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ABSTRACT
This paper provides a supervised machine learning example to
identify laboratory glassware. This project was implemented in an
Introduction to Scientific Computing course for first-year students
at our institution. The goal of the exercise was to present a typical
machine learning task in the context of a chemistry laboratory to
engage students with computing and its applications to scientific
projects. This is an end-to-end data science experience with stu-
dents creating the dataset, training a neural network, and analyzing
the performance of the trained network. The students collected
pictures of various glassware in a chemistry laboratory. Four pre-
trained neural networks, Inception-V1, Inception-V3, ResNet-50,
and ResNet-101 were trained to distinguish between the objects in
the pictures. TheWolfram Language was used to carry out the train-
ing of neural networks and testing the performance of the classifier.
The students received hands-on training in the Wolfram Language
and an elementary introduction to image classification tasks in the
machine learning domain. Students enjoyed the introduction to ma-
chine learning applications and the hands-on experience of building
and testing an image classifier to identify laboratory equipment.
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1 INTRODUCTION
Machine learning applications are increasingly common in the
day-to-day interactions of students with technology. An increasing
number of products from thermostats to recommendations for the
next TV series or movie to watch use some form of machine learn-
ing to augment the user experience. Self-driving cars [1], victory
in the game of Go over humans [28], and image classification [7]
are some of the more high-profile applications of machine learning.
However, in addition to these, such tools are also used in email
spam filtering [6], credit score determination [9], as well as many
others. An interactive history of machine learning, including refer-
ences and major applications, has been developed by Google [4].
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A recently released review article provides more detailed informa-
tion on applications of machine learning to scientific domains and
specifically to the area of material science research [24].

A variety of resources in the domain of machine learning, neural
networks, and their applications is now available online that is
accessible to people with a range of technical skills. A full review of
machine learning is beyond the scope of this paper. However, the in-
terested reader is referred to multiple freely available resources for
additional information and background. Coursera hosts a very pop-
ular course on machine learning [11]. Wolfram Research provides
multiple training videos and courses to get users started on ma-
chine learning basics [15, 17], image classification [20], and many
more applications using the Wolfram Language [16]. Google also
provides a course for developers to introduce them to machine
learning, and the examples are accessible to beginners as well as
those with more advanced skills [5].

Supervised learning corresponds to the family of approaches
that train a neural network to learn from a training set of labeled
examples. The trained network, after testing, is utilized in per-
forming the specialized task on new samples of unlabeled data.
Deep learning, based on multi-layer neural networks, has recently
outperformed traditional approaches in computer vision and natu-
ral language processing. One of the major success stories of deep
learning applications is image classification [12]. The goal in image
classification is to classify a picture according to a set of possible
categories. Transfer learning in the field of computer vision enables
the construction and implementation of accurate models rapidly
and without rebuilding the entire neural network architecture. In
practice, a pre-trained model is adopted that was trained on a large
benchmark dataset to solve a problem similar to the one under
consideration. Such pre-built models are imported from published
literature and then adapted for application to the problem of in-
terest. A comprehensive review of the performance of pre-trained
models for computer vision problems using the ImageNet data [23]
challenge is provided [2].

A commonly implemented first example in image classification
is that of distinguishing images of cats from dogs. A pre-trained
neural network is provided with a labeled training set of images.
The training is performed, and the trained network’s performance
is then tested using images that were not part of the training set.
The success of training becomes quite evident with the results and
can be measured in terms of accuracy of classification. The exer-
cise is quite easy to construct and provides a good first example
for students. Another exercise that is widely used is the identifi-
cation of hand-written digits. The Modified National Institute of
Standards and Technology (MNIST) database of hand-written digits
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and its classification and identification are also widely used for
assessment of potential image classification algorithms [10]. That
database includes a training set of 60,000 examples and a test set
of 10,000 examples and is also used quite commonly as one of the
first examples in this domain.

