
Performance Evaluation of Monte Carlo Based Ray Tracer
Ayobami Ephraim Adewale

University of Tartu
Tartu, Estonia
adewale@ut.ee

ABSTRACT
The main objective of computer graphics is to effectively depict an
image in a virtual scene in its realistic form within a reasonable
amount of time. This paper discusses two different ray tracing tech-
niques and the performance evaluation of the serial and parallel
implementation of ray tracing, which in its serial form is known to
be computational intensive and costly for previous computers. The
parallel implementation was achieved using OpenMP with C++,
and the maximum speedup was ten times that of the serial imple-
mentation. The experiment in this paper can be used to teach high-
performance computing students the benefits of multi-threading in
computationally intensive algorithms and the benefits of parallel
programming.

KEYWORDS
ray tracing, Monte Carlo, Open Multi-Processing (OpenMP), high
performance computing, algorithm, cluster, parallel programming

1 INTRODUCTION
Light tracing is an important aspect of computer graphics that has
over the years been adopted to simulate the real life behavior of
illuminance on an object, environment, or scene in different areas
such as animations, games, and image rendering. The computation
of this illumination is being done by computer programs which
calculate illuminance on a particular scene relatively precisely [10].
Due to its importance, there have been different techniques adopted
for this purpose, but the two most popular are rasterization and ray
tracing [3].

In rasterization, an image in a vector format is taken and con-
verted into a pixelated image known as a raster image for output
on a video display or static environment. In ray tracing, an image is
rendered by tracing the trajectories of light rays projected through
pixels in a view plane [6]. The main differences between these two
techniques is the way an image is rendered and the time it takes to
render an image. Rasterization has been themost popular of the two,
because it is faster and balances the performance needed with the
ability to create acceptable images. Regardless of its advantage, the
application of rasterization is limited in computer graphics when a
photo-realistic image is needed. This is due to its poor handling of
light reflection when rendering 2D and 3D images.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/12/1/4

Rendering an image with ray tracing is slow when compared to
rasterization. However, it is able to render a more photo-realistic
image, due to its good handling of shadows, reflections, and blurs.
With the arrival of parallel programming and GPUs, significant
performance gains have been achieved when rendering with the
ray tracing technique. The ray tracing technique is divided into two
types: traditional ray tracing and distributed ray tracing. Distributed
ray tracing tries to extend the traditional ray tracing technique by
sampling more rays than the number of pixels in the image. An
example of traditional ray tracing is the Turner Whitted technique,
while the Monte Carlo technique is an example of distributed ray
tracing [11].

With recent advances in computing power, various researchers
have picked up an interest in ray tracing. The main objective is
to find different ways of reducing time to solution while retain-
ing the property of creating realistic images. The use of parallel
frameworks such as the Message Passing Interface (MPI) and Open
Multi-Processing (OpenMP) have been proposed by researchers
over the years. In this paper, a parallel implementation and a serial
implementation of a ray tracing algorithm were studied based on
rendering performance. The serial implementation was derived
from a parallel implementation that was developed using C++ and
made parallel using OpenMP [1]. The performance evaluation was
carried out on two high performance computing (HPC) clusters pro-
vided by University of Tartu High Performance Computing Center
[9].

The paper is organized as follows. Section 2 introduces the con-
cept of ray tracing and OpenMP. Section 3 discusses different state-
of-the-art methods. Section 4 discusses the parallel implementation
with OpenMP in [1]. In Section 5, the result of the empirical analysis
is presented and discussed. Finally, in Section 6, the conclusion and
reflection are discussed.

2 CONCEPTS
2.1 Ray Tracing
Ray tracing takes an image from a 3D scene by tracing the trajecto-
ries of light rays through pixels in a view plane. Light tracing in ray
tracing can be done in two ways: forward tracing and backward
tracing. In forward tracing, rays are traced from eyes to the light
source, while in backward tracing, rays are traced from the light
source to the eyes. This method is compute intensive, because each
ray emitted by the light source has to be traced to the eyes, even
those that were not able to reach the eyes.

