Parametric GraphIt Exploration Questions

1. Complete the table below.

t	$x(t)=\sin(t)$	y(t) = cos(t)	Coordinate (x,y)
0.0	0	1	(0,1)
0.5			
1.0			
1.5			
2.0			
2.5			
3.0			
3.5			
4.0			
4.5			
5.0			
5.5			
6.0			
6.5			
7.0	_	_	

- 2. Plot the coordinates in the same order as in the table, smoothing the lines from point to point. What does the graph resemble?
- 3. Draw arrows on your graph to indicate the direction or orientation of the graph.
- 4. How could you adjust one of the equations so that the orientation would be going in the opposite direction?

For questions 5-6 use the equations $x(t) = \frac{1}{2}t^3$ and $y(t) = \frac{1}{4}t^6$.

- 5. When graphed, what type of function do these parametric equations look like? Plot a few data points from this function to see if you are correct.
- 6. How can we manipulate the equations of x(t) and y(t) in order to express y as a function of x? (Hint: Solve x(t) for t, i.e. express t in terms of x, then substitute that into y(t).) How is this equation related to your answer to #5?

- 7. There are many other ways to get the curve given in problem 5 from a pair of parametric equations. For example: x(t) = t, $y(t) = t^2$ will give the same graph, as will the pair $x(t) = t^{1/3}$, $y(t) = t^{2/3}$. If x(t) = t + 1, what value for y(t) will give yet another way of representing the curve given in problem 5?
- 8. Now find parametric equations that give rise to the function $y = x^3 + 2$, oriented from left to right, keeping in mind that there are many possible answers. This process is called parametrization.