
used analogies to explain some concepts to capture the fundamental
underlying principles without going deep into technical details.

2.2 Real-World Scalability and Cognitive
Ability

There aremany scalability issues in real life. For instance, compound
interest concerns how investments scale with time, and population
growth concerns how the population of reproducing organisms
scales with time. Fittingly, most HPC and parallel computing con-
cepts also come down to time — after all, that is why these domains
exist — to do more in less time. However, it is well known that
many people have trouble truly comprehending the growth of a
fund due to compound interest, or the growth of populations with
time. It seems scalability is linked to cognition.

In 2005, Frederick introduced the cognitive reflection test (CRT),
which researchers have cited nearly 3,500 times. The CRT is a sim-
ple three-item measure of one type of cognitive ability. Specifically,
Frederick found that CRT scores were predictive of the kinds of
choices that prominently feature in tests of decision-making theo-
ries. The CRT questions are [18, p 27]:

Q1 A bat and a ball cost $1.10 in total. The bat costs $1.00 more
than the ball. How much does the ball cost?

Q2 If it takes 5 machines 5 minutes to make 5 widgets, how long
would it take 100 machines to make 100 widgets?

Q3 In a lake, there is a patch of lily pads. Every day, the patch
doubles in size. If it takes 48 days for the patch to cover the
entire lake, how long would it take for the patch to cover
half of the lake?

Interestingly, questions Q2 and Q3 deal with scalability, and Q2
also concerns explicit parallelism.

The CRT questions are crafted very carefully, and for a reason.
Each question has an incorrect “intuitive” answer. Frederick pro-
vides substantial evidence that these incorrect yet intuitive answers
are indeed intuitive. Two pieces of evidence are 1) the incorrect in-
tuitive answers, such as 24 days (half of 48 days) for Q31, dominate
in trials with large populations; and 2) respondents answer with the
correct response much more often with analogous problems that
invite more computation (i.e. don’t have obvious intuitive answers).
For example, respondents miss Q1 much more often than they miss
this analogous problem that essentially forces calculation due to
the lack of an intuitive answer:
• A banana and a bagel cost 37 cents. The banana costs 13
cents more than the bagel. How much does the bagel cost?

We will come back to the idea of questions on real-life scalability
concepts and “intuitive answers” in Section 4.2.

3 STUDY DESIGN
The study was carried out in College of Meteorologic Oceanogra-
phy in Spring 2019. Fourteen sophomores enrolled in the "Parallel
Computing" course, and all students participated in the study. All

1The correct answer is 47 days. If the patch doubles in size every day, one day before
the final day, 1/2 of the pond must be covered.

of them had no prior experience with systematic computer archi-
tectures, operating systems, and algorithms. The prerequisite of
the course is C programming.

3.1 Course Design
Figure 1 shows the structure of the course, including 12 lecture
classes, 6 laboratory classes, assignments, projects, and pre-/post-
questionnaires. The length of each class period is 90 minutes with a
10-minute middle break. Formative assignments were released once
or twice each week and required to be finished before Sunday night
23:00 pm. Projects were released on Thursday night laboratory class
between Weeks 4 and 7. Each project lasted one week until the next
Wednesday night.

Figure 1: Weekly and daily structure of the course.

The course learning objectives for the lecture part are shown
in Table 1. One of the authors is the lead instructor of this course.
In order to teach scalability, the authors split the effort from the
following eight aspects, which are abbreviated D1–D8 in Table 4.

Table 1: Parallel computing course content topics.
Topic Content Lecture

1
Overview of parallel computing: Flynn’s taxonomy, paral-
lel hardware and software, interconnection network, etc.

1–2

2
Basic principles of parallel computing: task parti-
tion, parallel task scheduling, principles of parallel
algorithm design, performance metrics, concepts of
speedup/efficiency/scalable applications, etc.

3–4

3
Distributed-memory programming with MPI, collective
communication, performance evaluation of MPI programs,
scalability, etc.

5–7

4
Shared-memory programming with OpenMP, data depen-
dences, loop scheduling, cache coherence, etc.

8–9

5
Applications: Jacobi methods and computation-
communication overlap, numerical weather forecast
model WRF, numerical climate forecast model CAM, etc.