A typical ray tracing environment is made up of eyes or a camera,
a scene, object(s), and a light source. Figure 1 describes a simple ray
tracing scenario. A ray from the eyes is projected in a straight line
for each pixel of the view plane into the scene. Ray intersection is
checked to see if the ray intersects with any object in the scene.

Volume 12, Issue 1 Journal of Computational Science Education

24 ISSN 2153-4136 January 2021

https://doi.org/10.22369/issn.2153-4136/12/1/4 


Figure 1: Ray Tracing Scenario.

This first ray is referred to as the primary ray, and its purpose is
to discover the objects in the scene. There are three intersection
possibilities for this ray, and Figure 2 depicts a simple scenario.
• No Intersection.
• One Intersection.
• Two Intersections.

The third case only happens if the object in the scene is opaque.
If an intersection exists, a second ray referred to as the secondary
ray is sent from the point of intersection to the light source. If
this secondary ray that was emitted is blocked by an object in
the scene, the color of the object is projected as a shadow, and
if it successfully reaches the light source, that pixel is lit up. The
lighting of the pixel is determined by this secondary ray. If there
are two points of intersection, the distances of the two points to the
eyes are calculated, and the closest point is selected. In ray tracing,
the secondary ray is divided into three: shadow ray, reflection ray
and refractive ray. These rays make it possible for the ray tracing
technique to create a more realistic rendering.

Algorithm 1 is a simple ray tracer algorithm as described by
Turner Whitted. In the algorithm, each ray cast through the pixel in
the plane can be represented as a line that has an origin represented
with O and a direction represented with l . At any time, a point on
the line or ray can be represented with

Point = O + (l ∗ d ) (1)

Figure 2: Ray Tracing Intersection Possibilities.

for each pixel in the viewing plane do
for each object in the scene do

if ray intersects an object in the scene then
select min(d1,d2);
recursively ray trace the reflection and refraction
rays;

calculate color;
end

end
end

Algorithm 1: Ray Tracing Algorithm

where d is the distance of the point from the ray origin. Having
declared the origin and direction of the ray and also the location
of the sphere, we proceed to know if a ray projected from the eye
through a pixel in the view plane intersects with any sphere in our
scene at any points. say, P0, and P1.

To do this, we need to solve for dc:

dc = C0 . l ; where C0 = C −O . (2)

dc is the distance of the projected ray from the center of the sphere
to the ray origin, C is the center of the sphere, C0 is the distance
from the center of the sphere to the ray origin and . denotes a dot
product. If dc is less than zero, then it can be assumed that there
is no intersection, but if it is greater than zero, we proceed to the
second step, which is to calculate the distance from the center of the
sphere to the projected ray. This can be calculated using Pythagoras’
Theorem, because we have now formed a right-angled triangle.

D =

√
dc2 − (C0)2 (3)

If the value of D is greater than the radius of the sphere, then it
means the ray does not intersect any point of the sphere, and we can
move on to the next sphere. If the value of D is not greater than the
radius, then we continue by looking for the points of intersection
on the sphere. The point of intersection is calculated as:

P = O + (l ∗ dp ) (4)

where dp is the distance from P to O, and it is calculated using:

dp = dc − tc (5)

Journal of Computational Science Education Volume 12, Issue 1

January 2021 ISSN 2153-4136 25



where tc can be obtained from the second right-angled triangle in
our sphere using Equation 6,

tc =
√
r2 − D2 (6)

where r is the radius of the sphere. If the ray intersects at two points,
the distance of the second point represented as dp2 is calculated as
dp2 = dc + tc .

Algorithm 2 describes the ray intersection algorithm.

FUNCTION: boolean intersection(Ray ∗ R,
Sphere ∗ S, f loat ∗ dp1, f loat ∗ dp2)
f loat C0 = S −→ center − R −→ Ray_Oriдin
f loatdc = dot (C0,R −→ direction)
if dc ≤ 0.0 then

return f alse
else

f loat D =
√
dc2 − (C0)2

if D ≥ S −→ radius then
return f alse

end if
f loat tc =

√
(S −→ radius )2 − D2

dp = dc − tc
dp2 = dc + tc
return true;

end if
Algorithm 2: Ray Intersection Algorithm.