Our main goals were to introduce students to machine learning
applications, highlight the ease of creating such applications using
the Wolfram Language, and encourage students to think about pos-
sibilities of applying such developments to scientific domains. This
project was carried out with students in the author’s “Introduc-
tion to Scientific Computing” course. The course philosophy and
design have been previously described in this journal [26]. That
course provides students with an introduction to programming in
the Wolfram Language using the Mathematica notebook interface.
The crux of the course is to provide students with hands-on expe-
rience in production, visualization, and analysis of technical data.
Modifications of that course design were also successfully imple-
mented to incorporate a course based undergraduate research style
experience with large-scale data analysis [27]. The course has been
taught at Wagner College for the last 6 years and has been highly
successful in building an awareness of computational approaches
in the sciences.

2 METHOD
Students used their smartphones to click pictures of various labo-
ratory glassware routinely used in a Chemistry laboratory. They
uploaded the pictures into a shared Google folder directly from
their phones. This procedure was adopted to simplify the data col-
lection process. Most of the pictures were taken with the goal of
having one main object in the image. A mixture of empty and filled
glassware was used to mimic a typical Chemistry laboratory setting.
For example, beakers of various volume capacities were used: 250
mL, 500 mL, etc. The chemical composition of the solutions was not
important for this exercise. Our intention was to introduce colors
into the beakers to increase the sample space of pictures. A col-
lection of sample images from each category is shown in Figure 3.
Table 1 displays the number of classes and the number of images
in each class in the dataset. A recent publication by Eppel et al.
[3] implemented crowdsourcing to collect pictures of glassware
in a chemistry laboratory. Their report is of much larger scope,
with identification of the phase of the substance present inside the
glassware. Our end-to-end exercise is designed with the express
purpose of acquainting undergraduate students with the entire pro-
cess, from collection and organization of raw images to analysis of
final results.

The overarching idea was to collect pictures of glassware in a
typical laboratory setting. Toward this end, some variability was
also introduced in each class by intentionally including some back-
ground clutter. However, we realize that this may not be a best
practice in terms of a practical goal of achieving the highest pos-
sible accuracy or success metric in object identification. Our goal
was to get students to think through some of these issues during
the collection of pictures. For example, the test tube collection class
has pictures of multiple test tubes organized in a test tube stand. In
this case, some test tubes were left empty, while others were par-
tially filled with some of the prepared solutions. The test tube stand

Table 1: Classes and number of images in each class

Class Number of images

Beaker 30
Buchner funnel 20
Buret 11
Buret stand 5
Erlenmeyer flask 24
Flat bottom flask 18
Funnel 23
Graduated cylinder 47
Pipet 16
Round bottom flask 24
Separatory funnel 22
Standard measuring flask 36
Test tube 6
Test tube collection 17
Test tube stand 14
Viscometer 14
Wash bottle 8
Total 335

Figure 1: Erlenmeyer flask images collected by the students.
Different colored solutions were used to fill up the flasks to
various capacities.

class has pictures of empty test tube stands of different types as
well as partially-filled and fully-filled stands. Clearly, this is a nebu-
lous area of labeling in our problem. However, that is a question of
semantics, and our interest in this exercise was to demonstrate iden-
tification between our assigned labels. Some glassware is routinely
seen suspended: for example, burets, separatory funnels, etc. In all
such cases, we collected pictures of the glassware by placing them
on a laboratory bench and also with their stands or supporting
structures.

Figure 1 shows the collection of pictures of Erlenmeyer flasks that
were used in the exercise. Some of the flask pictures were taken with
empty flasks orwithwater in the flask. Asmentioned earlier, colored
solutions were also used in some of the pictures. A concerted effort
was made to ensure that the pictures covered different volumes and
with some variations in the contents of the flasks. The location of
the flasks was also varied, and some pictures were taken on the
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Figure 2: Images of pipets of various volume capacities in
the dataset. Pipets seem to be difficult to differentiate from
the background, and some images used a piece of paper to
highlight the object.

laboratory bench, while others involved a common surface that
was used for many pictures. Students used their own phones to
collect pictures, and consequently there is considerable variation
in the brightness, clarity, and contrast between the pictures. Some
clutter, like faucets or electrical sockets, is visible in some of the
pictures. Figure 2 displays the collection of pipet pictures that were
part of the dataset. Pipets were particularly difficult to distinguish
from surroundings under the lighting conditions in the laboratory,
and some pictures utilized a small piece of colored paper to provide
a suitable contrast for the pipet. Some pictures included a rubber
bulb attached to a pipet. Additionally, it was quite difficult to get a
clear picture of the 5 mL pipets, and some images incorporated a
small piece of paper for easier differentiation. An additional picture
was added with a pipet suspended from a stand to get a vertical
orientation against a neutral wall background. In a similar fashion,
buret pictures were also taken with a stand in the picture frame.
Similar considerations were applied to all of the images in the
dataset.