10–12

1) Decompose the scalability topic into some detailed notions. Ac-
cording to core topics of parallel computing provided by NSF/IEEE-
TCPP Curriculum Initiative [3], the authors decompose the scala-
bility topic into three-type 19 notions as Table 2 shows. The three
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types are architecture, programming, and algorithms. Each notion
has its learning outcome. The scalability topic is too abstract to
teach. However, this decomposition can help make clear what scal-
ability stands for in the parallel computing world, such as what
detailed contents of scalability people should teach students and
what learning outcome students should have.

2) Design the assignments. Design the fundamental assignments
as well as literature reading tasks. The course includes eight for-
mative assignments and a literature reading task throughout an
8-week period. Each of these was graded based on functionality
and documentation. All eight formative assignments are about the
answer to some basic questions, followed by fundamental parallel
programming exercises, which are suitable to all different majors
(See Assignments 1–8 in Table 3 for more details). The literature
reading task is special for atmospheric science majors in order to
deepen their understanding of weather research, the forecasting
model, and its parallel solution method. The students need to read
at least one paper from the following three papers, which are titled
"Development of a Next-generation Regional Weather Research
and Forecast Model", "Precipitation Simulations Using Weather Re-
search and Forecasting (WRF) as a Nested Regional Climate Model,"
and "Sensitivity of WRF Forecasts for South Florida to Initial Con-
ditions."

3) Design the projects. Two application projects are special for
Atmospheric Science majors in our class. These two projects are
both about numerical weather forecast simulation on a WRF model.
WRF model simulation is fundamental to most atmospheric science
majors in their professional study and research.WRF is short for the
Weather Research and Forecasting model, which is a mesoscale nu-
merical weather prediction system designed for both atmospheric
research and operational forecasting applications [19]. The WRF
model features two dynamical cores, a data assimilation system,
and software architecture supporting parallel computation and sys-
tem extensibility. The model serves a wide range of meteorological
applications across scales from tens of meters to thousands of kilo-
meters. Before the 2019 spring semester, students did not use WRF
until the senior year. It was a challenge for sophomores to finish
the two projects. In order to reduce the difficulty of studies, the au-
thors divided Project 1 into two phases: Project 1-I and Project 1-II.
Project 1-II is a moderately incremental release based on Project 1-I.
The same is true for Project 2. See Table 3 for more details of the two
projects. Before releasing the two projects, the authors have two
laboratory classes to introduce the Tianhe-2A system environment
and basic usage, followed by the WRF model background (Lab 1
and Lab 2 in Figure 1). The Tianhe-2A supercomputer is ranked #6
in the TOP500 list of supercomputers2.

4) Correlate scalability topic & notions to assignments and projects.
The authors connect all the scalability notions to eight assign-
ments and four projects in terms of the contents of assignments
and projects as well as each learning outcome shown in Table 2.
This correlation is helpful to grade the understanding of scalabil-
ity. The scalability grade for each assignment and project can be
given based on students’ learning outcomes. The scalability grade
of each student is counted by the average scalability scores of all
assignments and projects.

2www.top500.org. TOP500 List, November 2020

Table 2: Decomposition of scalability topics and correlation
of scalability notions, learning outcomes, and assignments
& projects. The rightmost column ’Learning Outcome’ is
taken from Tables 1-3 in Reference [3]

Topics/Notions Assign. Project Learning Outcome

Architecture
SMP→ Buses A1 - Limited bandwidth and latency, scalability

issues
NUMA →

Directory-
based CC-
NUMA

- - Be aware that bus-based sharing does not
scale, and directories offer an alternative

Message pass-
ing (no shared
memory)

- - Shared memory architecture breaks down
when scaled due to physical limitations (la-
tency, bandwidth) and results in message
passing architectures

Latency - P1,
P2

Know the concept, implications for scal-
ing, impact on work/communication ratio
to achieve speedup

Bandwidth - P1,
P2

Know the concept, how it limits sharing, and
considerations of data movement cost