Merging Algorithms 1 and 2, we can derive the time complexity
of a simple ray tracing algorithm as:

O (pnd ) (7)

where p is the number of pixels, which can be represented as:

pixels = width ∗ heiдht (8)

and n is the number of objects in the scene. d is the time complexity
of computing the intersection, which can be represented as 1. The
time complexity can then be rewritten as:

O (whn) (9)

This time complexity means that given a screen resolution of x pix-
els, a scene with a large number of objects will take more rendering
time than a scene with fewer objects.

2.2 Distributed ray tracing
The major drawback of the traditional ray tracing method is that it
causes aliasing. When an intersection is not found, the background
color is returned, and this means that for every point, a color is
always returned. This behaviour can always lead to rendering of
unintended patterns. The solution to this is to introduce more rays
into the scene and also more randomness.

Distributed ray tracing extends the traditional ray tracingmethod
by introducing the concept of sampling to remove the aliasing ef-
fects that exist in traditional ray tracing. By removing the aliasing
effects, a photo-realistic image with better shadows, reflections,
and refraction is rendered. The single ray in traditional ray trac-
ing is replaced with a distribution of rays, and an average of a
random sampling of the rays is taken to reduce aliasing effects.

These random samples can be generated using Monte Carlo (MC)
or Quasi-Monte Carlo (QMC) algorithms. The rendering time of
a distributed ray tracing then becomes a function of the number
of random rays sampled. This means that the rendering time of a
distributed ray tracing application is always more than that of a
traditional ray tracing technique.

In traditional ray tracing, tracing of rays is usually terminated
after reaching a diffuse surface, but in the distributed technique,
after a ray hits a diffuse object, child rays are generated randomly
according to the bi-directional reflection and refraction distribution
function of the diffuse surface [5].

A simple MC-based distributed ray tracing algorithm is pre-
sented in Algorithm 3. The algorithm shows how random rays are
distributed in a single pixel, and for each ray a computation is done.
The MC algorithm is then used for sampling, and the actual color
of the pixel is computed based on the sampled rays.

for each pixel in the viewing plane do
for each ray in random rays do

for each object in the scene do
if ray intersects an object in the scene then

select min(d1,d2);
recursively ray trace the reflection and
refraction rays;

return calculated color;
end
if no intersection then

return background color;
end

end
end
random sample rays with montecarlo;
calculate color average;

end
Algorithm 3: Distributed Ray Tracing Algorithm.

The time complexity of the algorithm is given as:

O (whrn) (10)

where r is the number of distributed rays projected to each pixel.
This time complexity means that a distributed ray tracing algorithm
using the same configurations as a traditional ray tracing algorithm
will surely take more rendering time.

2.3 OpenMP
Open Multi-Processing (OpenMP) has often been referred to as
the de-facto standard for writing parallel programs with shared
memory architectures, and these parallel programs can simply be
achieved by adding compiler pragmas to the serial equivalent [7].
It allows for shared memory parallel programming in languages
like C, C++, and Fortran. With OpenMP being a shared memory
architecture, all threads spawned out have access to the same main
memory and the same data. OpenMP is often used when there is
a need to facilitate the execution of legacy code on a multi-core
processor in order to utilize all its cores [7].

Volume 12, Issue 1 Journal of Computational Science Education

26 ISSN 2153-4136 January 2021



Figure 3: OpenMP Architecture.

In Figure 3 an architecture of OpenMP is presented. It can be
seen that all the operating system threads have access to the same
shared memory space, and the threads are being managed by the
OpenMP run-time library. The parallelism in the run-time library
is then specified using compiler directives, which are available in
the application code.

In OpenMP, threads run in parallel, execute the same code, and
share the same memory space. Each thread spawned out has a
unique identifier that can be obtained usingomp_дet_thread_num().