The image classification task was carried out with four neural
networks that have demonstrated excellent results with the Ima-
geNet competition data [8]. This allowed comparative studies and
group-based investigations. Inception v1 [13] and Inception v3 [14]
released by Google and ResNet-50 [19] and ResNet-101 [18] re-
leased by Microsoft were implemented in our exercise. All of these
networks were trained on the ImageNet Large Scale Visualization
Challenge 2012 classification dataset [23] consisting of 1.2 million
images with 1,000 classes of objects. The plug-and-play nature of
the pre-trained neural networks was also emphasized by imple-
menting multiple neural networks. These networks are quite recent
and well-known in image classification tasks. A brief overview of
these networks is provided in Table 2.

Table 2: Four neural networks used for the image classifica-
tion task. The pre-trained networks were downloaded from
the Wolfram Neural Net Repository.

Network Year Source Layers Parameters

Inception v1 2014 Google 147 6,998,552
Inception v3 2015 Google 311 23,885,392
ResNet-50 2015 Microsoft 177 25,610,216
ResNet-101 2015 Microsoft 347 44,654,504

Figure 3: A sample of thumbnail-sized pictures from each of
the classes in the dataset used for the classification process.

These pre-trained neural networks were downloaded from the
Wolfram Neural Net Repository [22] and set up according to the in-
structions provided on the Wolfram website [21]. The training was
performed by removing the final classification layers and replacing
them with a classifier corresponding to the number of classes, 17,
and a SoftMax layer to compute probabilities. The function Net-
Drop was used to perform these operations, and the training was
performed using NetTrain. The training was carried out on a system
with dual consumer class Graphical Processing Units for a maxi-
mum of 10 training rounds. The training performance is shown in
Figure 5. The collected images were labeled, and the dataset was
split into training and testing sets. 80% of the images were used
for training, and the other 20% were reserved for testing. Since the
population of items in the dataset is not uniformly distributed, the
splitting of data into training and testing sets was carried out at
the level of each class. This ensured that the training and testing
sets contained each item of laboratory equipment. The training
rounds with augmented images, and thus much larger number of
samples, drops down in error during training much more rapidly as
compared to the dataset with no augmentation of image samples.
In either case, 10 training rounds seem to be sufficient in achieving
a very low error during the training phase of the neural networks.

The image classification task performs best with small images,
so the first step was to take the thumbnail version of all the images
in the dataset. The following four datasets were constructed from
the collected pictures to carry out this activity:
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(1) Full color images captured by students
(2) Enhancement of the full color image dataset by image aug-

mentation methods
(3) Grayscale images from the full color images
(4) Enhancement of the grayscale images by image augmenta-

tion methods

The step of image augmentation can be carried out through a
hidden layer in the neural network. However, we chose to explicitly
perform image augmentation to lead students to think through the
steps of modifying images to enhance the dataset. The following
module was used to carry out the image augmentation.

imageSetAugmentation[objectImages_List]:=Module[
{detailEnhanced,blurredImages,noisyImages,
lightDarkImages,reflectedImages,
rotatedImages,augmentedImages},
detailEnhanced=ImageEffect[#,"DetailEnhancing"]
&/@objectImages;
blurredImages=Blur[#,RandomInteger[{1,3}]]&
/@objectImages;
noisyImages=ImageEffect[#,"Noise"]&
/@objectImages;
lightDarkImages=Join[Lighter[#]&/@objectImages,
Darker[#]&/@objectImages];
reflectedImages=ImageReflect[#,Left]&
/@Join[objectImages,detailEnhanced,blurredImages,
noisyImages,lightDarkImages];
rotatedImages=ImageRotate[#,RandomInteger[{-10,10}]Degree]
&/@Join[objectImages,detailEnhanced,
blurredImages,noisyImages,lightDarkImages,
reflectedImages];
augmentedImages=Join[objectImages,
reflectedImages,rotatedImages];
Return[augmentedImages];
]