Cache organi-
zation

- - Know the cache hierarchies, shared caches
(as opposed to private caches) result in co-
herency and performance issues for software

Programming
Shared mem-
ory

A8 - Be able to write correct thread-based pro-
grams (protecting shared data) and under-
stand how to obtain speed up

Synchronization - - Be able to write shared memory programs
with critical regions, producer-consumer
communication, and get speedup; know the
notions of mechanisms for concurrency

Performance
metrics

A2,
A6,
A7,
A8

P1,
P2

Know the basic definitions of performance
metrics (speedup, efficiency, work, cost), Am-
dahl’s law; know the notions of scalability

Speedup A2,
A6,
A7,
A8

P1,
P2

Understand how to compute speedup, and
what it means

Efficiency A2,
A6,
A7

P1,
P2

Understand how to compute efficiency, and
why it matters

Amdahl’s law A2,
A6,
A7

P1,
P2

Know that speedup is limited by the sequen-
tial portion of a parallel program, if problem
size is kept fixed

Gustafson’s
law

A2 - Understand the idea of weak scaling, where
problem size increases as the number of pro-
cesses/threads increases

Isoefficiency - P1,
P2

Understand the idea of how quickly to in-
crease problem size with number of pro-
cesses/threads to keep efficiency the same

Algorithm
Speedup A3,

A6,
A7

- Recognize the use of parallelism either to
solve a given problem instance faster or to
solve larger instance in the same time (strong
and weak scaling)

Scalability in
algorithms and
architectures

A6,
A7

P1,
P2

Comprehend via several examples that hav-
ing access more processors does not guaran-
tee faster execution — the notion of inherent
sequentiality

Model-based
notions

A8 P1,
P2

Recognize that architectural features can in-
fluence amenability to parallel cost reduction
and the amount of reduction achievable

Matrix compu-
tations

A5,
A6,
A7

- Understand the mapping and load balanc-
ing problems on various platforms for sig-
nificant concrete instances of computational
challenges that are discussed at a higher level
elsewhere

Matrix product A6,
A7

- Observe a sample “real" parallel algorithm
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Table 3: Descriptions of eight assignments and two projects.

Assignments
& Projects

Tasks

Assignments
1–3

Search for information: TOP500, parallelism of pipeline, parallelism
of vector operations, speedup formulas, Foster’s methodology.

Assignments
4–7

MPI programs: trapezoidal rule MPI parallelization; matrix-vector
multiplication MPI parallelization with row partitioning; matrix-
vector multiplication MPI parallelization with column partitioning.

Assignment
8

OpenMP programs: Odd-even transposition sort OpenMP paral-
lelization.

Project 1-I InstallWRF software and library, and run an ideal casewith different
amount of computing nodes.

Project 1-II Install WRF software and library, and run two more ideal cases with
different amount of computing nodes.

Project 2-I Compile real model em_real and run a real model data. WRF pre-
processing system WPS need to be installed before running. Down-
load actual observational data from the official website and do the
test with different parallel scales.

Project 2-II Reset the model domain by modifying the model grid param-
eters (resolution, range, and grid location) in model input file
’namelist.input’, recompile the real model em_real and run real
model data. Repeat the steps of Project 2-I.

5) Design incentive mechanism to encourage questioning in class.
Students were encouraged to question in class by adding the number
of questions into final grades. On average, more than ten questions
per class were proposed, which greatly increased participation in
class activities and inspired students’ learning enthusiasm. After
class, TAs collected all the questions and counted the grades, which
were published to students every other week.

6) Do experimental instruction. Four teaching assistants (TAs)
participated in the class activities, especially being involved in ex-
perimental instruction in laboratory classes. Before projects began,
one TA presented a talk to introduce the background, demands,
and expected outcomes. TAs finished all the experimental steps and
prepared a detailed experiment instruction manual before students
started projects. In laboratory classes, students were divided into
four groups and each TA gave individual tutoring to one group of
students having difficulties. Students were required to write sci-
entific reports describing their experiments, including objective,
platform & environment, steps, results & analyses, questions, and
experiences. Students struggled with writing these experimental
reports and the analysis of parallel program performance and scal-
ability. This appeared to be busy work to the non-CS majors. For
some common questions, the teacher asked one student to present
their initial results firstly and then organize a discussion to analyze
reasons. Finally, students reached an agreement and designed one
more experiment to validate their assumptions. A discussion usually
lasted about 15 minutes. The authors twice had such discussions.