Table 1 gives a list of some useful OpenMP directives and an
explanation of what they do. The directives are always defined
at the beginning of a blocked region. The #pragma omp parallel
marks the entry point of a parallel region, and without that, threads
cannot be spawned out.

A simple OpenMP algorithm that prints to console hello world is
presented in Algorithm 4. The algorithm starts by specifying the
parallel region of the code with the #pragma omp parallel directive,
and the default number of threads is used. The blocked region is
executed by all the threads in parallel. Each thread gets its identifier
and prints hello world plus the identifier of the thread.

In summary, there are five major elements of parallel program-
ming with OpenMP:
• Create threads with shared memory.
• Loop parallelism.
• Nested parallelism.
• Dynamic task scheduling.
• Thread synchronization.

3 RELATEDWORK
Different state of the art methods have been developed to guaran-
tee faster ray tracing rendering in computer graphics. Some of the
most popular methods have explored the application of parallel
programming techniques and the use of fast computation hardware

Table 1: OpenMP Directives.

Directive Function

#pragma omp parallel Specifies the parallel region of a
code.

#pragma omp for Defines the start of a loop paral-
lelism.

#pragma omp for simd Defines the start of a loop paral-
lelism that uses SIMD instructions.

#pragma omp single Specifies a region that should be
executed by a single thread.

#pragma omp sections A non-iterative shared parallel sec-
tion.

#pragma omp master Specifies a region that should be
executed only by the main thread.

#pragma omp ordered Specifies a region that must be ex-
ecuted in order.

export
KMP_AFFINITY=value

Used to define thread affinity types
and is specific to Intel compilers.
value can be verbose, scatter, or
compact.

omp_get_num_threads Used to get the count of all cur-
rently running threads.

omp_get_thread_num Used to get the identifier of a cur-
rently running thread.

omp_set_num_threads Used to set the number of threads
that should be used for executing
parallel regions.

#pragma omp parallel;
if main then

int id = omp_get_thread_num();
print("hello (%d)", id);
print("world (%d) ", id);

end
Algorithm 4: Simple OpenMP Hello world.

like GPUs. The use of the Message Processing Interface (MPI) was
explored in [2]. MPI is a message passing library which allows
all available processors to communicate while executing the same
program. All processors execute the same code, but in a separate iso-
lated memory spaces, and communication between each processor
is handled with an API. In the research, a near linear relationship
between the number of processors used and the ray tracing ren-
dering rate was reported. It was also reported that the efficiency
rate achieved after adapting the serial ray tracing code to use MPI
was over 98%. Unlike in [2], the focus of this paper is in the use
of a shared memory device and not a distributed memory device
which is used by MPI. Also, unlike in OpenMP, the time it took to
communicate between processors used in MPI was also factored in
when calculating the ray tracing rendering time.

Also in [6], an empirical study on the use of both OpenMP and
MPI was explored for creating a parallel ray tracing. In the report,
a pixel-wise load balancing scheme was introduced to allow load

Journal of Computational Science Education Volume 12, Issue 1

January 2021 ISSN 2153-4136 27



distribution for some specific scenes. The report proved that both
OpenMP and MPI are capable of achieving near optimal efficiency
when used in ray tracing. In the research, a near linear speedup
was also reported for both methods. Also, compiler performance
between an Intel compiler and a GNU C++ compiler were studied,
and the research reported that the Intel compiler outperformed
the GNU C++ compiler. Unlike in [6], in our paper, the effect of
different thread affinity types and different distributed systems was
explored.

The use of GPU clusters for ray tracing rendering was explored
by Chen et al [4]. In the research, the researchers were able to use
GPU clusters to improve the rendering performance of a real-time
ray tracing. The frame per second (FPS) achieved by the GPU clus-
ter was compared to a single node GPU and a CPU. The research
showed that the GPU cluster achieved more FPS than a single node
GPU, and the single node GPU achieved more FPS than the CPU.
A massively parallel ray tracing algorithm using a GPU was also
developed by Qin et al [8]. The research showed that the GPU sig-
nificantly reduced the rendering time of the ray tracing algorithm.