The Wolfram Language function ImageEffect was used to carry
out detail enhancing and adding random noise effects to each image.
Images were blurred using the Blur function with a randomly cho-
sen pixel radius over which the blur was to be applied. Images were
modified to appear lighter or darker using the appropriately named
functions. Next, all of these images were collected and reflected
from left to right. The final operation was to rotate all of these
images with a randomly chosen rotation amount between -10 to 10
degrees. The result of all of these operations on one image taken
from the set of Erlenmeyer flask images is shown in Figure 4. For
every image in the raw dataset, 19 images were produced by the
image augmentation procedure described above. The number of
raw images in the dataset was 335, and after the implementation
of the imageSetAugmentation module, the number of images in-
creased to 6,365 for the two cases where image augmentation was
applied. Thus, each network was trained and tested on 4 versions
of the images. The versions without augmentation had 335 images
in their complete dataset and the versions with augmentations had
6,365 images in their dataset.

Figure 4: Image augmentation effects shown for an Erlen-
meyer flask image. The images are subjected to blurring, ro-
tation, reflection and changes in contrast as described in the
text.

3 RESULTS AND DISCUSSIONS
The training of each network resulted in a classifier trained to
distinguish between the classes of the laboratory glassware in our
training sample. These classifiers were then tested on the testing
set generated for each set of images. The classification experiment
for image sets without augmentation was carried out five times
each, and the sets with augmentation were carried out three times
each. The results of the classification performance on the testing
set were compared using multiple metrics and are presented below.

3.1 Accuracy
Accuracy is the fraction of correctly identified and labeled images
from the testing set. The accuracy of classification is calculated as

Accuracy =
True Positives + True Negatives

Total Examples
(1)

A graphical summary of the mean accuracy with standard error for
the four networks and the four types of image datasets is shown in
Figure 6. The plots show that there is essentially no difference in the
training times for color images and grayscale images. The ResNet-50
network seems to provide a suitable trade-off between accuracy and
training time in both cases, with and without image augmentation.
There is a marked increase in accuracy with the application of
image augmentation to increase the sample size for training. The
highest classification accuracy of around 92% is lower than the least
accuracy recorded, around 97% for the dataset enhanced with image
augmentation methods. The image augmentation module increased
the dataset size by a factor of 19, and a corresponding increase in
training times can be seen from the plots. However, accuracy is not
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(a) Validation error during training for the set of images
of glassware.
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(b) Validation error during training for the set of images
augmented with image modifications of glassware.

Figure 5: Validation error during training of all four neural
networks. The error is negligible within ten training rounds.
The validation error decreases significantly with the larger
dataset of augmented images.

a very reliable metric for a class-imbalanced dataset as present in
this exercise.

We also analyzed the accuracy and rejection rate of samples
based on different indeterminate threshold values. The maximum
rejection rate is seen at an indeterminate threshold of around 90%.
A more reasonable value of indeterminate threshold around 30%
or 0.3 leads to accuracy around 99% . Figure 7 provides a graph-
ical summary of results from the dataset of colored images with
augmentation effects for the ResNet-50 network.

3.2 F1 Score
The F1 score is the harmonic mean of the precision and recall for
the classification task. A high score implies that the classification
produces a low number of false positives and false negatives. The
values reported in Figure 8 are averages of the microaveraged F1
score from each of the iterations. The microaverage F1 score was
calculated for each iteration to account for the differences in class
frequencies. It is clear from Figure 8 that training on the augmented
dataset enlarged with image effects gives rise to the highest values
of F1 scores for each case, full color images and grayscale images.
The difference between ResNet performance and Inception perfor-
mance is larger when the dataset is small. The calculation of the F1
score is carried out as follows.