7) Design of the evaluation and grading mechanism. This course
had no final examination. Student performance was scored by as-
signment scores, in-class questioning, attendance, project scores,
and literature reading scores. Section 4.1 gives the detailed evalua-
tion method.

8) Design pre-/post-questionnaires and feedback questionnaire.
Before the parallel computing course began, a pre-questionnaire
was administered to test the understanding of students’ real-world
scalability. These six questions all draw from real life examples of
scalability — See Q1–Q3 in Section 2.2 for examples. Each question
has three categories of answers: an incorrect yet intuitive answer,

an "obviously" wrong answer, and a correct answer. The authors
did not expect (or want) the students to simply calculate the right
answer — any of these questions can be easily calculated given
enough time. Instead, we were trying to test their "intuition" of
what answer "seems" correct. In other words, we wanted to mea-
sure students’ real-world intuitions that they have gained through
experience. Students were told to try to capture their "gut feeling"
— their intuition — when answering the questionnaire. Accordingly,
students were given three minutes (30 seconds per question). At
the end of the course, a post-questionnaire, the same as the pre-
questionnaire, was administered to students. We then analyzed
these scores using a paired statistical significance test called the
Scalability Understanding Paired Test and correlated the question-
naire results with final course grades. Students were not formally
assessed on their questionnaire responses/scores — in other words,
the questionnaire scores did not factor into final grades.

At the end of the course, students were encouraged to complete a
feedback questionnaire inquiring about their understanding of scal-
ability issues, including a self-evaluation of the learning outcomes
of the 19 scalability notions, misunderstandings and correctness
experiences with scalability issues, their biggest impression of the
course, their confidence toward parallel computing, and other ex-
periences with course activities.

3.2 Correlation of Course Design and Research
Goals

What the authors did for teaching scalability in Section 3.1 is based
on our three research goals. There are some correlation between
them, as Table 4 shows, by ticking

√
. In Table 4, D1–D8 stand

for eight aspects of our course design for teaching scalability in
Section 3.1.

Table 4: Correlation of course design and research goals.

RG D1 D2 D3 D4 D5 D6 D7 D8
RG1

√ √ √ √ √ √

RG2
√ √ √

RG3
√ √ √ √ √

4 RESULTS
4.1 RG1: Scalability Understanding and

Performance
We measure student performance using their assignment scores, in-
class questioning, attendance, project scores, and literature reading
scores. The scores for eight assignments, in-class questioning scores,
and attendance comprise 30% of the final course mark. The scores
for Project 1-I, Project 1-II, Project 2-I, and Project 2-II comprise
50% of the final mark, and literature reading scores comprise 20% of
the final mark. The final course grades for all students are shown
by the blue solid line in Figure 2.

According to Table 2, the authors measured student scalability
grades for each assignment and each project. This scalability grade
for each assignment and project is divided into three levels of
achievement: sophisticated (90 points), competent (70 points) and
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not yet competent (50 points). Then, we calculated the average
scalability grade for all assignments and projects, which constitutes
the scalability grade of each student for learning parallel computing
(See the red dashed line in Figure 2). A chi-squared test of goodness-
of-fit was performed to determine whether the scalability grade of a
student for learning parallel computing is linearly correlated to the
final course grade. The scalability grade of a student and the final
course grade were positively correlated, r (14) = 0.66,p = 0.010.
This is evidence that one can reasonably expect a better course
performance from students with a better understanding of parallel
computing scalability.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Student Number

25

50

75

100

G
ra
de

s

Parallel computing scalability grades
Final course grades

Figure 2: The impact of understanding ormisunderstanding
parallel computing scalability on students’ performance.