4 METHODS
Distributed ray tracing is computationally intensive, because inten-
sive ray-geometry intersection computation must be done for rays
projected into the scene through each pixel of the view plane. Since
each ray is not dependent on the other, this also makes ray tracing
embarrassingly parallel. To show that a distributed ray tracing is
embarrassingly parallel, a parallel implementation in [1] was used
as a case study. The scene consists of a spherical light source, a
glass, a mirror, and one Cornell box, which was made of 6 spheres.

A loop-level parallelismwas introduced usingOpenMP to achieve
parallelism in [1]. The loop-level parallelism made it possible to
divide the intensive ray-geometry intersection among all participat-
ing threads. Each thread created by the process is allocated a task,
they execute their own part of the code, and return with the result.
Since OpenMP is a shared memory framework, the scene to be ren-
dered was placed in shared memory in the form of a data structure,
and this eliminated the possible overhead that could be introduced
during data communication between threads, as all threads could
access the same scene data.

In Algorithm 5, it can be seen that two levels of loop-level paral-
lelism were implemented: one for each pixel and another for each
ray distributed into the pixel. This was done because each pixel is
independent of the others, and the same can be said for each of the
distributed rays. Based on the algorithm, an empirical analysis is
then carried out on how compiler types and numbers of threads
affect rendering time. The focus here is measuring scability using
speedup. Speedup was calculated using the formula:

Speedup = Ts/Tp (11)

whereTs is the rendering time in serial andTp is the rendering time
in parallel for different thread numbers.

Also, the effect of using different thread affinity was explored
in this paper. With thread affinity, we are able to control OpenMP
thread placement, and this allows us to study the effect on the paral-
lel ray tracing algorithm. In this paper, two types of thread affinity
were explored, namely Scatter and Compact. When the Compact
thread affinity type is specified, all the spawned out threads are

#pragma omp parallel;
#pragma omp for;
for each pixel in the viewing plane do

#pragma omp for;
omp_set_num_threads(thread_num);
for each ray in random rays do

for each object in the scene do
if ray intersects an object in the scene then

select min(d1,d2);
recursively ray trace the reflection and
refraction rays;

return calculated color;
end
if no intersection then

return background color;
end

end
end
random sample rays with montecarlo;
calculate color average;

end
Algorithm 5: Parallel Ray Tracing with OpenMP.

placed close to each other. With Scatter, the threads are distributed
as evenly as possible, and this eventually reduces the cache and
memory bandwidth contention between threads.

5 RESULTS AND DISCUSSION
The code takes a single parameter as an input, which is the number
of samples per pixel (spp), and for the performance evaluation of the
distributed ray tracing, 25,000 samples per pixel (pixel) were used.
The experiment was done on HPC clusters provided by University
of Tartu [9], and the configuration is presented in Table 2.

Table 2: HPC Configuration.

Rocket cluster Vedur cluster

20 cores 32 cores
2x Intel Xeon 2x AMD Opteron
64GB RAM 150GB RAM

1TB hard disk drive 500GB hard disk drive
4x QDR Infiniband 4x QDR Infiniband

The serial implementation of the parallel code in [1] was com-
piled using two different compilers: g++ compiler and Intel C++
(ICC) compiler. Figure 4 shows the rendered scene when the serial
implementation was executed. The time taken to render the scene
was measured, and the result is presented in Table 3.

Figure 5 is the scene rendered when the parallel implementation
in [1] was executed, and it can be seen that the quality of the scene
was preserved.

The rendering time of the parallel implementation was measured
for both the Intel and g++ compilers for 2n threads, where n is 1, 2,
3 or 4. Due to the number of cores available on Rocket Cluster, the

Volume 12, Issue 1 Journal of Computational Science Education

28 ISSN 2153-4136 January 2021



Figure 4: Serial ray tracing imagewith Cornell box, one light
source, and two spheres, making use of 25,000 samples per
pixel.

Table 3: Serial Ray Rendering.