F1 = 2 ×
Precision × Recall
Precision + Recall

(2)
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(a) Accuracy of classification and training times for the
set of images of glassware.
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(b) Accuracy of classification and training times for the
set of images augmented with image modifications of
glassware.

Figure 6: Accuracy of all four neural networks for each
dataset. The ResNet-50 neural network provides the best
trade-off between accuracy and training time. The datasets
with image augmentation lead to much higher accuracy in
classification.
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Figure 7: Accuracy and Rejection rate as functions of the
threshold for indeterminate classification. Very high accu-
racy is observed for a wide range of classification thresholds
for the dataset with augmented images.

However, since this a multi-class problem, we computed the micro-
averaged F1 score. The micro-F1 score is calculated as:

Micro F1 score = 2 ×
Micro precision ×Micro recall
Micro precision +Micro recall

(3)

The calculation of the micro precision and micro recall are carried
out as shown below. The acronyms have their usual meaning, TP
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(b) F1 score for grayscale images with and without aug-
mentation.

Figure 8: Microaveraged F1 score for all datasets and neural
networks in this exercise. The classification on augmented
datasets gives rise to high F1 scores in each case.

stands for true positives, FP is for false positives, and FN represents
false negatives. The sums end at 17, because that is the number of
classes in this classification problem.

Micro precision =
TP1 + · · · +TP17

TP1 + · · · +TP17 + FP1 + · · · + FP17
(4)

Micro recall =
TP1 + · · · +TP17

TP1 + · · · +TP17 + FN1 + · · · + FN17
(5)

3.3 Confusion Matrix
The confusion matrix is a succinct graphical representation of the
confusions in the classes encountered by the classifier. Since the per-
formance of ResNet-50 seems to be the most optimal, we highlight
the confusion matrix for the top five confusions of this network
for the case of augmented and unaugmented full color images. Fig-
ure 9 shows the confusion matrix, and it is evident that some of the
confusions can be rationalized on the basis that the items in those
classes indeed look quite similar to the human eye. For instance,
a graduated cylinder is confused with a standard measuring flask,
and a beaker is misclassified as a standard measuring flask. Such
confusions, on a much smaller scale, also persist in the case of the
dataset with augmented images. Another interesting example is
that of a viscometer misclassified as a test tube. However, it is im-
portant to note that it is one misclassification out of 53 such images
tested.

3.4 Geometric Mean Probability
Finally, the average and standard error of the geometric mean prob-
ability for the trials are shown in Figure 10. The geometric mean of
the class probabilities provides an insight into the overall classifi-
cation performance. Larger values of the geometric mean signify
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(a) Confusion matrix for top five confusions for the set
of unaugmented full color images.
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(b) Confusion matrix for top five confusions for the set
of augmented full color images.

Figure 9: Confusion matrix plots for the classifier from the
ResNet-50 network. The numbers on the bottom of each
frame represent the number of correctly identified images,
and numbers on the right edge of the frame are the total
number of images for that class.

uniformly high confidence in the probabilities reported by the clas-
sifier during the testing phase. Figure 10 highlights the importance
of augmentation and the resulting larger dataset for each case. The
geometric mean probability appears insensitive to the color spec-
trum of the images and increases to values approaching 0.9 – 1.0
with the augmented datasets.

4 TEACHING IDEAS
The images of the dataset and sample notebooks used for training
of networks and data analysis are freely available as Supporting
Information. Short student projects to investigate the performance
of classification for smaller number of classes may be constructed
using the dataset. Students could be tasked with specific classes
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Figure 10: Geometric mean of probabilities of actual class
predictions. Part (a) is the set of full color images with and
without augmentation, and part (b) is the set of grayscale
images with and without augmentation. The augmented
datasets in each case display a much larger value of the geo-
metric mean, indicating stronger performance across the
different classes.