At the end of the course, a multiple-choice feedback question-
naire was sent to all 14 students, and all of 14 students responded.
The feedback questionnaire was designed to examine students’ ex-
perience with learning parallel computing scalability. Questions in
the feedback questionnaire were three multiple-choice, two single-
choice, and three subjective questions. As can be seen, 78% students
thought parallel computing scalability studies were very benefi-
cial for understanding key concepts in parallel computing and
improving their parallel programming ability. The remaining stu-
dents thought such help was okay. Students self-evaluate their
understanding of parallel computing scalability with five stars. The
proportions of five, four, three, and two stars in students’ self-
evaluation are 21%, 28%, 35%, and 14%, respectively.

In the three multiple-choice quesitons involving architecture,
programming, and algorithms, students picked out some items
(rows) from Table 2 for which they thought they have achieved the
learning outcomes. According to students’ self-evaluation, the top
five items the students achieved are Programming-Speedup (14/14),
Efficiency (13/14), Amdahl’s law (12/14), Gustafson’s law (11/14)
and Algorithm-Speedup (11/14). The worst five items are Program-
ming-Isoefficiency (1/14), Architecture-NUMA→Directory-based
CC-NUMA (3/14), Cache organization (4/14), Programming-Shared
memory (4/14), and Synchronization (4/14). This is evidence that
our decomposition of scalability topics is really beneficial to teach
students to understand scalability issues. It also shows that more
assignments and projects can help students better understand scal-
ability notions. In both of the two projects as well as several funda-
mental programming assignments, students need to use speedup,

efficiency, and Amdahl’s law concepts to calculate and evaluate
the results. Repetitive calculations correct some misunderstandings
and deepen their understanding to scalability. On the contrary, for
those knowledge notions lacking exercises, it is hard to expect stu-
dents to have a good learning performance. For example, the NUMA
concept, cache organization, shared memory, and synchronization
are not directly relevant to assignments or projects. The learning
performance of understanding these notions is worse than that of
understanding speedup, efficiency, Amdahl’s law, and Gustafson’s
law.

Students needed to give at least one experience of misunder-
standing parallel computing scalability. We list all the feedback as
follows, merging some same or similar feedback.

• Students A1, A2 thought that the running time was inversely
proportional to the number of processes. But in the actual
cases, they observed that running time sometimes was con-
strained by bandwidth.
• Students B1, B2 could not understand why the increasing
computing power or number of processes sometimes could
not bring about speedup improvement.
• Students C1, C2, C3, C4 thought using the more processor
cores must result in the faster speedup, the higher efficiency,
and the stronger scalability, but by experimental results they
found more processor cores were not sure to bring about
higher performance, and sometimes parallel time would be
reduced only when the number of processor cores reaches a
certain value.
• Student D thought scalability was only related to the appli-
cation problem itself, but they later found scalability was
also closely related to the parallel algorithm.
• Student E thought matrix-vector parallelism in row parti-
tion had the same effect with that in column partition, but
by communication analysis and experimental results, they
found different matrix partitions would bring about different
amounts of collective communication and also big perfor-
mance differences.
• Student F thought the scalability only represented the run-
ning time of a program and the shorter running time meant
better scalability.
• Students G1, G2, G3 thought there was no relationship be-
tween speed, the amount of input data, and the number of
processes/threads, which prevented them from understand-
ing speed and scalability.

They were asked to explain if learning more knowledge of scala-
bility and overcoming the misunderstandings of scalability were
useful to their performance improvement of learning parallel com-
puting or not. All the answers are YES.

4.2 RG2: Real-World vs. Parallel Computing
Scalability

We released a pre-questionnaire and a post-questionnaire to test
students’ real-world scalability cognitive ability. The correctness
ratio increased by 11.7% from the pre-questionnaire to the post-
questionnaire. The number of obvious but wrong answers was
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reduced by 36.8%. This proves that students’ understanding of scal-
ability improved. The Pearson correlation coefficient between pre-
questionnaire grades and post-questionnaire grades was 0.73.