Compiler Rendering time(minutes)

Intel ICC compiler 120
g++ compiler 182

Figure 5: 20 threads on an Intel Xeon based cluster (Rocket
cluster).

last thread number used during performance testing was 20 threads.
Since the main aim of parallelism is to speed up the performance
while maintaining the quality of the image, the quality of the image
was studied throughout the test, and it was observed that the quality
was preserved for each thread range.

Table 4 shows the rendering time in seconds and the speedup
after optimizing using OpenMP for different thread numbers while

Table 4: Intel Xeon based cluster with Intel compiler

Threads Rendering Time Speedup

2 60 minutes 2.0
4 33 minutes 4.0
8 17 minutes 7.0
16 8 minutes 14
20 7 minutes 18

executing with the Intel compiler. In Table 4, it can be seen that a
linear speedupwas achieved in the parallel implementation, and this
is because the ray tracing algorithm is an embarrassingly parallel
algorithm.

Table 5: Intel Xeon based cluster with g++ compiler

Threads Rendering Time Speedup

2 86 minutes 2.0
4 46 minutes 4.0
8 24 minutes 8.0
16 12 minutes 15
20 10 minutes 20 seconds 14

Table 5 shows the rendering time and speedup with the g++
compiler in the Rocket cluster. It is evident that the Intel compiler
rendered the image faster than the g++ compiler; however, they
both achieved a linear speedup for up to 16 threads.

The impact of using different thread affinities was also measured,
and this result can be seen in Figure 6, which shows that the two
thread affinities only increased the efficiency of the parallel execu-
tion of the code. We can also see that the speedup on 20 threads
when using the compact thread affinity reduced compared to the
scatter thread affinity.

Figure 6: Speedup for Thread Affinity (Compact and Scatter)

Journal of Computational Science Education Volume 12, Issue 1

January 2021 ISSN 2153-4136 29



After computing the performance of the parallel code on the
Intel Xeon cluster, attempts were made to see the performance of
the parallel code on an AMD based cluster, which is also one of
the University of Tartu clusters. This was done because the AMD
based cluster is not limited to 20 cores on a single node like the
Intel Xeon cluster, but rather 32 cores. The rendering time of the
parallel implementation was measured on only the Intel compiler,
and the serial code rendering time was 252 minutes (4 hours 21
minutes).

Table 6: AMD based cluster with Intel compiler.

Threads Rendering Time Speedup

2 126 minutes 2.0
4 62 minutes 4.0
8 31 minutes 8.0
16 16 minutes 16
20 10 minutes 25

Comparing the AMD based cluster performance to that of the
Intel Xeon based cluster, it can be observed that there is a difference
in the rendering time, and this is due to the difference in hardware
architecture of the two clusters. It is evident that linear speedup was
also achieved up to 20 threads, and 100% efficiency was achieved up
to 16 threads when running the parallel code on the AMD cluster.
Again, the quality of image rendered was the same across the thread
range.

In Figure 7 and Figure 8, the graphical representations for ren-
dering time and speedup of all three cases are presented. It can be
seen in Figure 7 that the rendering time decreases as the number of
threads increases. However, as the number of threads approaches
20, the difference in rendering time starts to decrease for all cases. In
Figure 8, the graphical representation of the speedup is presented. It
can be seen that the speedup for each number of threads is specific
to each case. However, the speedup achieved is the same when the
number of threads spawned is less than five.

6 CONCLUSION AND REFLECTION
6.1 Conclusion
In this paper, a serial Monte Carlo based distributed ray tracing tech-
nique derived from a parallel implementation in [1] was compared
to its parallel implementation, and the performance speedup on
two compilers was measured while changing the number of threads.
The test was carried out on University of Tartu’s HPC cluster, and
the performance test showed that a linear speedup was achieved,
and while using thread affinities of type compact and scattered, an
100% efficiency was achieved for different thread numbers.

A very interesting future work will be to compare a serial real
time distributed ray tracing implementation with a parallel imple-
mentation of both OpenMP and MPI. Since MPI is a distributed
memory framework, overhead due to data communication between
processors can be anticipated in MPI, and this might make it ineffi-
cient for pluralizing scenes with large data sets, such as data sets
used in real time ray tracing.