of glassware images and asked to compare accuracy of classifi-
cation. Another extension that could be implemented is to carry
out image augmentation using different types of transformations
and/or subsets of transformations from those that have been used
in our implementation. The students could then investigate the ef-
fectiveness of those transformations towards the final classification
performance. The exercise can also be extended by adding more
glassware images and investigating classification performance. An
interesting and possibly more advanced application would be to
identify the text on glassware that annotates the volume, especially
on beakers or Erlenmeyer flasks. Another application would be to
identify the piece of glassware and to identify the hand-written
or printed chemical species from the label attached to the glass-
ware. This would integrate image classification and hand-writing
recognition. The training of neural networks on the dataset with
image enhancement is best carried out on systems with a GPU. The
training times shown in this manuscript are result from execution
on a dual-GPU workstation. However, the smaller datasets with-
out image augmentation can be easily processed on workstations
or laptops without a dedicated GPU. We imagine that instructors
with limited resources could choose to carry out the training of
augmented datasets on a dedicated workstation with a GPU, and
students would work with the unaugmented datasets on their per-
sonal computing devices.

5 STUDENT FEEDBACK
This exercise was carried out with a cohort of eight first-year stu-
dents in the author’s Introduction to Scientific Computing course.

The students expressed enthusiasm and interest toward more appli-
cations of machine learning following this exercise. Although there
were no formal surveys, through informal feedback and one-on-one
interviews, students pointed out that they enjoyed the project. They
specifically enjoyed bringing their computing knowledge into the
wet laboratory. Students with interest in biological sciences started
discussions on applications of machine-learning methods to images
obtained from microscopes. A majority of comments indicated that
the activity helped them feel less intimidated about approaching
machine learning or artificial intelligence related literature. They
also reported increased interested in exploring computation as a
tool toward their scientific domains of interest. A significant out-
come of the informal feedback process was the realization from
students that machine learning and advanced approaches are not
limited to computer science majors or large technology companies.

6 CONCLUSIONS
We developed and implemented an end-to-end data science exer-
cise with an application of machine learning experience for STEM
students using their laboratory surroundings and equipment as the
source of the project. Classification of images based on supervised
learning is a common example in the machine learning domain, and
the students adapted that into the chemistry laboratory. First-year
students collected pictures of various glassware in the chemistry
laboratory and implemented the training and testing of classifiers
based on four pre-trained neural networks. These neural networks
were chosen due to their wide availability and well-known perfor-
mance on image classification tasks. The glassware images were
split into two categories of full color images and grayscale images.
Each set of images was enlarged with an image augmentation rou-
tine that resulted in a 19-fold increase in the size of the dataset. The
students then compared the performance of the classification of
glassware among the four networks and for each of the four types
of datasets. The performance of the classifiers on the augmented
datasets seems to be the most reliable, irrespective of using color
images or grayscale images. Our analysis shows that ResNet-50
provides the best trade-off between accuracy and training time for
the datasets considered in this activity. We believe that this activity
provides students with an accessible and empowering introduction
to advanced techniques in the data science domain through the
lens of typical glassware in a chemistry laboratory.

7 SUPPORTING INFORMATION
We have provided the dataset of images and some of the Mathemat-
ica notebooks used to train the neural networks and to analyze the
performance of the classifiers. The components are:

(1) Chemistry-Glassware-ML-no-augmentation-run1.nb: This
notebook provides the code for setup and training of all four
neural networks mentioned in the Methods for the dataset
of full color images without image augmentation.

(2) Chemistry-Glassware-ML-with-augmentation-run1.nb: This
notebook provides code for setup and training of the afore-
mentioned neural networks for the dataset of full color im-
ages augmented with image modification effects.

(3) A folder called Glassware-Images contains images of the
various glassware organized by name.
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(4) Training and testing datasets for the first iteration of the
experiment with no image augmentation with filenames
training-Set-edison-2020-06-10T05:24:59.mx and testing-Set-
edison-2020-06-10T05:24:59.mx

(5) Binary data export of neural networks trained on the labora-
tory glassware data. These files all have the .mx extension
and the names start with trainedNet-*.mx. The name of the
network is included in the filename string.

These resources are located in a shared Google drive folder. A
copy of these resources is also hosted on Zenodo [25]. The dataset
provides our trained networks with the extension “.mx,” and the
notebook entitled, “Analysis-run1-no-augmentation.nb” is set up
with the correct filenames to load the trained networks and the
testing and training dataset used for that iteration.
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