Crazy Choices Game Tally Table

Name of player:	\# of favorable outcomes:	Total \# of outcomes:	Total \# of games played:	\# of games won:	Experimental probability*:

* The following formula should be used for experimental probability:

Experimental probability = (\# of games won $) /($ Total games played $)$
Obviously, experimental probability is computed after all the data is collected. Here is the example of the game statistics. Anton played with a spinner that had 3 equal sections and won if the spinner stopped at Section 1 or 2, Bella played with a ten-sided die and won if the die rolled $2,4,6$ or 8 up, and Cindy played with a coin and won if it fell heads up. Students planned to play fifty games. They tallied the results of every game and then counted their victories:

Name of player:	\# of favorable outcomes:	Out of the total of this many outcomes:	Total number of games played:	Number of games won:	Experiment al probability*:

The players concluded that Anton had the best chances of winning, followed by Cindy and then Bella.