Figure 7: Render Time.

Figure 8: Speedup.

6.2 Reflection
The experiment carried out in this paper was done while taking the
parallel computing course at University of Tartu, and it was my first
attempt at working in a high performance computing environment.
Prior to this, I had no knowledge of parallel programming nor par-
allel computing. The greatest challenge for me while working on
this project was understanding different frameworks for writing
parallel programming codes like OpenMP and MPI. At the end, this
experiment introduced me to parallel computing, different tech-
niques for writing parallel programs, and methods for calculating
parallel efficiency. In addition, it enriched my experience in the
management and allocation of resources in leading-edge computing
infrastructure through writing Slurm scripts.

Overall, working on this project was a unique experience and
opportunity for me in the field of HPC. The experience gained
was also useful when I was writing machine learning codes for my
master’s thesis.

Volume 12, Issue 1 Journal of Computational Science Education

30 ISSN 2153-4136 January 2021



ACKNOWLEDGMENTS
Huge thanks go to University of Tartu for making their HPC clusters
available for this experiment. Also, big thanks go to Dr. Benson
Muite for his support and guidance throughout the course of the
experiment.

REFERENCES
[1] Kevin Beason. 2013. Monte Carlo Global illumination Code in C++. Retrieved

April 4, 2020 from http://www.kevinbeason.com/smallpt/
[2] Charles B. Cameron. 2008. Parallel Ray Tracing Using the Message Passing

Interface. IEEE Transactions on Instrumentation and Measurement 57, 2 (2008),
228–234.

[3] Chun-Fa Chang, Kuan-Wei Chen, and Chin-Chien Chuang. 2015. Performance
comparison of rasterization-based graphics pipeline and ray tracing on GPU
shaders. In 2015 IEEE International Conference on Digital Signal Processing (DSP).
120–123. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7251842

[4] M. Chen and H. Huang. 2018. A Real-time Parallel Ray-tracing Method Based
On GPU Cluster. In 2018 IEEE International Conference of Safety Produce Informa-
tization (IICSPI). 327–330.

[5] Balázs Csébfalvi. 1997. A Review of Monte Carlo Ray TracingMethods. Retrieved
April 4, 2020 from http://www.cescg.org/CESCG97/csebfalvi/index.html

[6] Sadraddin A. Kadir and Tazrian Khan. 2008. Parallel Ray Tracing using MPI and
OpenMP. Technical Report. Stockholm, Sweden.

[7] Manji Mathews and Jisha P. Abraham. 2016. Automatic Code Parallelization with
OpenMP task constructs. In 2016 International Conference on Information Science
(ICIS). 233–238.

[8] Y. Qin, J. Lin, and X. Huang. 2015. Massively parallel ray tracing algorithm using
GPU. In 2015 Science and Information Conference (SAI). 699–703.

[9] University of Tartu. 2014. HPC cluster resources. Retrieved May 29, 2020 from
https://hpc.ut.ee/en/resources/

[10] Jan Škoda and Martin Motyčka. 2018. Lighting Design Using Ray Tracing. In
2018 VII. Lighting Conference of the Visegrad Countries (Lumen V4). IEEE, 1–5.
https://ieeexplore.ieee.org/document/8521111

[11] T. Whitted. 2020. Origins of Global Illumination. IEEE Computer Graphics and
Applications 40, 1 (2020), 20–27.

Journal of Computational Science Education Volume 12, Issue 1

January 2021 ISSN 2153-4136 31

http://www.kevinbeason.com/smallpt/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7251842
http://www.cescg.org/CESCG97/csebfalvi/index.html
https://hpc.ut.ee/en/resources/
https://ieeexplore.ieee.org/document/8521111

	Abstract
	1 Introduction
	2 Concepts
	2.1 Ray Tracing
	2.2 Distributed ray tracing
	2.3 OpenMP

	3 Related Work
	4 Methods
	5 Results and Discussion
	6 Conclusion and Reflection
	6.1 Conclusion
	6.2 Reflection

	Acknowledgments
	References