We compare two questionnaire results and parallel computing
scalability grades in Figure 3. The Pearson correlation coefficient
between pre-questionnaire grades and parallel computing scalabil-
ity grades is 0.0079. This proves that real-world scalability grades
and parallel computing scalability grades are correlated with very
low strength. The Pearson correlation coefficient between post-
questionnaire grades and parallel computing scalability grades is
increased to -0.34. It shows that the authors could expect the correla-
tion strength between real-world scalability and parallel computing
scalability can be increased by learning parallel computing.
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Figure 3: The relationship between real-world scalability
and parallel computing scalability.

4.3 RG3: Students’ Questions Valuable to the
Understanding to Scalability

Students’ questionsmainly came from in-class questions, laboratory
class questions, and project questions. Each class lecture averaged
ten questions. These questions were commonly about topics such as
architecture concepts and programming problems. Major questions
related to scalability issues were as follows: How to calculate the
efficiency? What is weak scaling? What is strong scaling? How
to identify the scalability of one program? What is the difference
between Amdahl’s law and Gustafson’s law? How to understand
the four steps of Foster’s parallelization method and how to apply
the Foster method to solve a real application? How to calculate
the number of collective communications for different partitioning
approaches?

Lab class questions are mainly about programming problems,
algorithm implementation, and actual operations on the Tianhe-2A
supercomputer, such as how to assign jobs to the expected amount
of computer nodes? How to map processes to computer nodes and
processor cores? Below are some choice questions that show the
value of understanding parallel computing scalability.
Q1 The impact of different matrix partitioning methods on parallel

performance in a matrix-vector multiplication program.
Question: For a matrix-vector multiplication program, which
is better, partitioning the matrix by column or by row? Why?

Teaching Solution: Analyze two matrix partitioning methods
(by row and by column) and compare their numbers of collec-
tive communications. Run programs and compare execution
time under two partitioning methods. Students will find parti-
tioning the matrix by column would produce more collective
communications compared to partitioning the matrix by row
and then result in parallel performance reduction.

Q2 The impact of memory bandwidth on speedup and efficiency.
Question: There was a case in Project 1-II: a program with 8
processes achieved higher speedup than with 4 processes. But
the program runningwith 16 processes did not achieve expected
speedup like with 8 processes. Why? Then the speedup with 32
processes were again higher than that with 16 processes. Why?
Teaching Solution: For a shared-memory architecture on one
compute node of the Tianhe-2A supercomputer we count the
number of physical cores used for each row and consider the im-
pact of limited memory bandwidth on speedup and efficiency.
We doubt this speedup jump is related to the number of as-
signed cores on one compute node. It is possible to do more
experiments to verify our assumption, where different numbers
of compute nodes and processor cores are assigned.

Q3 The impact of architecture and node allocation strategy on
parallel execution time.
Question: Students found an 8-process program running on
one compute node was slower than running on two compute
nodes. Why does the fixed amount of processes have a different
execution time? How do different node allocations influence
parallel execution time?
Teaching Solution: Illustrate the concept of memory band-
width and list the facts that influence memory bandwidth. The
limited memory bandwidth on a shared-memory architecture
sometimes has an influence on parallel execution time. Analyze
why different assignments of processes to compute nodes will
bring about different actual memory bandwidth on one node.
Suggest an experiment to verify the assumption: parallel ex-
ecution time of a memory-intensive program will be greatly
influenced by actual memory bandwidth.

5 CONCLUSIONS
This study focused on what influenced students’ understanding
of parallel computing scalability issues. The authors found under-
standing or misunderstanding parallel computing scalability has
a correlation with students’ performance. We explored the rela-
tionship between real-world scalability and parallel computing
scalability, and we found real-world scalability and parallel com-
puting scalability were correlated with low strength. There is no
evidence to prove real-world concepts and experiences will greatly
influence the learning of parallel computing concepts. However, the
authors could expect the correlation strength between real-world
scalability and parallel computing scalability can be increased by
learning parallel computing. We need more research and analyses
about the two types of scalability in the future. Finally, the authors
showed some examples of student questions that are valuable to the
understanding of parallel computing scalability. According to pre-
and post-questionnaires, the effectiveness of our parallel computing
course resulted in an 11.7% improvement in correct answers and a
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decrease of 36.8% in obvious but wrong answers. Most students are
in favor of the approach used.
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